convolutional neural networks のトレンド @wbaflカジュアルトーク#2

62
全脳アーキテクチャの会 カジュアルトーク#2 (2016.2.7) Convolutional Neural Networks のトレンド 全脳アーキテクチャの会 法政学学院 学研究科 修課程 島 樹

Upload: daiki-shimada

Post on 10-Jan-2017

19.485 views

Category:

Technology


1 download

TRANSCRIPT

  • #2 (2016.2.7)

    Convolutional Neural Networks

  • (SHIMADA Daiki)@sheema_sheema (Twitter)

    M1

    (!!)

    20142

    1

  • l CNN:

    l CNN 26 !!

    l ??

    l

    l CNN

    Convolutional Neural Networks (CNN)

    2

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    3

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    4

  • CNN

    l

    l 2

    Neocognitron (1980) [1]

    5

    [1] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36, 1980.

    l

    l Back Propagation(BP)

    LeNet (1998) [2]

    [2] Y LeCun, L Bottou, Y Bengio, P Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 1998.

  • CNN ,,

    l CNN

    Ave./Max Pooling, Local Contrast Normalization (2009) [3]

    6

    [3] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun. What is the best multi-stage architecture for object recognition?. CVPR, 2009.

    l

    ReLU (2011) [4]

    [4] X. Glorot, A. Bordes, Y. Bengio. Deep Sparse Rectifier Neural Networks. AISTATS 11, 2011.

    l

    Dropout (2012) [5]

    [5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv: 1207.0580, 2012.

  • CNN

    l

    l Data Augmentation (8)

    AlexNet (2012) [6]

    7

    [6] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

    l

    l (global ave. pooling)

    Network in Network, global ave. pooling (2013) [7]

    [7] M. Lin, Q. Chen, S. Yan. Network In Network. arXiv: 1312.4400, 2013.

  • CNN

    l 19

    l (3x3)

    VGG-Net (2014) [8]

    8

    [8] K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Visual Recognition. arXiv: 1409.1556, 2014.

    l 22

    l auxiliary classifiers , Inception module

    GoogLeNet / Inception (2014 ~ 2015) [9, 10]

    [9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going deeper with convolutions. arXiv: 1409.4842, 2014.

    [10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking the Inception Architecture for Computer Vision. arXiv: 1512.00567, 2015.

  • CNN

    l

    l CNN

    SPP-Net (2014) [11]

    9

    [11] K. He, X. Zhang, S. Ren, J. Sun. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. arXiv: 1406.4729, 2014.

    l 2

    l guided BP

    All Convolutional Net, guided BP (2014) [12]

    [12] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller. Striving for Simplicity: The All Convolutional Net. arXiv: 1412.6806, 2014.

  • CNN

    l Data Augmentation Exemplar CNN (2014) [13]

    10

    [13] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, T. Brox. Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks. arXiv: 1406.6909, 2014.

    l CNN,,

    Triplet Network (2014) [14]

    [14] E. Hoffer, N. Ailon. Deep metric learning using Triplet network. arXiv: 1412.6622, 2014.

  • CNN

    l

    l

    Batch Normalization (2015) [15]

    11

    [15] S. Ioffe, C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv: 1502.03167, 2015.

    l 152

    l

    Residual Network; ResNet (2015) [16]

    [16] K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. arXiv: 1512.03385, 2015.

  • AdaGrad [17]

    RMSProp [18]

    AdaDelta [19]

    Adam [20]

    12

    [17] J. Duchi, E. Hazan, Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research 12 ,2011.

    l (AdaGrad)

    l

    [18] T. Tieleman, G. Hinton. Divide the gradient by a run- ning average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4, 2012.[19] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv: 1212.5701, 2012.[20] D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. arXiv: 1412.6980, 2014.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    13

  • CNN /

    l DeconvolutionUnpooling

    Deconvnet for visualizing

    14

    [21] M.D. Zeiler, and R. Fergus. Visualizing and understanding convolutional networks. arXiv,: 1311.2901, 2013.

  • CNN /

    l

    15

    [22] A. Mahendran, A. Vedaldi. Understanding Deep Image Representations by Inverting Them. arXiv: 1412.0035, 2014.

