computer-aided design and selection of …orc2011.fyper.com/uploads/file/posters2/compouter-aided...

1
Computer Computer- Aided Design and Selection of Optimum Working Fluids Aided Design and Selection of Optimum Working Fluids and ORC Systems for Power Generation from Low Enthalpy Sources and ORC Systems for Power Generation from Low Enthalpy Sources A. I. Papadopoulos A. I. Papadopoulos 1 , M. Stijepovic , M. Stijepovic 2 , P. Linke , P. Linke 2 , P. Seferlis , P. Seferlis 3 , S. Voutetakis , S. Voutetakis 1 1 Chemical Process Engineering Research Institute (CPERI), CERTH, Chemical Process Engineering Research Institute (CPERI), CERTH, Greece Greece 2 Chemical Engineering Department, Texas A&M University at Qatar Chemical Engineering Department, Texas A&M University at Qatar 3 Department of Mechanical Engineering, Aristotle University of Th Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece essaloniki, Greece INTRO INTRO METHODOLOGY METHODOLOGY APPLICATION APPLICATION Multiple design indices: How to combine all of them? What should be the performance measure? How hard are the constraints? No ORC design feedback Conventional Technology Novel Working Fluid and ORC Design Approach Power Generation from Low-Enthalpy Geothermal Fields Databases with heat exchange working fluids Evaluation in ORC systems Selection of “optimum” working fluid Evaluation of very limited range of working fluids Empirical selection Results feasible but not optimum Computer Aided Molecular Design (CAMD) CAMD simulation stage Molecular functional groups e.g. –CH 2 -, OH, -CH 3 -COOH etc. Molecular functional groups e.g. –CH 2 -, OH, -CH 3 -COOH etc. Candidate working fluid e.g. CH 3 -ΟΗ Candidate working fluid e.g. CH 3 -ΟΗ Evaluation of performance measure Evaluation of performance measure Chemical feasibility constraints Generation of new structure e.g. CH 3 -CH 2 -OH CAMD optimization stage Property calculation- Group contribution methods Advantages at the CAMD stage Evaluation of thousands of working fluids Computer-aided synthesis of novel molecules Consideration of numerous properties Computer Aided Molecular Design Computer Aided Molecular Design Set of Optimal Working Fluids Set of Optimal Working Fluids Optimum ORC and Working Fluid System Optimum ORC and Working Fluid System ORC Process Design Optimization ORC Process Design Optimization Evaluation based on ORC operating properties Simulation using ORC Models Simulation using ORC Models Evaluation based on molecular properties Evaluation based on ORC economic properties Molecular properties Operating properties 1.Density (ρ) 2.Heat of vaporization (H v ) 3. Thermal capacity (C pl ) 4.Viscosity (μ) 5.Thermal conductivity (λ) 6.Melting point (T m ) 7.Critical temperature (Τ c ) 10 . Performance (n) 11 .Max pressure (P max ) 12 . Min pressure(P min ) 13 .Mass flowrate (m f ) 14.Critical pressure (P max ) Environmental properties Safety properties 8. Ozone depletion potential (ODP)) 9. Global warming potential (GWP) 15 .Toxicity (C) 16 . Flammability (F) Optimum Pareto front f 1 f 2 f 1 f 2 f p Multiobjective optimization Multiobjective optimization Optimize Design goals: Maximize ρ, Η v , λ Minimize C pl , μ, ODP, GWP, C, F Constraints: T m <T min,oper T c >T max,oper ,... , 2 1 f f p f , Set of optimum working fluids Set of optimum working fluids Operating evaluation of