constantes fondamentales, gravitation et cosmologie · 13/12/2013 iap constantes fondamentales,...

69
13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie Développements récents Jean-Philippe UZAN

Upload: buique

Post on 15-Sep-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

13/12/2013 IAP

Constantes fondamentales, gravitation et cosmologie���

���Développements récents���

Jean-Philippe UZAN���

Page 2: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constants���

Fundamental constants play an important role in physics - set the order of magnitude of phenomena; - allow to forge new concepts; - linked to the structure of physical theories; - characterize their domain of validity;

- gravity: linked to the equivalence principle; - cosmology: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Page 3: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constants���

Fundamental constants play an important role in physics - set the order of magnitude of phenomena; - allow to forge new concepts; - linked to the structure of physical theories; - characterize their domain of validity;

- gravity: linked to the equivalence principle; - cosmology: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Any parameter not determined by the theories we are using. It has to be assume constant (no equation/ nothing more fundamental ) Reproductibility of experiments. One can only measure them.

[JPU, arXiv:1009.5514; hep-ph/0205340]

Page 4: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Reference theoretical framework���

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [General Relativity + SU(3)xSU(2)xU(1)]:

Page 5: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Reference theoretical framework���

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [General Relativity + SU(3)xSU(2)xU(1)]:

•  G : Newton constant (1) •  6 Yukawa coupling for quarks •  3 Yukawa coupling for leptons

•  mass and VEV of the Higgs boson: 2

•  CKM matrix: 4 parameters •  Non-gravitational coupling constants: 3 • Λuv: 1

•  c, ħ : 2 •  cosmological constant

22 constants 19 parameters

Thus number can increase or decrease with our knowledge of physics

Page 6: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

1.015 ±0.05 -(250.6 ±1.2) GeV2

mH=(125.3±0.6)GeV

v=(246.7±0.2)GeV

Page 7: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constants and relativity���

Page 8: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Tests on the universality of free fall���

2014 MicroScope

Page 9: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

On the basis of general relativity���

It is based on Einstein equivalence principle universality of free fall local Lorentz invariance local position invariance

The equivalence principle takes much more importance in general relativity

If this principle holds then gravity is a consequence of the geometry of spacetime

This principle has been a driving idea in theories of gravity from Galileo to Einstein

Not a basic principle of physics but mostly an empirical fact.

Page 10: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Underlying hypothesis

Equivalence principle •  Universality of free fall •  Local lorentz invariance •  Local position invariance

GR in a nutshell���

Physical metric

Page 11: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Underlying hypothesis

Equivalence principle

Dynamics

•  Universality of free fall •  Local lorentz invariance •  Local position invariance

Relativity

GR in a nutshell���

Physical metric

gravitational metric

Page 12: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Equivalence principle and constants���

In general relativity, any test particle follows a geodesic, which does not depend on the mass or on the chemical composition

1- Local position invariance is violated.

Imagine some constants are space-time dependent

Page 13: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Equivalence principle and constants���

In general relativity, any test particle follow a geodesic, which does not depend on the mass or on the chemical composition

2- Universality of free fall has also to be violated

1- Local position invariance is violated.

In Newtonian terms, a free motion implies d�p

dt= m

d�v

dt= �0

Imagine some constants are space-time dependent

Mass of test body = mass of its constituants + binding energy

d⇥p

dt= ⇥0 = m⇥a +

dm

d��̇⇥v

m�aanomalous

But, now

Page 14: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Varying constants: constructing theories���

S[�, ̄, Aµ, hµ⌫ , . . . ; c1, . . . , c2]

Page 15: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Varying constants: constructing theories���

If a constant is varying, this implies that it has to be replaced by a dynamical field

This has 2 consequences: 1- the equations derived with this parameter constant will be modified one cannot just make it vary in the equations

2- the theory will provide an equation of evolution for this new parameter

The field responsible for the time variation of the « constant » is also responsible for a long-range (composition-dependent) interaction

i.e. at the origin of the deviation from General Relativity.