  • CNN /

    l CNN

    l Adversarial example

    CNN

    16

    [24] I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples. arXiv: 1412.6572, 2014.

    ostrich !! ostrich !!

    [23] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R. Fergus. Intriguing properties of neural networks. arXiv: 1312.6199, 2013.

  • CNN /

    l

    CNN

    17

    [25] A. Nguyen, J. Yosinski, J. Clune. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. arXiv: 1412.1897, 2014.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    18

  • l CVCNN

    R-CNN (2013)

    19

    [26] R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524, 2013.

  • l 1 ()

    l CNNROI (ROI Pooling)

    l CV

    Fast R-CNN (2015/4)

    20

    [27] R. Girshick. Fast R-CNN. arXiv:1504.08083, 2015.

  • l CNN (Region Proposal Net)

    Faster R-CNN (2015/6)

    21

    [28] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497, 2015.

  • l CNN

    l Deconvolution

    Fully Convolutional Networks (FCN)

    22

    [29] K. Simonyan, A. Vedaldi, A. Zisserman. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv: 1312.6034, 2013.

  • l Pooling,

    SegNet

    23

    [30] V. Badrinarayanan, A. Handa, R. Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling. arXiv: 1505.07293, 2015.

  • l CRF

    l CRFRNN(CRF-RNN)CNNCRF

    CNN + (CRF)

    24

    [31] S. Zheng, S. Jayasumana, B. R. Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P. H. S. Torr. Conditional Random Fields as Recurrent Neural Networks. arXiv: 1502.03240, 2015.

  • l /

    l

    Deep Mask

    25

    [32] P. O. Pinheiro, R. Collobert, P. Dollar. Learning to Segment Object Candidates. arXiv: 1506.06204, 2015.

  • l 3, CNN

    l

    Deep Face

    26

    [33] Y. Taigman, M. Yang, M. A. Ranzato and L. Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR, 2014.

  • l

    Spatial Transformer Networks

    27

    [34] M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu. Spatial Transformer Networks. arXiv: 1506.02025, 2015.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    28

  • l CNN

    Deep Dream

    29

    [36] K. Simonyan, A. Vedaldi, A. Zisserman. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv: 1312.6034, 2013.

    [35] Inceptionism: Going Deeper into Neural Networks. http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html

  • l 3D

    30

    [37] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, T. Brox. Learning to Generate Chairs, Tables and Cars with Convolutional Networks. arXiv: 1411.5928, 2014.

  • l CNN

    31

    [38] L. A. Gatys, A. S. Ecker, M. Bethge. A Neural Algorithm of Artistic Style. arXiv: 1508.06576, 2015.

    1

    5

  • l CNNMRF

    32

    [39] C. Li, M. Wand. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. arXiv:1601.04589, 2016.

  • l Adversarial Networks

    DCGAN

    33

    [40] A. Radford, L. Metz, S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434, 2015.

  • l waifu2x[42]

    Super-Resolution CNN (SRCNN)

    34

    [41] C. Dong, C. C. Loy, K. He, X. Tang. Image Super-Resolution Using Deep Convolutional Networks. arXiv:1501.00092, 2015.

    [42] waifu2x. http://waifu2x.udp.jp/index.ja.html

  • l CNNmotion kernelMRF

    Deblurring ()

    35

    [43] J. Sun, W. Cao, Z. Xu, J. Ponce. Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal. arXiv:1503.00593, 2015.

  • l hypercolumns [45]

    Automatic Colorization CNN

    36

    [44] Automatic Colorization, http://tinyclouds.org/colorize/

    [45] B. Hariharan, P. Arbelez, R. Girshick, J. Malik. Hypercolumns for Object Segmentation and Fine-grained Localization. arXiv: 1411.5752, 2014.

    original CNN human(Reddit)

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    37

  • 3D

    l Selection Tower (depth)Color Tower () 2

    Deep Stereo

    38

    [46] J. Flynn, I. Neulander, J. Philbin, N. Snavely. DeepStereo: Learning to Predict New Views from the World's Imagery. arXiv:1506.06825, 2015.

  • 3D

    Deep Stereo

    39

    [46] J. Flynn, I. Neulander, J. Philbin, N. Snavely. DeepStereo: Learning to Predict New Views from the World's Imagery. arXiv:1506.06825, 2015.