working fluids Operating evaluation of working fluids Goals: Maximize n Minimize P max ,P min ,m f Constraints P min >P atm , P c >P max,oper Economic working fluid evaluationORC design Economic working fluid evaluationORC design Goals: Maximize Decision parameters: Vaporizer, condenser type, areas, Turbine type, size tec. CAP gross C xR f 10 Unified performance index Minimize p N k l k j i l k j i l j i x a I 1 * , , , , , , , , l j i l j i l j i pen I I , , , , , , Advantages at the ORC design stage Evaluation of numerous ORC operating and structural options Simultaneous consideration of working fluid candidates Gradual increase of ORC modeling details Commonly Commonly used industrial fluids used industrial fluids Fluid performance for varying heat sources Fluid performance for varying heat sources Economic fluid Economic fluid-ORC design performance ORC design performance Economic Economic-heating performance trade heating performance trade-offs offs ID Molecular type and name η (%) Pmax (atm) Pmin (atm) m f (kg/hr) I20,90 ,l F C Fluorinated Amines andEthers-Amines 28 CF3-CH2-NH 2 8.05 4.65 1.12 16685 -1.194 0.447 1.75 29 CF3-CH(CF3)-NH 2 7.97 1.78 0.34 22592 3.695 0.406 3.06 30 CH3-NH-CF3 8.04 4.71 1.17 17178 -1.119 0.477 1.84 31 CH3-O-CH2-NH2 8.42 1.31 0.24 8565 2.498 0.584 0.75 FluorinatedEthers 32 FCH2-O-CH2-O-CF3 8.15 1.11 0.20 19325 3.574 0.524 1.44 33 FCH2-O-CF3 7.62 9.59 2.82 24190 0.877 0.406 1.56 34 CH2=CH-CH 2-O-CF3 7.82 3.78 0.94 20880 2.643 0.559 1.78 ID Molecular type and name η (%) Pmax (atm) Pmin (atm) mf (kg/hr) I20,90,l Industrial fluids 35 1,1,1,2-Tetrafluoroethane 6.58 25.48 8.75 29464 5.934 36 Water 4.78 0.43 0.05 26672 4.466 37 1,1-Difluoroethane 7.11 22.99 7.85 18716 4.209 38 1,1,1,2,2-Pentafluoropropane 6.59 17.70 6.06 34417 4.257 39 1,1,1,2,3,3-Hexafluoropropane 7.40 9.88 2.83 30025 1.479 40 1,1,1,2,3,3,3-Heptafluoropropane 6.36 17.94 6.01 42377 5.030 42 Cyclopropane 7.24 24.85 9.28 13089 4.495 42 Trifluoroiodomethane 7.26 17.69 6.35 56648 6.487 43 Perfluoro-n-pentane 6.72 4.51 1.22 45679 1.582 44 2-Methyl-Butane 7.70 4.52 1.30 13356 -1.460 45 2,2-Dimethyl-Propane 7.41 7.17 2.29 15002 -0.543 46 N-Hexane 7.96 1.40 0.30 12546 2.760 47 Bis-Difluoromethly-Ether 7.62 10.28 2.91 23526 0.946 48 2-Difluoromethoxy-1,1,1-Trifluoro 7.69 5.01 1.25 25034 -0.298 49 Ethanol 8.52 1.12 0.14 5528 2.362 0 0.2 0.4 0.6 0.8 1 1.2 12 15 18 16 19 Type of geothermal field Economic index f Methyl-formate (24) N-Methyl-Methanamyne (21) Methoxy-ethane (14) 1,4-Pentadiene (4) 12: 90 o C-100m 3 /hr 15: 90 o C-20m 3 /hr 18: 90 o C-10m 3 /hr 16: 80 o C-20m 3 /hr 19: 80 o C-10m 3 /hr -3.5 -3 -2.5 -2 -1.5 -1 METHOXY-ETHANE N-METHYL-METHANAMINE 2-METHYL-1,3-BUTADIENE 2-METHYL-1-BUTENE 1,4-PENTADIENE METHYL-FORMATE ACETALDEHYDE Working fluid Performance Index Ii,j,l 90-1000 80-1000 70-1000 90-500 80-500 70-500 90-100 80-100 70-100 90-10 80-10 70-10 Tfl -Ffl ID Molecular type and name Vaporizer Condenser f Area (m 2 ) Cost ($) Area (m 2 ) Cost ($) 24 Methyl formate 125.8 28640 45.5 18920 1.1 21 N-Methyl-methanamine 108.7 26020 45.5 19390 1.08 7(Μ 1) Methanol 87.1 28040 76.6 23410 1.05 14 Methoxy-ethane 120.7 28370 40.9 18480 1.02 4 1,4-Pentadiene 147 31510 52 19140 0.96 3 2-Methyl-1-butene 163.5 33210 65.7 21220 0.90 1 Butane 146.8 32350 45.5 18320 0.89 Μ5 Propane 36.1 19060 47.7 21810 0.75 Μ3 1,1-Difluoro-ethane 