[Ellis & JPU, gr-qc/0305099]

S[�, ̄, Aµ, hµ⌫ , . . . ; c1, . . . , c2]

Page 16: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constants and systems of units���

Page 17: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constants and systems of units���

http://www.bipm.org/en/si/new_si/

Page 18: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Overview���

���

• Modelisation of gyromagnetic factors��� [with K. Olive & Fang Luo (2011)]������

• Planck & CMB constraints��� [with S. Galli, O. Fabre, S. Prunet, E. Menegoni, et al. (2013)]���

• Big bang nucleosynthesis��� [with A. Coc, E Vangioni, L. Olive (2007-2013)]���

• Population III stars��� [with A. Coc, E. Vangioni, K. Olive, P. Descouvemont, G. Meynet,S. Ekström (2010)]���������

ANR VACOUL (PI: Patrick Petitjean) / ANR Thales (PI: Luc Blanchet)

Page 19: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Observables and primary constraints���A given physical system gives us an observable quantity

External parameters: temperature,...:

Primary physical parameters

From a physical model of our system we can deduce the sensitivities to the primary physical parameters

The primary physical parameters are usually not fundamental constants.

Step 1:

Step 2:

Page 20: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks

Oklo phenomenon

Meteorite dating Quasar absorption spectra

CMB

BBN

Local obs

QSO obs

CMB obs

Physical systems���

Page 21: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks���&���

modelisation of gyromagnetic factors���

[Luo, Olive, JPU, 2011]

Page 22: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Hydrogen atom

Page 23: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks

General atom���

Page 24: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks

Marion (2003) Bize (2003) Fischer (2004) Bize (2005) Fortier (2007)

Peik (2006) Peik (2004)

Blatt (2008) Cingöz (2008)

Blatt (2008)

Page 25: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks: from observations to constraints���

!20 !10 0 10 20

!5

0

5

"##!$1016"

"gp

gp

!$1016"

The gyromagnetic factors can be expressed in terms of gp and gn (shell model).

�gCs

gCs⇥ �1.266

�gp

gp

�gRb

gRb� 0.736

�gp

gp

All atomic clock constraints take the form

Using Al-Hg to constrain α, the combination of other clocks allows to constraint {µ,gp}. Note: one actually needs to include the effects of the polarization of the non-valence nucleons and spin-spin interaction. [Flambaum, 0302015,…

[Luo, Olive, JPU, 2011]

Page 26: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks: from observations to constraints���

One then needs to express mp and gp in terms of the quark masses and ΛQCD as

[Luo, Olive, JPU, 2011]

Assuming unification.

Model-dependence remains quite large.

⇥̇AB

⇥AB= CAB

�̇

mi = hiv

CAB coefficients range from 70 to 0.6 typically.

Page 27: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Cosmic microwave background���

[with S. Galli, O. Fabre, S. Prunet, E. Menegoni, et al. (2013)]���

Page 28: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Recombination���

Reaction rate���

Out-of-equilibrium process – requires to solve a Boltzmann equation ���

T ì

observer

1- Recombination ne(t),…���2- Decoupling Γ<<H���3- Last scattering���

Page 29: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Dependence on the constants���Recombination of hydrogen and helium���Gravitational dynamics (expansion rate)���

predictions depend on G,α,me���������We thus consider the parameters:���

E=hν Binding energies��� σT Thomson cross-section��� σn photoionisation cross-sections��� α recombination parameters��� β photoionisation parameters��� K cosmological redshifting of the photons��� A Einstein coefficient��� Λ2s 2s decay rate by 2γ ���

All the dependences of the constants can be included in a CMB code (recombination part: RECFAST):���

Page 30: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Dependence on the constants���

0 1500 3000 4500 6000z

0.0

0.2

0.4

0.6

0.8

1.0

x e

↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

0 1500 3000 4500 6000z

0.0

0.2

0.4

0.6

0.8

1.0

x e

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

Page 31: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Effect on the temperature power spectrum���

0 500 1000 1500 2000 2500Multipole `

0

1000

2000

3000

4000

5000

6000

CT

T`

`(`

+1)

/2⇡

[µK

2 ]↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

↵/↵0 = 0.95↵/↵0 = 1↵/↵0 = 1.05

0 500 1000 1500 2000 2500Multipole `

0

1000

2000

3000

4000

5000

6000

CT

T`

`(`

+1)

/2⇡

[µK

2 ]

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

me/me0 = 0.95me/me0 = 1me/me0 = 1.05

Increase of α induces - an earlier decoupling - smaller sound horizon - shift of the peaks to higher multipoles - an increase of amplitude of large scale (early ISW) - an increase of amplitude at small scales (Silk damping)

