combinational logic - national chiao tung...

56
Digital Circuit Design Combinational Logic Lan-Da Van (范倫達), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 [email protected] http://www.cs.nctu.edu.tw/~ldvan/

Upload: others

Post on 29-May-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Digital Circuit Design

Combinational Logic

Lan-Da Van (范倫達), Ph. D.

Department of Computer Science

National Chiao Tung University

Taiwan, R.O.C.

Fall, 2011

[email protected]

http://www.cs.nctu.edu.tw/~ldvan/

Page 2: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-2

Outlines

Combinational Circuits

Analysis Procedure

Design Procedure

Binary Adder-Subtractor

Decimal Adder

Binary Multiplier

Decoders

Encoders

Multiplexers

Page 3: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-3

Introduction

Logic circuits for digital systems may be either

combinational or sequential.

A combinational circuit consists of logic gates whose

outputs at any time are determined from only the

present combination of inputs.

Page 4: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-4

Combinational Circuits

A combinational circuits

2n possible combinations of input values

Specific functions

Adders, subtractors, comparators, decoders, encoders, and

multiplexers

MSI circuits or standard cells

Combinational

Logic Circuit

n input

variables

m output

variables

Page 5: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-5

Step 1: Label all gate outputs that are a function of

input variables with arbitrary symbols – but with

meaningful names. Determine the Boolean functions

for each gate output.

Step 2: Label the gates that are a function of input

variables and previously labeled gates with other

arbitrary symbols. Find the Boolean functions for

these gates.

Step 3: Repeat the process outlined in step 2 until the

outputs of the circuit are obtained.

Step 4: By repeated substitution of previously defined

functions, obtain the output Boolean functions in

terms of input variables.

Analysis Procedure

Page 6: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-6

A straight-forward procedure

Analysis Procedure Example

Page 7: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-7

Step 1:

F2 = AB+AC+BC

T1 = A+B+C

T2 = ABC

Step 2:

T3 = F2'T1

Step 3:

F1 = T3+T2

Step 4:

F1 = T3+T2 = F2'T1+ABC

= (AB+AC+BC)'(A+B+C)+ABC

= (A'+B')(A'+C')(B'+C')(A+B+C)+ABC

= (A'+B'C')(AB'+AC'+BC'+B'C)+ABC

= A'BC'+A'B'C+AB'C'+ABC

Analysis Procedure Example

Page 8: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-8

Truth Table

Page 9: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-9

Design Procedure

The design procedure of combinational circuits

Step 1: State the problem (system spec.)

Step 2: From the specifications of the circuits,

determine the required number of inputs and outputs

and assign a symbol to each.

Step 3: Derive the truth table that defined the

required relationship between inputs and outputs

Step 4: Obtain the simplified Boolean functions for

each output as a function of the input variables.

Step 5: Draw the logic diagram and verify the

correctness of the design (manually or by simulation).

Page 10: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-10

Design Method and Constraint

Functional description Boolean function

HDL (Hardware description language)

Verilog HDL

VHDL

Schematic entry

Logic constraint number of gates

number of inputs to a gate

propagation delay

number of interconnections

limitations of the driving capabilities

Page 11: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-11

BCD to Excess-3 Code Conversion

Page 12: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-12

BCD to Excess-3 Code Conversion

Page 13: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-13

Simplified functions

z = D'

y = CD +C'D'

x = B'C + B'D+BC'D'

w = A+BC+BD

Efficient implementation

z = D'

y = CD +C'D'= CD + (C+D)‘

x = B'C + B'D+BC'D‘ = B'(C+D) +B(C+D)'

w = A+BC+BD= A+ B(C+D)

BCD to Excess-3 Code Conversion

Page 14: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-14

Logic Diagram for BCD to Excess-3 Code Converter

Page 15: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-15

1-Bit Half Adder

Half adder

0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = (10)2

two input variables: x, y

two output variables: C (carry), S (sum)

truth table

S = x'y+xy'=xy= (x+y)(x'+y')

C = xy= (x'+y')'

S' = xy+x'y'

S = (C+x'y')'