146.1 35100 58.3 22370 0.70 Μ4 Tetrafluoroethane 196.2 40920 50.5 20990 0.64 Μ6 Water 78.3 21990 604.1 85990 0.49 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1010 1015 1020 1025 1030 1035 1040 Greenhouse heated area (m 2 ) Economic index f N-Methyl-methanamine 1,4-Pentadiene 2-Methyl-1-butene 1,1-Difluoro-ethane Tetrafluoro-ethane Water Methyl-formate Methoxy-ethane Butane Propane Designed novel fluids Designed novel fluids Designed commercial fluids Designed commercial fluids Power and heat cogeneration from varying Power and heat cogeneration from varying geothermal fields geothermal fields CAMD fluid design CAMD fluid design ORC process design ORC process design Holistic method for the integrated working fluid and ORC design Employs optimization-based CAMD Identifies commercially available and novel working fluid options Enables simultaneous economic, operating, environmental and safety working fluid and ORC process evaluation Conclusions This work was partially funded by the John S. Latsis Public Benefit Foundation Acknowledgements Associated publications A.I. Papadopoulos, M. Stijepovic, P. Linke, Applied Thermal Engineering 30 (2010), 760769 A.I. Papadopoulos, M. Stijepovic, P. Linke, P. Seferlis, S. Voutetakis, Chemical Engineering Transactions 25 (2011) 6166 Greenhouse power-heating cogeneration Greenhouse power-heating cogeneration ID name CAS Registry number (%) (atm) (atm) f (kg/hr) I20,90,l F C Hydrocarbons 1 Butane 106-97-8 7.51 9.85 3.23 13069 0.016 0.564 1.94 2 2-Methyl-1,3- butadiene 78-79-5 8.02 3.77 1.08 12840 -1.702 0.589 2.49 3 2-Methyl-1-butene 563-46-2 7.88 4.14 1.15 12869 -1.620 0.594 2.83 4 1,4-Pentadiene 591-93-5 7.94 4.62 1.47 14230 -1.297 0.622 1.54 5 1,3,5-Hexatriene 821-07-8 8.18 1.28 0.28 12152 2.744 0.665 1.91 6 1,3-Butadiene 106-99-0 7.64 11.29 3.72 12699 0.377 0.592 1.25 HFCs 7 1,1,1,3,3,3- Hexafluoro- 690-39-1 6.61 18.00 6.07 37611 4.608 ΜΑ α 2.84 8 3,3,3-Trifluoro- propene 677-21-4 6.82 21.22 7.54 27580 4.682 0.409 2.19 Fluorinated ethers 9 Methoxy methyl- fluoride 460-22-0 8.12 6.27 1.75 12683 -1.104 0.584 0.97 10 Methyl- trifluoromethyl- ether 421-14-7 7.27 16.98 5.61 24892 3.074 0.513 1.54 11 1,1,1-Trifluoro- methoxy-ethane 460-43-5 7.88 4.24 1.09 19695 -0.977 0.528 1.84 12 2,2,2-Trifluoro- ethyl-ethyl-ether 461-24-5 7.85 3.05 0.72 20098 2.905 0.538 2.13 Ethers 13 Methoxy-ethene 107-25-5 7.88 9.38 2.82 12469 -0.265 0.721 0.89 14 Methoxy-ethane 540-67-0 7.78 8.82 2.68 12620 -0.388 0.555 1.24 15 Dimethyl-ether 115-10-6 7.32 22.19 7.72 12828 3.486 0.567 0.95 16 Dimethoxy- 109-87-5 8.20 3.23 0.79 13030 2.114 0.601 0.83 17 2-Methoxy-1- 116-11-0 8.19 2.29 0.55 11845 2.342 0.642 2.13 18 Methyl-propyl-ether 557-17-5 8.02 3.44 0.87 12585 1.957 0.600 1.54 19 3-Methoxy-1- 627-40-7 8.19 2.63 0.63 11983 2.239 0.642 1.19 20 3-Ethenyloxy-1- propene 3917-15-5 8.19 1.72 0.38 12875 2.690 0.664 1.13 Amines 21 N-Methyl- methanamine 124-40-3 7.94 9.98 2.82 9246 -0.487 0.559 1.24 22 N-Methyl- 624-78-2 8.29 2.31 0.51 9300 2.185 0.578 1.54 23 N,N-Dimethylallyl amine 2155-94-4 8.17 1.02 0.20 11928 2.845 ΜΔ β 1.57 Formates 24 Methyl-formate 107-31-3 8.33 4.57 1.14 10806 -1.759 0.558 1.60 Aldehydes 25 Trifluoro- 75-90-1 7.92 8.65 2.37 19206 0.095 0.443 2.60 26 Acetaldehyde 75-07-0 8.28 5.96 1.54 8370 -1.638 0.667 2.01 Alcohols 27 Methanol 67-56-1 8.60 1.84 0.27 4204 2.097 0.591 1.02 AUTH

