commissioning of nirs gantry - agenda (indico) · naoya saotome 1. himac nirs contents 2017/2/23...

39
Commissioning of NIRS Gantry and KCC i-Rock National Institute of Radiological Sciences Naoya Saotome 1

Upload: others

Post on 30-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Commissioning of NIRS Gantryand KCC i-RockNational Institute of Radiological Sciences

    Naoya Saotome

    1

  • HIMAC

    NIRS

    Contents

    2017/2/23 Naoya Saotome(NIRS) 2

    Introduction

    KCC i-ROCK

    NIRS Gantry

    History and collaboration

    Commissioning of commercial scanning system

    Commissioning of NIRS’s Gantry with superconducting magnet

  • HIMAC

    NIRS

    Contents

    2017/2/23 Naoya Saotome(NIRS) 3

    Introduction

    KCC i-ROCK

    NIRS Gantry

    History and collaboration

    Commissioning of commercial scanning system

    Commissioning of NIRS’s Gantry with superconducting magnet

  • HIMAC

    NIRS

    OUR EVOLUTION

    2017/2/23 Naoya Saotome(NIRS) 4

    5.20m

    Iso-center

    SCN01

    SM-XSM-Y

    SCN02RSF

    Main monitor PRN

    PH1

    2008Experimental port for scanning

    2011New treatment roomswith scanning

    2015Commercial machinewith scanning

    2017SuperconductingGantry for carbon ion

    By courtesy of Toshiba

  • HIMAC

    NIRS

    2013 2014 2015 2016 2017 2018 2019 2020

    OUR RECENT PROGRESS

    5

    Building construction start(12/12)

    KCC: Kanagawa Cancer Center NIRS: National Institute of Radiological Sciences

    Installation start (14/5)

    Accelerate 430MeV/u (15/1)

    Multiple-energy operation and scanning irradiation(15/2)

    Treatment start (15/12)

    Treatment start(15/2)

    Beam commissioning start (16/1)

    Installation start(15/1)

    Beam commissioning start(10/13)

    Treatment start (17/4,plan)

    Energy scanning

    Gantry

  • HIMAC

    NIRS

    OUR COLLABORATION

    Naoya Saotome(NIRS) 6

    DESIGN

    DEVELOPENTCOMMISSIONING

    USING

    (TREATMENT)

    National Institute of Radiological Sciences

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    ●●●●●●●●● ● ● ● ● ● ●●

    ●●●●

    ●●●●●●●

    ●●

    ●●●●

    ●●●●●●●●●●● ●

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    20160808_GRC_20160809052036LGRC_IDD_000_PM1m

    Amou

    nt o

    f ion

    izatio

    n [C

    ]

    Moter value [mm]

    ● 20160809052036LGRC_IDD_000_PM1m20160809054241LGRC_IDD_008_PM1m20160809055742LGRC_IDD_016_PM1m20160809061159LGRC_IDD_024_PM1m20160809062717LGRC_IDD_032_PM1m20160809064231LGRC_IDD_040_PM1m

    Rad symbol means 'Over Flow'

    drawn by RF63_IDD_forGComi_20160812_Overflow

    (integral)

    COLLABORATION129

    9.

    9.1.

    9m

    9.1-1 1.3m

    9.1-1

    SCN SCMX SCMY

    DSN_M DSN_S DSN_P

    RGF RSF

    9.1.1.