Page 32: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Effect on the polarization power spctrum���

0 500 1000 1500 2000 2500Multipole `

0

10

20

30

40

50C

EE

``(

`+

1)/2

⇡[µ

K2 ]

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

0 500 1000 1500 2000 2500Multipole `

0

10

20

30

40

50

CEE

``(

`+

1)/2

⇡[µ

K2 ]

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

Page 33: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Effect on the cross-correlation���

0 500 1000 1500 2000 2500Multipole `

�150

�100

�50

0

50

100

150

CT

E`

`(`

+1)

/2⇡

[µK

2 ]

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

↵/↵0 = 0.95

↵/↵0 = 1

↵/↵0 = 1.05

0 500 1000 1500 2000 2500Multipole `

�150

�100

�50

0

50

100

150

CT

E`

`(`

+1)

/2⇡

[µK

2 ]

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

me/me0 = 0.95

me/me0 = 1

me/me0 = 1.05

Page 34: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Varying α alone���

Page 35: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Varying me alone���

Page 36: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

(α,me)-degeneracy���

0.96 0.99 1.02 1.05 1.08�/�0

0.8

0.9

1.0

1.1

1.2m

e/m

e0

WMAP9Planck+WPPlanck+WP+highL

Page 37: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Why Planck does better���

0 800 1600 2400 3200Multipole `

�200

�100

0

100

200

300

400

500

�C

TT

`/C

TT

`[%

]

0 800 1600 2400 3200Multipole `

�200

�100

0

100

200

300

400

500

�C

TT

`/C

TT

`[%

]

Hydrogen binding energy���

Lyα binding energies���

H + Lyα binding energies���

H + Lyα + σΤ All terms

H + Lyα + σΤ+2γ

Page 38: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Why Planck does better���

0 800 1600 2400 3200Multipole `

�200

�100

0

100

200

300

400

500

�C

TT

`/C

TT

`[%

]

0 800 1600 2400 3200Multipole `

�200

�100

0

100

200

300

400

500

�C

TT

`/C

TT

`[%

]

δα = 5% δme=10.025% α2me identical

Page 39: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Why Planck does better���

0 800 1600 2400 3200Multipole `

�200

�100

0

100

200

300

400

500

�C

TT

`/C

TT

`[%

]

δα = 5% δme=10.025% α2me identical

Page 40: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

In conclusion���

Independent variations of α and me are constrained to be

Δα/α=(3.6±3.7)x10-3 Δme/me=(4±11)x10-3

This is a factor 5 better compared to WMAP analysis

Planck breaks the degeneracy with H0 and with me and other cosmological parameters (e.g. Nν or helium abundance)

0.96 0.99 1.02 1.05 1.08�/�0

0.8

0.9

1.0

1.1

1.2

me/

me0

WMAP9Planck+WPPlanck+WP+highL

0.96 0.98 1.00 1.02 1.04�/�0

50

60

70

80

90

100

H0

WMAP9Planck+WPPlanck+WP+HSTPlanck+WP+BAO

0.950 0.975 1.000 1.025 1.050�/�0

0

2

4

6

8

10

12

Ne�

WMAP9Planck+WPPlanck+WP+highL

0.97 0.98 0.99 1.00 1.01�/�0

0.0

0.2

0.4

0.6

0.8

1.0

P/P

max

WMAP9Planck+WPPlanck+WP+HSTPlanck+WP+BAO

Page 41: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Big bang nucleosynthesis���&���

Population III stars������

Nuclear physics at work in the universe���

[Coc,Nunes,Olive,JPU,Vangioni 2006 Coc, Descouvemont, Olive, JPU, Vangioni, 2012

Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni,2009]

Page 42: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN: basics

0.22

0.24

0.26

WM

AP

1Bh2

Mas

s fra

ctio

n

4He

10 -2

10-6

10-5

10-4

10-3

3 He/

H, D

/H

D

3He

10-10

10-9

1 107 Li

/H

7Li

Plan

ck

d×1010

BD = 0.22 MeV

Page 43: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

1.  Equillibrium between 4He and the short lived (~10-16 s) 8Be : αα↔8Be

2.  Resonant capture to the (l=0, Jπ=0+) Hoyle state: 8Be+α→12C*(→12C+γ)

Simple formula used in previous studies

1.  Saha equation (thermal equilibrium)

2.  Sharp resonance analytic expression:

NA2 〈σv〉ααα = 33/ 26NA

2 2πMαkBT'