Upload: vuongkhuong

Post on 03-Apr-2018

223 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: COMPUTER-AIDED DESIGN AND SELECTION OF …orc2011.fyper.com/uploads/File/posters2/Compouter-aided design and...Computer Aided Molecular Design Computer. Aided. Molecular. Design. Set

ComputerComputer--Aided Design and Selection of Optimum Working Fluids Aided Design and Selection of Optimum Working Fluids and ORC Systems for Power Generation from Low Enthalpy Sourcesand ORC Systems for Power Generation from Low Enthalpy Sources

A. I. PapadopoulosA. I. Papadopoulos11, M. Stijepovic, M. Stijepovic22, P. Linke, P. Linke22, P. Seferlis, P. Seferlis33, S. Voutetakis, S. Voutetakis11

11Chemical Process Engineering Research Institute (CPERI), CERTH, Chemical Process Engineering Research Institute (CPERI), CERTH, GreeceGreece

22Chemical Engineering Department, Texas A&M University at QatarChemical Engineering Department, Texas A&M University at Qatar

33Department of Mechanical Engineering, Aristotle University of ThDepartment of Mechanical Engineering, Aristotle University of Thessaloniki, Greeceessaloniki, Greece

INT

RO

INT

RO

ME

TH

OD

OLO

GY

ME

TH

OD

OLO

GY

AP

PLI

CA

TIO

NA

PP

LIC

AT

ION

Multiple design indices:•How to combine all of them?•What should be the performance measure?•How hard are the constraints?

No ORC design feedback

Conventional Technology

Novel Working Fluid and ORC Design Approach

Power Generation from Low-Enthalpy Geothermal Fields

Databases with heat exchange working fluids

Evaluation in ORC systems

Selection of “optimum”

working fluid

•Evaluation of very limited range of working fluids•Empirical selection•Results feasible but not optimum

Computer Aided Molecular Design (CAMD)CAMD simulation stage

Molecular functional groups

e.g. –CH2

-, OH, -CH3

-COOH etc.

Molecular functional groups

e.g. –CH2

-, OH, -CH3

-COOH etc.