    10 (vx, vy)=(100, 50) mm/ms

    9.1-2 9.1-1

    FRP

    IGBT FET

    E

    SCMXSCMY SCN

    DSN_MDSN_S

    DSN_P

    RGFRSF

    IC NST FST

    2017/2/23

  • HIMAC

    NIRS

    Contents

    2017/2/23 Naoya Saotome(NIRS) 7

    Introduction

    KCC i-ROCK

    NIRS Gantry

    History and collaboration

    Commissioning of commercial scanning system

    Commissioning of NIRS’s Gantry with superconducting magnet

  • HIMAC

    NIRS

    Specification of KCC

    2017/2/23

    item specification

    Ion C6+

    Energy 140-430MeV/u

    Max. field 220 x 220 mm2

    Max. dose rate 2 Gy/L/min

    Beam intensity 1.2x109 pps

    Irradiation type 3D Scanning

    Treatment roomsHorizontal: 2 rooms

    Horizontal and Vertical: 2

    rooms

    Vender Toshiba

    Combination of a compact dissemination treatment system

    and pencil beam 3D scanning technique designed by NIRS

    Moving target treatment is available with respiratory-gated

    and rescanning technique

    Naoya Saotome(NIRS) 8

  • HIMAC

    NIRS

    Building Construction

    2017/2/23 Naoya Saotome(NIRS) 9

  • HIMAC

    NIRS

    2013 2014 2015 2016 2017 2018 2019 2020

    OUR RECENT PROGRESS

    10

    Building construction start(12/12)

    KCC: Kanagawa Cancer Center NIRS: National Institute of Radiological Sciences

    Installation start (14/5)

    Accelerate 430MeV/u (15/1)

    Multiple-energy operation and scanning irradiation(15/2)

    Treatment start (15/12)

  • HIMAC

    NIRS

    DARUMA CEREMONY

    2017/2/23 Naoya Saotome(NIRS) 11

  • HIMAC

    NIRS

    Commissioning of the irradiation system

    2017/2/23 Naoya Saotome(NIRS) 12

    NON-scanned beam testBeam intensity

    Beam position

    Beam size

    Beam on/off response

    Scanned beam testScanned beam position

    Field uniformity

    Complex field

    Dose monitor performance

    Position monitor performance

    Beam data collection for TPSBeam size

    Beam divergent

    Integral depth-dose

    Dose monitor unit

    Interlock check

    Information transfer check

    Coordinate check

    End-to-End test

    Training for staff

    Beam matching

    Overall verification

  • HIMAC

    NIRS

    Beam intensity

    2017/2/23 Naoya Saotome(NIRS) 13

    Extended FT + Multiple Energy

    Operation

    Extended FT + Intensity Modulation

    Operation

  • HIMAC

    NIRS

    Beam size and position

    2017/2/23 Naoya Saotome(NIRS) 14

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    ●●

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 4501.

    01.

    52.

    02.

    53.

    03.

    54.

    0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]● 1HC

    2HC2VC

    430MeV

    140MeV

    Beam shape was adjusted as round shape

    Beam size was adjusted within 10 percent from designed

    Beam size for each treatment port were matched

    Screen monitor for spot

  • HIMAC

    NIRS

    Beam size and position

    2017/2/23 15

    Beam position (2VC) Beam size (2VC)

    . +0+.-

    . +0+.-

    +1

    +1

    Beam position stability was within +/-0.5mm

    Beam size stability was within +/-0.5mm from design

    Naoya Saotome(NIRS)

  • HIMAC

    NIRS

    Integral depth dose

    2017/2/23 Naoya Saotome(NIRS) 16

    Depth [mm]

    Dose

    of i

    nteg

    ral e

    lect

    rode

    [C]

    ●●

    ●●

    ●●

    ●●●●●●●

    ●●●

    ●● ● ●

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    20160407_rangecheck_1HC_RID06

    BeamData_KCC20151130_inaniwa2 − RID06_PMMA20160407_rangecheck 1HC_RID06 offset= 9.1 ,scallcor= 120160407_rangecheck 2HC_RID06 offset= 9.1 ,scallcor= 120160407_rangecheck 2VC_RID06 offset= 6.3 ,scallcor= 1

    0 50 100 150 200 250 300 350

    020

    4060

    8010

    012

    0

    Depth in water[mm]

    Inte

    gral

    dep

    th d

    ose

    [A.U

    .]

    020

    4060

    8010

    012

    0

    Concentric Ionization chamber

    IDD for 11 energy beams

    3D Water phantom

    Beam energy/range was adjusted

    Residual range for each treatment

    port were matched

    Lateral distribution was used for TPS

    beam modelling

  • HIMAC

    NIRS

    Scanned beam position

    2017/2/23 Naoya Saotome(NIRS) 17

    ü 240x240mm2 field ü 20 mm pitch

    Screen monitor for field

    Scanned beam position for every beam energy was checked

    Beam shape was adjusted as round shape at any position

    The precision of the scanned beam position was verified

    within 0.5 mm.

