computational nuclear thermal hydraulics …ocw.snu.ac.kr/sites/default/files/note/11001.pdf ·...

38
COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University

Upload: phamkien

Post on 02-Sep-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

Cho, Hyoung Kyu

Department of Nuclear EngineeringSeoul National University

Cho, Hyoung Kyu

Department of Nuclear EngineeringSeoul National University

Page 2: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

CHAPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS

2

Page 3: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Table of Contents Chapter 1 Introduction Chapter 2 Conservation laws of fluid motion and their boundary conditions Chapter 3 Turbulence and its modelling Chapter 4 The finite volume method for diffusion problems Chapter 5 The finite volume method for convection‐diffusion problems Chapter 6 Solution algorithms for pressure‐velocity coupling in steady flows Chapter 7 Solution of systems of discretised equations Chapter 8 The finite volume method for unsteady flows Chapter 9 Implementation of boundary conditions Chapter 10 Uncertainty in CFD modelling Chapter 11 Methods for dealing with complex geometries Chapter 12 CFD modelling of combustion Chapter 13 Numerical calculation of radiative heat transfer

Page 4: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Contents Introduction FVM for 1D steady state diffusion Worked examples: 1D steady state diffusion FVM for 2D diffusion problems FVM for 3D diffusion problems Summary

Page 5: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Introduction General transport equation

Deleting the transient and convection terms,

Integral form

From this 1D steady state diffusion equation, the discretized eqs. are introduced.  The method is extended to 2D and 3D diffusion problems.

Page 6: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Contents Introduction FVM for 1D steady state diffusion Worked examples: 1D steady state diffusion FVM for 2D diffusion problems FVM for 3D diffusion problems Summary

Page 7: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion 1D diffusion equation

Step 1: grid generationControl volume for FVM

Usual convention of CFD methods

Page 8: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 2: discretization

0

VSdxdA

dxdASdVdA

dxd

weVA

n

wef fx

A

AdxdA

dxdA

dxdndA

dxd

n

1,1 wxex nn k

kkS

SffdS

Page 9: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 2: discretization

Taylor series approximations

0

VS

dxdA

dxdA

we

?dxd

xxxx

dxd

)()(

WP

WP

wPE

PE

e xdxd

xdxd

?we

Page 10: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 2: discretization

Interface properties (for uniform grid)

0

VS

dxdA

dxdA

we

?dxd

2PW

w

?we

2EP

e

PWWWw 1

WP

wPW x

x

PEEEe 1

PE

PePEE x

xx

Page 11: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 2: discretization

0

VS

dxdA

dxdA

we

PE

PEee

e xA

dxdA

WP

WPww

w xA

dxdA

ppu SSVS

0

ppu

WP

WPww

PE

PEee SS

xA

xA

Page 12: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 2: discretization

Page 13: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

FVM for 1D steady state diffusion Step 3: Solution of equations

Set up the discretized equation at each of the nodal points Modify the equation for the control volumes that are adjacent to the domain boundaries. Derive the system of linear algebraic equations Matrix solution techniques

Page 14: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Contents  Introduction FVM for 1D steady state diffusion Worked examples: 1D steady state diffusion FVM for 2D diffusion problems FVM for 3D diffusion problems Summary

Page 15: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion 1D Heat conduction equation

Example 4.1 Consider the problem of source‐free heat conduction in an insulated rod  Whose ends are maintained at constant temperatures of 100 C and 500 C respectively.  Calculate the steady state temperature in the rod. Thermal conductivity k = 1000 W/mK Cross‐sectional area A =10×10‐3 m2

Page 16: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Five control volumes (cells) Cell center nodes: 5 Cell faces: 6 (4 internal faces, 2 boundary faces)

Constant thermal conductivity Constant node spacing Constant cross‐sectional area No source term

Page 17: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Five control volumes (cells)

Page 18: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

For boundary #1 0

WP

WPww

PE

PEee x

TTAkx

TTAk

Page 19: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

For boundary #5 0

WP

WPww

PE

PEee x

TTAkx

TTAk

Page 20: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Systems of algebraic equations Constant thermal conductivity (1000) Constant node spacing (0.1) Constant cross‐sectional area (10×10‐3)

For cell #1

For cell #2~#4

For cell #5

Page 21: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Systems of algebraic equations

For cell #1

For cell #2~#4

For cell #5

Page 22: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Systems of algebraic equations matrix form

Linear solver‐ Gaussian elimination‐ LU decomposition‐ TDMA‐ ILU‐ CGM‐ BICG‐ BICGSTAB‐ Etc.