Candidate working fluid

e.g. CH3

-ΟΗ

Candidate working fluid

e.g. CH3

-ΟΗ

Evaluation of performance

measure

Evaluation of performance

measure

Chemical feasibility

constraints

Generation of new structure

e.g. CH3

-CH2

-OH

CAMD optimization stage

Property calculation-

Group contribution methods

Advantages at the CAMD stage•

Evaluation of thousands of working fluids

Computer-aided synthesis of novel molecules

Consideration of numerous properties

ComputerAidedMolecularDesign

ComputerAidedMolecularDesign

Set of Optimal Working

Fluids

Set of Optimal Working

Fluids

Optimum ORC and Working Fluid

System

Optimum ORC and Working Fluid

System

ORC Process Design Optimization

ORC Process Design Optimization

Evaluation based on ORC operating properties

Simulation using ORC Models

Simulation using ORC Models

Evaluation based on molecular properties

Evaluation based on ORC economic properties

Molecular properties Operating properties

1.Density (ρ)2.Heat of vaporization

(Hv

)3. Thermal capacity (Cpl

)4.Viscosity

(μ)5.Thermal conductivity

(λ)6.Melting point

(Tm

)7.Critical temperature

(Τc

)

10

. Performance

(n)11

.Max pressure

(Pmax

)12

. Min pressure(Pmin

)13

.Mass flowrate

(mf

)14.Critical pressure 

(Pmax

)

Environmental properties Safety properties

8.

Ozone depletion 

potential

(ODP))9.

Global warming 

potential 

(GWP)

15

.Toxicity

(C)16

. Flammability

(F)

Optimum Pareto front

•••

•••f1

f2

f1•••

••

f2

fp

Multi‐objective optimization 

Multi‐objective optimization 

Optimize

Design goals:Maximize  ρ, Ηv

, λMinimize

Cpl

, μ, ODP, GWP, C, FConstraints:Tm

<Tmin,oper

Tc

>Tmax,oper

,..., 21 ff pf,

Set of optimum working fluids

Set of optimum working fluids

Operating evaluation of 

working fluids

Operating evaluation of 

working fluids

Goals:Maximize 

nMinimize 

Pmax

, Pmin

, mf

Constraints  Pmin

> Patm

,Pc

>Pmax,oper

Economic  working fluid 

evaluation‐ORC design

Economic  working fluid 

evaluation‐ORC design

Goals:Maximize Decision parameters: Vaporizer, condenser type, 

areas, Turbine type, size tec.

CAP

gross

C

xRf

10

Unified performance index

Minimize

pN

klkjilkjilji xaI

1

*,,,,,,,,

ljiljilji penII ,,,,,,

Advantages at the ORC design stage•Evaluation of numerous ORC operating and structural options

•Simultaneous consideration of working fluid candidates

•Gradual increase of ORC modeling details

CommonlyCommonly

used industrial fluidsused industrial fluids

Fluid performance for varying heat sourcesFluid performance for varying heat sources

Economic fluidEconomic fluid--ORC design performance ORC design performance

EconomicEconomic--heating performance tradeheating performance trade--offsoffs

ID Molecular type and name

η (%)

Pmax (atm)

Pmin (atm)

mf (kg/hr) I20,90,l F C

Fluorinated Amines and Ethers-Amines

28 CF3-CH2-NH2 8.05 4.65 1.12 16685 -1.194 0.447 1.75 29 CF3-CH(CF3)-NH2 7.97 1.78 0.34 22592 3.695 0.406 3.06 30 CH3-NH-CF3 8.04 4.71 1.17 17178 -1.119 0.477 1.84 31 CH3-O-CH2-NH2 8.42 1.31 0.24 8565 2.498 0.584 0.75 Fluorinated Ethers

32 FCH2-O-CH2-O-CF3 8.15 1.11 0.20 19325 3.574 0.524 1.44 33 FCH2-O-CF3 7.62 9.59 2.82 24190 0.877 0.406 1.56 34 CH2=CH-CH2-O-CF3 7.82 3.78 0.94 20880 2.643 0.559 1.78

ID Molecular type and name η

(%) Pmax (atm)