    430MeV/u

    380MeV/u

    +/-0.5mm

    +/-0.5mm

    +/-0.5mm

    +/-0.5mm

    ü 240x240mm2 field ü 20 mm pitch

  • HIMAC

    NIRS

    Field uniformity

    2017/2/23 Naoya Saotome(NIRS)

    Screen monitor for field

    Field uniformity for every beam energy was checked

    The flatness of the uniform field was verified within +-1.5 %

    290MeV/u

    ± 1.5%

    ± 1.5%

    ü 150x150mm2 field ü 2mm pitch

    18

  • HIMAC

    NIRS

    Complex field

    2017/2/23 Naoya Saotome(NIRS) 19

    Position monitor system

    Beam intensity, dose, and beam position were modulated

    Complex field for every beam energy was checked

    The dose distribution was compared with plan and confirmed

    Flanz et al., PTCOG2009

  • HIMAC

    NIRS

    3D dose distribution

    2017/2/23 Naoya Saotome(NIRS) 20

    Rectangle shape irradiation fields were planned

    Dose distribution on the depth and lateral direction were

    compared with planned dose distribution

    Treatment planning

    3D Water phantom

    Depth dose distribution Lateral dose distribution

  • HIMAC

    NIRS

    Beam matching

    2017/2/23 Naoya Saotome(NIRS) 21

    Lateral position [mm]

    ●●●●●●●

    ●●●●●●●●

    ●●●●●●●●●●●●●●●●●●

    ●●●

    ●●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]●●●●●●

    ●●

    ●●

    ●●

    ●●●●●●●

    ●●●●

    Lateral position [mm]

    planmeas

    0.4

    0.5

    0.6

    0.7

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/1HC_20160222/la_HN005bH.csv

    Lateral position [mm]

    ●●●●●●

    ●●●●●●●●

    ●●●●●●●●●●●●●●●●●●

    ●●●

    ●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]●●●●●●

    ●●

    ●●

    ●●

    ●●●●●●●●

    ●●●

    Lateral position [mm]

    planmeas

    0.4

    0.5

    0.6

    0.7

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/2HC_20160217/la_HN005bH.csv

    Lateral position [mm]

    ●●●●●●●

    ●●●●●●●●●

    ●●●●●●●●●●●●●●●

    ●●●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.5

    1.0

    1.5

    2.0

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]●

    ●●●●●●●●●●●

    ●●●●●●●●

    ●Lateral position [mm]

    planmeas

    1.8

    1.9

    2.0

    2.1

    2.2

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/2HC_20160217/la_PR003_111a.csv

    Lateral position [mm]

    ●●●●●●●●

    ●●●●●●●

    ●●●●●●●●●●●●●●●●●

    ●●●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.5

    1.0

    1.5

    2.0

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]●

    ●●●

    ●●●●●●●●●●●●●

    Lateral position [mm]

    planmeas

    1.8

    1.9

    2.0

    2.1

    2.2

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/1HC_20160222/la_PR003_111a.csv

    Depth [mm]

    Dose

    of i

    nteg

    ral e

    lect

    rode

    [C]

    ●●

    ●●

    ●●

    ●●●●●●●

    ●●●

    ●● ● ●

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    150 155 160

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    20160407_rangecheck_1HC_RID06

    BeamData_KCC20151130_inaniwa2 − RID06_PMMA20160407_rangecheck 1HC_RID06 offset= 9.1 ,scallcor= 120160407_rangecheck 2HC_RID06 offset= 9.1 ,scallcor= 120160407_rangecheck 2VC_RID06 offset= 6.3 ,scallcor= 1

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    ●●

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    150 250 350 450

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Energy [MeV/n]

    Beam

    Size

    [mm

    ]

    ● 1HC2HC2VC

    430MeV

    140MeV

    Sample patient field for Prostate and H&N were planned

    The plan were deliver and measured at each treatment rooms

    Beam size and range matching brought dose distribution

    matching

    Room 1

    Room 2

    Beam size matching

    Range matching

    H&NProstate

  • HIMAC

    NIRS

    2Gy/L/min

    2017/2/23 Naoya Saotome(NIRS) 22

    −100 −50 0 50 100

    020

    4060

    80100

    Relati

    ve Do

    se [A.