    [47] DeepStereo: Learning to Predict New Views from the Worlds Imagery - YouTube, https://www.youtube.com/watch?v=cizgVZ8rjKA

  • 3D

    l CNN

    40

    [48] J. bontar, Y. LeCun. Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. arXiv: 1510.05970, 2015.

  • 3D

    l CNNdepth, surface normal, semantic label

    3D

    41

    [49] D. Eigen, R. Fergus. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture. arXiv: 1411.4734, 2014.

    input Eigen et al. proposal ground truth

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    42

  • l 487(!?), Top-580

    l CNN ()

    43

    [50] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, F. Li. Large-scale Video Classification with Convolutional Neural Networks. CVPR, 2014.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    44

  • l Memorability:

    l Memorability score: LaMem

    MemNet: CNN for Memorability

    45

    [51] LaMem, http://memorability.csail.mit.edu/

    [52] A. Khosla, A. S. Raju, A. Torralba and A. Oliva. Understanding and Predicting Image Memorability at a Large Scale. ICCV, 2015..

    Memorability

  • l MemorabilityCNN

    l Rank Correlation: 0.64(MemNet) v.s. 0.68(human)

    MemNet: CNN for Memorability

    46

    [51] LaMem, http://memorability.csail.mit.edu/

    [52] A. Khosla, A. S. Raju, A. Torralba and A. Oliva. Understanding and Predicting Image Memorability at a Large Scale. ICCV, 2015..

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    47

  • l

    l CNN() + LSTM(; )

    48

    Google NIC [53] LRCN [54][53] O. Vinyals, A. Toshev, S. Bengio, D. Erhan. Show and Tell: A Neural Image Caption Generator. arXiv: 1411.4555, 2014./

    [54] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darrell. Long-term Recurrent Convolutional Networks for Visual Recognition and Description. arXiv: 1411.4389, 2014.

  • (: Google NIC, : LRCN)

    49

  • l

    (Visual Turing Test)

    50

    mQA [55]

    Neural-Image QA [56]

    [55] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, W. Xu. Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering. arXiv: 1505.05612, 2015.

    [56] M. Malinowski, M. Rohrbach, M. Fritz. Ask Your Neurons: A Neural-Based Approach to Answering Questions About Images. ICCV, 2015.

  • (Visual Turing Test)

    51

    mQA [55]

  • (Visual Turing Test)

    52Neural-Image QA [56]

    DAQUAR

    (?)

  • l Bidirectional RNN, RNN

    53

    [57] E. Mansimov, E. Parisotto, J. L. Ba, R. Salakhutdinov. Generating Images from Captions with Attention. arXiv: 1511.02793, 2015.

  • 54

    [58] R. Kiros, R. Salakhutdinov, R. S. Zemel. Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. arXiv: 1411.2539, 2014.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ? ImageNet ...

    55

  • CNN

    l Q-Learning CNN (DQN)

    l

    Atari 2600 (Deep Q-Networks)

    56[60] V. Mnih, at al. Human-level control through deep reinforcement learning. nature, 2015.

    [59] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602, 2013.

  • CNN

    l 2(&)(MCTS)

    l 19x19CNN

    l -> self-play

    AlphaGo

    57

    [61] D. Silver, et al. Mastering the game of Go with deep neural networks and tree search. nature, 2016.

  • CNN

    l AI

    l 55, 3

    AlphaGo

    58

    [61] D. Silver, et al. Mastering the game of Go with deep neural networks and tree search. nature, 2016.[62] Y. Tian, Y. Zhu. Better Computer Go Player with Neural Network and Long-term Prediction. arXiv: 1511.06410, 2015.

  • CNN

    l DQN

    l 1 16 actor-learner threads

    (Asynchronous DQN)

    59

    [63] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. arXiv:1602.01783, 2016.

  • #2Convolutional Neural Networks1. CNN / 2. / 3. 4. 5. 3D6. 7. 8. 9. CNN10. Whats Next ?

    60

  • Whats Next ?

    l Fei-Fei Li

    Visual Genome

    61

    [64] Visual Genome, https://visualgenome.org/

    108,249 images

    4.2 million Region Descriptions

    1.7 million Visual Q&A

    2.1 Million Object Instances(75,729 unique objects)

    1.8 Million Attributes(40,513 unique attributes)