Pmin (atm)

mf (kg/hr) I20,90,l

Industrial fluids 35 1,1,1,2-Tetrafluoroethane 6.58 25.48 8.75 29464 5.934

36 Water 4.78 0.43 0.05 26672 4.466 37 1,1-Difluoroethane 7.11 22.99 7.85 18716 4.209 38 1,1,1,2,2-Pentafluoropropane 6.59 17.70 6.06 34417 4.257 39 1,1,1,2,3,3-Hexafluoropropane 7.40 9.88 2.83 30025 1.479 40 1,1,1,2,3,3,3-Heptafluoropropane 6.36 17.94 6.01 42377 5.030 42 Cyclopropane 7.24 24.85 9.28 13089 4.495 42 Trifluoroiodomethane 7.26 17.69 6.35 56648 6.487 43 Perfluoro-n-pentane 6.72 4.51 1.22 45679 1.582 44 2-Methyl-Butane 7.70 4.52 1.30 13356 -1.460 45 2,2-Dimethyl-Propane 7.41 7.17 2.29 15002 -0.543 46 N-Hexane 7.96 1.40 0.30 12546 2.760 47 Bis-Difluoromethly-Ether 7.62 10.28 2.91 23526 0.946

48 2-Difluoromethoxy-1,1,1-Trifluoro 7.69 5.01 1.25 25034 -0.298

49 Ethanol 8.52 1.12 0.14 5528 2.362

0

0.2

0.4

0.6

0.8

1

1.2

12 15 18 16 19

Type of geothermal field

Ec

on

om

ic in

de

x f

Methyl-formate (24) N-Methyl-Methanamyne (21) Methoxy-ethane (14) 1,4-Pentadiene (4)

12: 90oC-100m3/hr

15: 90oC-20m3/hr

18: 90oC-10m3/hr

16: 80oC-20m3/hr

19: 80oC-10m3/hr

-3.5

-3

-2.5

-2

-1.5

-1METHOXY-ETHANE

N-METHYL-METHANAMINE

2-METHYL-1,3-BUTADIENE

2-METHYL-1-BUTENE

1,4-PENTADIENE

METHYL-FORMATE

ACETALDEHYDE

Working fluid

Per

form

ance

Ind

ex I

i,j,l

90-1000

80-1000

70-1000

90-500

80-500

70-500

90-100

80-100

70-100

90-10

80-10

70-10

Tfl -Ffl

ID Molecular type and

name Vaporizer Condenser f

Area (m2) Cost ($) Area (m2) Cost ($) 24 Methyl formate 125.8 28640 45.5 18920 1.1 21 N-Methyl-methanamine 108.7 26020 45.5 19390 1.08

7 (Μ1) Methanol 87.1 28040 76.6 23410 1.05 14 Methoxy-ethane 120.7 28370 40.9 18480 1.02 4 1,4-Pentadiene 147 31510 52 19140 0.96 3 2-Methyl-1-butene 163.5 33210 65.7 21220 0.90 1 Butane 146.8 32350 45.5 18320 0.89 Μ5 Propane 36.1 19060 47.7 21810 0.75 Μ3 1,1-Difluoro-ethane 146.1 35100 58.3 22370 0.70 Μ4 Tetrafluoroethane 196.2 40920 50.5 20990 0.64 Μ6 Water 78.3 21990 604.1 85990 0.49

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1010 1015 1020 1025 1030 1035 1040

Greenhouse heated area (m2)

Ec

on

om

ic in

de

x f

N-Methyl-methanamine

1,4-Pentadiene

2-Methyl-1-butene

1,1-Difluoro-ethane

Tetrafluoro-ethane

Water

Methyl-formate

Methoxy-ethane

Butane

Propane

Designed novel fluidsDesigned novel fluidsDesigned commercial fluidsDesigned commercial fluids Power and heat cogeneration from varying Power and heat cogeneration from varying

geothermal fieldsgeothermal fields

CAMD fluid designCAMD fluid design ORC process designORC process design

Holistic method for the integrated working fluid and ORC design

Employs optimization-based CAMD

Identifies commercially available and novel working fluid options

Enables simultaneous economic, operating, environmental and safety working fluid and ORC process evaluation