    U.]

    ● ● ● ● ● ●●

    ●● ●

    ● ● ● ● ● ● ●

    ● ● ● ● ● ● ●

    −100 −50 0 50 100

    020

    4060

    80100

    −100 −50 0 50 100

    020

    4060

    80100

    −100 −50 0 50 100

    020

    4060

    80100

    ● −10mm10mm10mm

    Lateral Position [mm]

    97.5%

    102.5%

    2Gy of physical dose to 10x10x10cm3 cubic target was planned

    The dose homogeneity was better than 2.5%

    Treatment planning

    Lateral dose distribution

    57 sec

    +/-2.5%

  • HIMAC

    NIRS

    DARUMA CELEMONY

    2017/2/23 23

  • HIMAC

    NIRS

    Contents

    2017/2/23 Naoya Saotome(NIRS) 24

    Introduction

    KCC i-ROCK

    NIRS Gantry

    History and collaboration

    Commissioning of commercial scanning system

    Commissioning of NIRS’s Gantry with superconducting magnet

  • HIMAC

    NIRS

    ADVANTAGES OF GANTRY

    2017/2/23 Naoya Saotome(NIRS) 25

  • HIMAC

    NIRS

    Specification of NIRS’s Gantry

    2017/2/23

    item specification

    Ion C6+

    Energy 48-430MeV/u

    Max. field 200 x 200 mm2

    Irradiation type 3D Scanning

    Rotating angle +/- 180 degree

    Magnet type Superconducting magnet

    Beam orbit radius 5.45 m

    Length 13 m

    Weight 300 ton

    Vender Toshiba

    Function combined superconducting magnets were

    employed

    Moving target treatment is available with respiratory-gated

    and rescanning technique

    Naoya Saotome(NIRS) 27

  • HIMAC

    NIRS

    Construction and installation

    2017/2/23 Naoya Saotome(NIRS) 28

  • HIMAC

    NIRS

    installation

    2017/2/23 Naoya Saotome(NIRS) 29

    Gantry room Treatment room

  • HIMAC

    NIRS

    Commissioning of the Gantry

    2017/2/23 Naoya Saotome(NIRS) 30

    NON-scanned beam testBeam intensity

    Beam position

    Beam size

    Beam on/off response

    Scanned beam testScanned beam position

    Field uniformity

    Complex field

    Dose monitor performance

    Position monitor performance

    Beam data collection for TPSBeam size

    Beam divergent

    Integral depth-dose

    Dose monitor unit

    Interlock check

    Information transfer check

    Coordinate check

    End-to-End test

    Training for staff

    Beam matching

    Overall verification

    Gantry angle dependence checkBeam position

    Beam size

    Dose output

    Scanned beam position

  • HIMAC

    NIRS

    Angle dependence of the beam size

    • Angular dependence of a beam size and shape at the

    isocenter (E=430 MeV/u)

    180 deg 135 deg 90 deg 67.5 deg 45 deg

    22.5 deg 0 deg -45deg -90deg -135deg

    2017/2/23 Naoya Saotome(NIRS) 31

  • HIMAC

    NIRS

    Angle dependence of the beam size

    Naoya Saotome(NIRS) 32

    50 100 150 200 250 300 350 400 4500

    1

    2

    3

    4

    Degree 0 45 90 135 180 225 270 315

    Late

    ral B

    eam

    Spr

    ead

    (1) [

    mm

    ]

    Energy [MeV/u]

    Screen monitor for spot

    Measurement sequence

    The accuracy of the beam size and beam position for every

    gantry angle were checked

    The measurement was performed with sequence

    (15min for 200Energy)

    Angle dependent of the beam size is less than 10%

  • HIMAC

    NIRS

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 50 100 150 200 250 300 350 400 450

    1σ b

    ea

    m s

    ize a

    t Iso

    [mm

    ]

    E [MeV/u]

    σx

    σy

    Beam size

    • Beam tuning was made for various beam energies• E=430~55.6 MeV/u

    430 MeV/u 387 MeV/u 292 MeV/u

    238 MeV/u 174 MeV/u 55.6 MeV/u

    2017/2/23 Naoya Saotome(NIRS) 33

  • HIMAC

    NIRS

    Angle dependence of the beam position

    Naoya Saotome(NIRS) 34

    Digital starshout device

    3D Water phantom

    The accuracy of the isocenter position and gantry angles are

    checked using digital starshout device

    Beam position accuracy for each gantry angle was confirmed within

    +/- 0.5mm.