( )

*

+ ,

3

5γ exp −Qααα

kBT'

( )

*

+ ,

with Qααα= ER(8Be) + ER(12C) and γ≈Γγ

Nucleus 8Be 12C

ER (keV) 91.84±0.04 287.6±0.2

Γα (eV) 5.57±0.25 8.3±1.0

Γγ (meV) - 3.7±0.5

ER = resonance energy of 8Be g.s. or 12C Hoyle level (w.r.t. 2α or 8Be+α)

Stellar carbon production Triple α coincidence (Hoyle)

[Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni,2009]

Page 44: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Nuclear physics

Both phenomena involve nuclear physics. The microphysics involves binding energies / resonnance energies / cross-sections

Page 45: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN: dependence on constants

Light element abundances mainly based on the balance between 1- expansion rate of the universe 2- weak interaction rate which controls n/p at the onset of BBN

Predictions depend on

Example: helium production

freeze-out temperature is roughly given by

Coulomb barrier:

Coc,Nunes,Olive,JPU,Vangioni 2006

Page 46: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Sensitivity to the nuclear parameters Independent variations of the BBN parameters

Abundances are very sensitive to BD.

Equilibrium abundance of D and the reaction rate p(n,γ)D depend exponentially on BD.

These parameters are not independent.

Difficulty: QCD and its role in low energy nuclear reactions.

Coc,Nunes,Olive,JPU,Vangioni 2006

Page 47: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN: fundamental parameters (1)

Neutron lifetime:

Neutron-proton mass difference:

Page 48: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN: fundamental parameters (2)

D binding energy:

Use a potential model

Flambaum,Shuryak 2003

This allows to determine all the primary parameters in terms of (hi, v, Λ,α)

This allows to determine BD as a function of mass of the quarks (u,d,s), ΛQCD, α.

Page 49: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN: assuming GUT

The low-energy expression for the QCD scale

The value of R depends on the particular GUT theory and particle content which control the value of MGUT and of α(MGUT). Typically R=36.

GUT:

We deduce

Assume (for simplicity) hi=h

Page 50: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

A=5 & A=8

BD = 0.22 MeV

To go further: - influence on helium-5, lithium-5, beryllium-8, carbon-12 - cross-sections such as

To that goal, we introduce a modelisation that will also allow to study the stellar physics.

Page 51: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Cluster model & δNN

to obtain BD, ER(8Be), ER(12C)

Cluster model Theoretical analysis

H = T ri( )i=1

A

∑ + VCoul. rij( ) +VNucl . rij( )( )i< j=1

A

Cluster approach: - solve the Schrödinger equation by considering Be8/C12 as clusters of α particle

- The Hamiltonian is then given by - We assume that - δNN is an effective parameter

Page 52: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

q  Link to fundamental couplings through BD or δNN

Microscopic calculation

Note: - δNN > 7.52x10-3, Be8 becomes stable -  δNN > 0.15, dineutron is stable -  δNN > 0.35, diproton is stable

-  effect of α is subdominant

Page 53: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Primordial CNO production

Primordial CNO may affect dynamics of Pop III if CNO/H>10-12-10-10

In standard BBN CNO/H=(0.2-3)10-15 [Iocco et al (2007); Coc et al. (1012)]. It proceeds as which bridge the gap between A=7 and A=12.

Just consider the 3α-reactions: 6 orders of magnitude below SBBN. Effect on He-5 and Li-5 were also studied. Stable A=5 & A=8 do not affect the standard BBN abundances

Page 54: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Constraints

Page 55: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

BBN / Pop III

In the temperature range 0.1 GK -1 GK, the baryon density during BBN changes from 0.1 to 10-5 g/cm3. - Variation of the reaction rates is limited at higher T

- 3-body reactions are less efficient

In population III stars, the situation is however different: - density varies between 30 to 3000 g/cm3, - 3α occurs during the helium burning phase, without significant sources of Li-7, D, p, n so that the 2-body « route » is not effective.