Conclusions

This work was partially funded  by the John S. Latsis

Public  Benefit Foundation

AcknowledgementsAssociated publications

•A.I. Papadopoulos, M. Stijepovic, P. Linke,  Applied Thermal Engineering 30 (2010), 760‐769•A.I. Papadopoulos, M. Stijepovic, P. Linke, P. Seferlis, S. Voutetakis, Chemical Engineering Transactions

25 (2011) 61‐66

Greenhouse power-heating cogenerationGreenhouse power-heating cogeneration

ID Molecular type and name

CAS Registry number

η (%)

Pmax (atm)

Pmin (atm)

mf (kg/hr) I20,90,l F C

Hydrocarbons 1 Butane 106-97-8 7.51 9.85 3.23 13069 0.016 0.564 1.94

2 2-Methyl-1,3-butadiene

78-79-5 8.02 3.77 1.08 12840 -1.702 0.589 2.49

3 2-Methyl-1-butene 563-46-2 7.88 4.14 1.15 12869 -1.620 0.594 2.83 4 1,4-Pentadiene 591-93-5 7.94 4.62 1.47 14230 -1.297 0.622 1.54 5 1,3,5-Hexatriene 821-07-8 8.18 1.28 0.28 12152 2.744 0.665 1.91 6 1,3-Butadiene 106-99-0 7.64 11.29 3.72 12699 0.377 0.592 1.25

HFCs

7 1,1,1,3,3,3-Hexafluoro-

690-39-1 6.61 18.00 6.07 37611 4.608 ΜΑα 2.84

8 3,3,3-Trifluoro-propene

677-21-4 6.82 21.22 7.54 27580 4.682 0.409 2.19

Fluorinated ethers

9 Methoxy methyl-fluoride

460-22-0 8.12 6.27 1.75 12683 -1.104 0.584 0.97

10 Methyl-trifluoromethyl-ether

421-14-7 7.27 16.98 5.61 24892 3.074 0.513 1.54

11 1,1,1-Trifluoro-methoxy-ethane

460-43-5 7.88 4.24 1.09 19695 -0.977 0.528 1.84

12 2,2,2-Trifluoro-ethyl-ethyl-ether

461-24-5 7.85 3.05 0.72 20098 2.905 0.538 2.13

Ethers 13 Methoxy-ethene 107-25-5 7.88 9.38 2.82 12469 -0.265 0.721 0.89 14 Methoxy-ethane 540-67-0 7.78 8.82 2.68 12620 -0.388 0.555 1.24 15 Dimethyl-ether 115-10-6 7.32 22.19 7.72 12828 3.486 0.567 0.95 16 Dimethoxy- 109-87-5 8.20 3.23 0.79 13030 2.114 0.601 0.83 17 2-Methoxy-1- 116-11-0 8.19 2.29 0.55 11845 2.342 0.642 2.13 18 Methyl-propyl-ether 557-17-5 8.02 3.44 0.87 12585 1.957 0.600 1.54 19 3-Methoxy-1- 627-40-7 8.19 2.63 0.63 11983 2.239 0.642 1.19

20 3-Ethenyloxy-1-propene

3917-15-5 8.19 1.72 0.38 12875 2.690 0.664 1.13

Amines

21 N-Methyl-methanamine

124-40-3 7.94 9.98 2.82 9246 -0.487 0.559 1.24

22 N-Methyl- 624-78-2 8.29 2.31 0.51 9300 2.185 0.578 1.54

23 N,N-Dimethylallyl amine

2155-94-4 8.17 1.02 0.20 11928 2.845 ΜΔβ 1.57

Formates 24 Methyl-formate 107-31-3 8.33 4.57 1.14 10806 -1.759 0.558 1.60

Aldehydes 25 Trifluoro- 75-90-1 7.92 8.65 2.37 19206 0.095 0.443 2.60 26 Acetaldehyde 75-07-0 8.28 5.96 1.54 8370 -1.638 0.667 2.01

Alcohols 27 Methanol 67-56-1 8.60 1.84 0.27 4204 2.097 0.591 1.02

AUTH