Page 16: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-16

Logic Diagram of 1-Bit Half Adder

Page 17: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-17

Full-Adder

The arithmetic sum of three

input bits

three input bits

x, y: two significant bits

z: the carry bit from the

previous lower significant bit

Two output bits: C, S

1-Bit Full Adder

Sum Carry

Page 18: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-18

Logic Diagram of 1-Bit Full Adder

Page 19: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-19

S = x'y'z+x'yz'+ xy'z'+xyz

= x’(yz) +x(yz)’ = xyz

C = xy + xz + yz

= xy + xyz + xy’z + xyz + x’yz

= xy + z (xy + xy)

= xy + z (xy)

Logic Diagram of 1-Bit Full Adder

Page 20: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-20

Binary adder

4-Bit Full Adder

Page 21: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-21

Carry Lookahead Adder (1/7)

Given Stage i from a Full Adder, we know that there will be a carry generated when Ai = Bi = "1", whether or not there is a carry-in.

Alternately, there will be a carry propagated if the “half-sum” is "1" and a carry-in, Ci occurs.

These two signal conditions are called generate, denoted as Gi, and propagate, denoted as Pi respectively and are identified in the circuit.

Ai Bi

Ci

Ci+1

Gi

Pi

Si

Source: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals.

Page 22: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-22

Carry Lookahead Adder (2/7)

In the ripple carry adder:

Gi, Pi, and Si are local function to each cell of the

adder

Ci is also local function for each cell

In the carry lookahead adder, in order to reduce the

length of the carry chain, Ci is changed to a more

global function spanning multiple cells

Defining the equations for the Full Adder in term of

the Pi and Gi:

i i i i i i B A G B A P = =

i i i 1 i i i i C P G C C P S + = = +

Source: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals.

Page 23: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-23

Carry Lookahead Adder (3/7)

Ci+1 can be removed from the cells and used to

derive a set of carry equations spanning multiple cells.

Beginning at the cell 0 with carry in C0:

C1 = G0 + P0 C0

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1+ P3P2P1G0

+ P3P2P1P0 C0

C2 = G1 + P1 C1 = G1 + P1(G0 + P0 C0)

= G1 + P1G0 + P1P0 C0

C3 = G2 + P2 C2 = G2 + P2(G1 + P1G0 + P1P0 C0)

= G2 + P2G1 + P2P1G0 + P2P1P0 C0

Source: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals.

Page 24: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-24

Carry Lookahead Adder (4/7)

Page 25: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-25

Carry Lookahead Adder (5/7)

Page 26: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-26

Carry Lookahead Adder (6/7)

CLA GEN

Source: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals.

Page 27: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-27

Carry Lookahead Adder (7/7)

This lookahead scheme could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.

Instead, the concept is extended another level by considering group generate (G0-3) and group propagate (P0-3) functions:

Using these two equations:

Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition.

0 1 2 3 3 0

0 1 2 3 1 2 3 2 3 3 3 0

P P P P P

G P P P G P P G P G G

=

+ + + =

-

-

0 3 0 3 0 4 C P G C - - + =

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1+ P3P2P1G0

+ P3P2P1P0 C0

Source: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals.

Page 28: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-28

4-Bit Adder/Subtractor

A-B = A+(2’s complement of B)

4-bit Adder-subtractor M=0, A+B; M=1, A+B’+1

Page 29: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-29

Overflow

The storage is limited.

Add two positive numbers and obtain a negative number

Add two negative numbers and obtain a positive number

V = 0, no overflow; V = 1, overflow

Example:

Overflow Discussion

Page 30: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-30

BCD Adder

Add two decimal digits in BCD together with an input carry from

a previous stage

9 inputs: two BCD's and one carry-in

5 outputs: one BCD and one carry-out

Design approaches

Since each input digit does not exceed 9, the output sum cannot be

grater than 9+9+1 =19, where 1 denotes an input carry.

A truth table with 19 entries

Use two 4-bit binary full adders

Modifications are needed if the binary sum > 9

C = 1

K = 1

Z8Z4 = 1

Z8Z2 = 1

modification: +6

C = K +Z8Z4 + Z8Z2

Page 31: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-31

Truth Table of BCD Adder

Page 32: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-32

Logic Diagram of BCD Adder BCD

BCD

BCD

Page 33: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-33

Binary Multiplier

Page 34: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-34

4-Bit by 3-Bit Binary Multiplier

Page 35: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-35

Magnitude Comparator

The comparison of two numbers

outputs: A>B, A=B, A<B

Design Approaches

the truth table

22n

entries - too cumbersome for large n

use inherent regularity of the problem

reduce design efforts

reduce human errors

Algorithm -> logic

A = A3A2A1A0 ; B = B3B2B1B0

A=B if A3=B3, A2=B2, A1=B1and A0=B0

equality: xi= AiBi+Ai'Bi'