Page 23: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.1

Page 24: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.2

A problem that includes sources other than those arising from boundary conditions.  A large plate of thickness: L = 2 cm  Constant thermal conductivity: k = 0.5 W/m.K Uniform heat generation: q = 1000 kW/m3

The faces A and B are at temperatures: 100°C and 200°C respectively.  1D problem

Dimensions in y‐ and z‐ are so large.

Page 25: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.2

Integral form and discretization

Page 26: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.2

General form

For boundaries

Page 27: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.2

For boundaries

Page 28: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.2

Five discretized equations matrix form

CTCT BA 200100

Error=1.5~2.8 %

Page 29: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.3

Cooling of a circular fin by means of convective heat transfer along its length.  Convection gives rise to a temperature‐dependent heat loss or sink term  A cylindrical fin with uniform cross‐sectional area A.  The base is at a temperature of 100°C (TB) The end is insulated.  The fin is exposed to an ambient temperature of 20°C. 

Governing eq.

h: the convective heat transfer coefficient P: the perimeter k: the thermal conductivity of the material  T : the ambient temperature

Analytical solution

Page 30: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Example 4.3

Cooling of a circular fin by means of convective heat transfer along its length.  Convection gives rise to a temperature‐dependent heat loss or sink term  A cylindrical fin with uniform cross‐sectional area A.  The base is at a temperature of 100°C (TB) The end is insulated.  The fin is exposed to an ambient temperature of 20°C. 

Governing eq.

h: the convective heat transfer coefficient P: the perimeter k: the thermal conductivity of the material  T : the ambient temperature

Analytical solution

0

TTxA

xhPdxdTk

dxd

Page 31: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Data and meshes

Uniform grid, divided into five control volumes

Modified governing equation and its integral form

Page 32: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Discretization

For mesh 2~4

Page 33: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion For mesh 2~4

For mesh 1

For mesh 5

02/

5

x

TTkq end

Page 34: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Matrix form of the algebraic equations

252 kAhPn

Page 35: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Worked examples: 1D steady state diffusion Matrix form of the algebraic equations

Error: max. 6.3 % with 5 meshes Error: max. 2.1 % with 10 meshes 

HW#1

‐ Solve Example 3 by yourself• Derive the discretized equation• Write a code.• Find the analytical solution• Compare the calculation result 

with the solution • With 5, 10, 20 meshes

Page 36: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Homework Assignment HW #2

1D conduction equation for nuclear fuel rod Check the heat transfer area carefully! Using FVM

Constant conductivity, k– For pellet– For cladding

Gap conductance– 1) Xenon conductivity– 2) Constant gap conductance value– 3) Gap conductance model

Flow condition– HTC: Dittus‐Boelter– Fluid velocity 

Check the unit of each parameter!

Page 37: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Homework Assignment HW #2

Gap conductance 

Non‐linear dependency Start calculation with the gap conductance graph.

– hg value from the graph

With the calculated temperature, update hg.– Repeat the calculation– Update hg– Repeat until the solution converges. 

Gap conductance

1/1/1]/[

32

cf

fo

eff

gasg

TkCmWh

gapfoinginfogin TTAhAqq ",

cigapoutout

ingoutcigout TTA

AAhAqq

"

,

Check the unit of each parameter!

Nuclear Systems, vol. I, p. 418

Page 38: COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS …ocw.snu.ac.kr/sites/default/files/NOTE/11001.pdf · COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS Cho, HyoungKyu Department of Nuclear Engineering

Homework Assignment HW #2

What you need to report Discretized equations Calculation conditions Temperature profiles for three cases Gap conductance