  • HIMAC

    NIRS

    Integral Dose Distribution

    2017/2/23 Naoya Saotome(NIRS) 35

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    ●●●●●●●●● ● ● ● ● ● ●●

    ●●●●

    ●●●●●●●

    ●●

    ●●●●

    ●●●●●●●●●●● ●

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    0e+0

    01e−0

    72e−0

    73e−0

    74e−0

    7

    20160808_GRC_20160809052036LGRC_IDD_000_PM1m

    Amou

    nt o

    f ion

    izatio

    n [C

    ]

    Moter value [mm]

    ● 20160809052036LGRC_IDD_000_PM1m20160809054241LGRC_IDD_008_PM1m20160809055742LGRC_IDD_016_PM1m20160809061159LGRC_IDD_024_PM1m20160809062717LGRC_IDD_032_PM1m20160809064231LGRC_IDD_040_PM1m

    Rad symbol means 'Over Flow'

    drawn by RF63_IDD_forGComi_20160812_Overflow

    (integral)

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    ●●●●●●●●● ●

    ●●●●●

    ●●●

    ●●●●●●●●● ● ● ● ● ●

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0 50 100 150 200 250 300 350

    0e+0

    02e−0

    74e−0

    76e−0

    7

    0e+0

    02e−0

    74e−0

    76e−0

    7

    20160808_GRC_20160810030226LGRC_IDD_144_AL1cm

    Amou

    nt o

    f ion

    izatio

    n [C

    ]

    Moter value [mm]

    ● 20160810030226LGRC_IDD_144_AL1cm20160810033213LGRC_IDD_152_AL1cm20160810034759LGRC_IDD_160_AL1cm20160810040802LGRC_IDD_168_AL1cm20160810042155LGRC_IDD_176_AL1cm20160810043523LGRC_IDD_184_AL1cm

    Rad symbol means 'Over Flow'

    drawn by RF63_IDD_forGComi_20160812_Overflow

    (integral)

    Concentric Ionization chamber

    3D Water phantom

    Beam energy/range was adjusted

    Lateral distribution was used for TPS beam modelling

    Low energy High energy

  • HIMAC

    NIRS

    Dose output

    2017/2/23 Naoya Saotome(NIRS) 36

    Dose output for every gantry angle was checked using

    famer type ionization chamber

    Angle dependence of the dose output was less than 0.5%

    0 60 120 180 240 300-1.00

    -0.75

    -0.50

    -0.25

    0.00

    0.25

    0.50

    0.75

    1.00

    430 MeV/u 290 MeV/u 89 MeV/u

    Dos

    e [%

    ]

    Ganrty Angle [degree]

  • HIMAC

    NIRS

    Scanned Beam Position

    2017/2/23 Naoya Saotome(NIRS) 37

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    FB-ONFB-OFF

    Screen monitor for field

    Scanned beam position for every beam

    energy and gantry angle was checked

    Beam shape was adjusted as round

    shape at any position and any gantry angle

    The precision of the scanned beam

    position after the distortion correction was

    verified within 0.5 mm.

    (-)Distortion correction

    (+)Distortion correction

  • HIMAC

    NIRS

    3D dose distribution

    2017/2/23 38Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ●●

    Range in water [mm]

    plans1_plans2_plans3_plans4_plans5_plan

    0.0

    0.4

    0.8

    Dose

    [Gy]

    0 50 100 150 200 250 300

    Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]

    −4−2

    02

    4

    Range in water [mm]0 50 100 150 200 250 300

    Dose

    diff

    eren

    ce [%

    ]

    ../result/NIRSG_20170216/dd_AL1c_d1rec30todd_AL1c_d5rec30_g02.pdf

    Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    ● ● ● ● ● ● ● ●

    Range in water [mm]

    plans1_plans2_plans3_plans4_plans5_plan

    0.0

    0.4

    0.8

    Dose

    [Gy]