(A=B) = x3x2x1x0

(A>B) = A3B3'+x3A2B2'+x3x2A1B1'+x3x2x1 A0B0'

(A<B) = A3'B3+x3A2'B2+x3x2A1'B1+x3x2x1 A0'B0

Implementation

xi = (AiBi'+Ai'Bi)'

Page 36: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-36

Four-Bit Magnitude Comparator

Page 37: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-37

Decoder

An n-to-m decoder

a binary code of n bits = 2n

distinct information

n input variables; up to 2n

output lines

only one output can be active (high) at any time

Page 38: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-38

Three-to-Eight Line Decoder

x’y’z’

Page 39: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-39

Demultiplexers

a decoder with an enable input

receive information on a single line and transmits it on one of

2n

possible output lines

Two-to-four-line decoder with enable input

Decoder with Enable /Demultiplexer

0

Page 40: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-40

Decoder with Enable /Demultiplexer

Page 41: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-41

Expansion

two 3-to-8 decoder: a 4-to-16 decoder

4 16 decoder constructed with two 3 8 decoders

4x16 Decoder

Page 42: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-42

Combinational Logic Implementation

Each output = a minterm

Use a decoder and an external OR gate to implement any

Boolean function of n input variables

A full-adder

S(x,y,x)=S(1,2,4,7)

C(x,y,z)= S(3,5,6,7)

Page 43: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-43

Encoder

1 3 5 7

2 3 6 7

4 5 6 7

z D D D D

y D D D D

x D D D D

= + + +

= + + +

= + + +

The encoder can be implemented with three OR gates.

Page 44: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-44

An implementation

limitations

illegal input: e.g. D3=D6=1

the output = 111 (¹3 and ¹6)

Encoder

x=D4+D5+D6+D7

y=D2+D3+D6+D7

z=D1+D3+D5+D7

Page 45: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-45

Priority Encoder Resolve the ambiguity of illegal inputs Only one of the input is encoded

D3 has the highest priority D0 has the lowest priority X: don't-care conditions V: valid output indicator

LSB MSB

Page 46: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-46

Priority Encoder

1

Page 47: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-47

2 3

3 1 2

0 1 2 3

x D D

y D D D

V D D D D

= +

= +

= + + +

Priority Encoder

Page 48: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-48

Multiplexer

Select binary information from one of many input

lines and direct it to a single output line

2n

input lines, n selection lines and one output line

E.g.: 2-to-1-line multiplexer

Two-to-one-line multiplexer

Page 49: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-49

4-to-1-Line Multiplexer

Page 50: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-50

Quadruple 2-to-1-Line Multiplexer

Page 51: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-51

MUX: a decoder + an OR gate

2n

-to-1 MUX can implement any Boolean function of n

input variable.

Procedure:

assign an ordering sequence of the input variable

the rightmost variable (D) will be used for the input lines

assign the remaining n-1 variables to the selection lines w.r.t.

their corresponding sequence

construct the truth table

consider a pair of consecutive minterms starting from m0

determine the input lines

Boolean Function Implementation Using MUX

Page 52: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-52

Example: Given F(x,y,z) = S(1,2,6,7)

Boolean Function Implementation Using MUX

Page 53: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-53

Boolean Function Implementation Using MUX

Example: Given F(A, B, C, D) = S(1, 3, 4, 11, 12, 13, 14, 15)

Page 54: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-54

Three-State Gate

A multiplexer can be constructed with three-state

gates.

Output state: 0, 1, and high-impedance (open ckts)

Page 55: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-55

Four-to-One-Line Multiplexer

Page 56: Combinational Logic - National Chiao Tung Universityviplab.cs.nctu.edu.tw/course/DCD2011_Fall/DCD_Lecture_04.pdf · Combinational Circuits A combinational circuits 2 n possible combinations

Lecture 4

Digital Circuit Design

Lan-Da Van DCD-04-56

Conclusion

From this lecture, you have learned the follows:

Adder/Subtractor

Multiplier

Decoder

Encoder

Multiplexer