Page 56: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Effects on the stellar evolution

60 M¤ stars/ Z=0 3α-reaction rate

Page 57: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Composition at the end ofcore He burning Stellar evolution of massive Pop. III stars

We choose typical masses of 15 and 60 M¤ stars/ Z=0 ⇒Very specific stellar evolution

60 M¤ Z = 0

Ø The standard region: Both 12C and 16O are produced.

Ø  The 16O region: The 3α is slower than 12C(α,γ)16O resulting in a higher TC and a conversion of most 12C into 16O

Ø  The 24Mg region: With an even weaker 3α, a higher TC is achieved and 12C(α,γ)16O(α,γ)20Ne(α,γ)24Mg transforms 12C into 24Mg

Ø  The 12C region: The 3α is faster than 12C(α,γ)16O and 12C is not transformed into 16O

Constraint 12C/16O ~1 ⇒ -0.0005 < δNN < 0.0015

or -0.003 < ΔBD/BD < 0.009

Page 58: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Conclusions

The effect of the variation of fundamental constants on the nuclear physics processes needed to infer BBN predictions & describe the evolution of Pop . III stars have been modelled. Constraints on the variation of the nuclear interaction It can be related to fundamental constants (via Deuterium) Stable A=5 & A=8 does not affect primordial CNO predictions Evolution of Pop. III stars can be significantly affected The tuning required to get C/O or order 1 is 1/1000 (Hoyle fine tuning)

Page 59: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Spatial variation���

Page 60: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Spatial variation? [Webb et al., 2010]

Claim: Dipole in the fine structure constant [« Australian dipole »] Indeed, this is a logical possibility to reconcile VLT constraints and Keck claims of a variation.

Keck VLT Keck&VLT

X

Page 61: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

A possible theoretical model [Olive, Peloso, JPU, 2010]

Idea: Spatial discontinuity in the fundamental constant due to a domain wall crossing our Hubble volume.

Page 62: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Spatial distribution of the constants���

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

V (�)

↵(�+), µ(�+), . . .

↵(��), µ(��), . . .

Page 63: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

< RH

>> RH

Constants vary on sub-Hubble scales. - may be detected - microphysics in principle acessible

Constants vary on super-Hubble scales. - landscape ? - exact model of a theory which dynamically gives a distribution of fondamental constants - no variation on the size of the observable universe

[JPU, 2011]

Page 64: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Spatial variation on CMB

If one assumes that some constants have a dipolar variation

then the CMB temperature can be expanded as

The coefficients of the multipolar expansion are thus

Page 65: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Spatial variation on CMB

This implies multipole correlations

Known functions of l and m Amplitude of the modulation

[Prunet, JPU, Brunier, Bernardeau, 2005]

Page 66: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Analysis of Planck data

This allows to design an estimator of the Dlm [prunet et al (2005); Hansen-Lewis (2009)]

Masking effect also induces l-correlations Simulations of 103 maps with no modulation + Planck masking Simulation of a CMB with α modulation

The amplitude of a modulation of α is constrained to δα < 6x10-4 (1σ) at z= 1000 First constraint from the CMB To be compared with δα/α = (0.97 ± 0.22) x10-4 (4σ) at z=2 [webb et al. (2011)]

Simulated map with δα = 10-3 / Planck data

Page 67: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Conclusions and perspective���

Page 68: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Conclusions

In the past years, we have obtained a series of results concerning the variation of fundamental constants:

-  Theoretical modelling of gp; useful for clock & quasars -  Study of coupled variations in GUT -  First model of pure spatial variations

- CMB -  improved constraint by a factor 5 compared to WMAP -  lift the degeneracy between α, me and H0 -  First constraint on spatial variation

-  Nuclear physics: - BBN: improved constraints; detailed study of A=5 & A=8 - Pop III stars: fine tuning at 10-3 (anthropic)

Page 69: Constantes fondamentales, gravitation et cosmologie · 13/12/2013 IAP Constantes fondamentales, gravitation et cosmologie!! Développements récents! Jean-Philippe UZAN!

Atomic clocks

Oklo phenomenon

Meteorite dating Quasar absorption spectra

Pop III stars

21 cm

CMB

BBN

Physical systems: new and future

[Coc, Nunes, Olive, JPU, Vangioni]

[Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni, 2009]

JPU, Liv. Rev. Relat., arXiv:1009.5514

[Fabre, Galli, Prunet, Menegoni, JPU,et al]

[Petitjean, Noterdaeme, Srianand et al.]