    0 50 100 150 200 250 300

    Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]Range in water [mm]

    −4−2

    02

    4

    Range in water [mm]0 50 100 150 200 250 300

    Dose

    diff

    eren

    ce [%

    ]

    ../result/NIRSG_20170216/dd_AL1c_d1rec90todd_AL1c_d5rec90_g02.pdf

    Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    plans1s2s3s4s5

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]

    ●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●

    ●●●●●●●

    ●●●●●●●●●

    Lateral position [mm]●

    ●●●●●●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●●●●

    Lateral position [mm]●

    ●●●●●●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●●●●

    Lateral position [mm]●

    ●●●●●●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●●●●

    Lateral position [mm]

    plans1s2s3s4s50.

    961.

    001.

    04

    Dose

    [Gy]

    −100 −50 0 50 100

    ../result/NIRSG_20170216/la_AL1c_d1rec30tola_AL1c_d1rec90_g02.pdf

    Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    Lateral position [mm]

    plans1s2s3s4s5

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]Lateral position [mm]

    ●●●●●

    ●●●●●●

    Lateral position [mm]

    ●●●●●●●●●

    ●●●●●

    ●●●●●●

    Lateral position [mm]●

    ●●●●●●

    ●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●

    ●●●

    Lateral position [mm]●

    ●●●●●●

    ●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●

    ●●●

    Lateral position [mm]●

    ●●●●●●

    ●●●●●

    ●●●●●●●

    ●●●●●●●●

    ●●●●

    ●●●

    Lateral position [mm]

    plans1s2s3s4s50.

    961.

    001.

    04

    Dose

    [Gy]

    −100 −50 0 50 100

    ../result/NIRSG_20170216/la_AL1c_d2rec30tola_AL1c_d2rec90_g02.pdf

    Rectangle shape irradiation fields were planned

    Dose distribution on the depth and lateral direction were

    compared with planned dose distribution

    3D Water phantom

    Depth dose distribution Lateral dose distribution

    Pin-point chamber array

    Naoya Saotome(NIRS)

  • HIMAC

    NIRS

    3D dose distribution

    2017/2/23 39

    Rectangle shape irradiation fields were planned

    Dose distribution on the depth and lateral direction were

    compared with planned dose distribution

    3D Water phantom

    Lateral dose distribution

    Pin-point chamber array

    Lateral position [mm]

    ●●●●●●●●● ●●●● ●●●●●●●●●●●●

    ●●●●●●●●●●●●●●

    ●●●●●●●

    ●●●

    ●●●●● ●●●●●●●●●● ●●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]

    ●●

    ●●●

    ●●●●●●●

    ●●●●●●

    Lateral position [mm]

    planmeas

    0.6

    0.7

    0.8

    0.9

    1.0

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/NIRSG_20170216/la_AL1c_926108_1_HN_−11175mm.csv

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●● ●●●●● ●●●● ●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●● ●●●●● ●●●● ●●●●●●

    Lateral position [mm]

    planmeas

    0.2

    0.3

    0.4

    0.5

    0.6

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/NIRSG_20170216/la_AL1c_920070_2_Pro_d3mm_0.csv

    Lateral position [mm]

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

    Lateral position [mm]

    planmeas

    0.0

    0.4

    0.8

    Dose

    [Gy]

    −100 −50 0 50 100

    Lateral position [mm]

    ●●●●●

    ●●●●●

    ●●

    ●●

    Lateral position [mm]

    planmeas

    0.90

    1.00

    1.10

    Dose

    [Gy]

    −100 −50 0 50 100

    ../data/NIRSG_20170216/la_AL1c_924016_1_Pro_d29mm_0.csv

    Naoya Saotome(NIRS)

  • HIMAC

    NIRS

    SUMMARY

    2017/2/23 Naoya Saotome(NIRS) 40

    Fast scanning system dedicated for moving target was

    succeeded at NIRS

    Commercial system which is combination of a compact

    dissemination treatment system and pencil beam 3D

    scanning technique was constructed at KCC

    Treatment using superconducting rotating-gantry will be

    started in near future