comandos elétricos

21
COMANDOS ELÉTRICOS Os comandos elétricos têm por finalidade a manobra de motores elétricos que são os elementos finais de potência em um circuito automatizado. Entende-se por manobra o estabelecimento e condução, ou a interrupção de corrente elétrica em condições normais e de sobre-carga. Dentre os motores os que ainda têm a maior aplicação no âmbito industrial são os motores de indução trifásicos, pois em comparação com os motores de corrente contínua, de mesma potência, ele tem menor tamanho, menor peso e exigem menos manutenção. Um dos pontos fundamentais para o entendimento dos comandos elétricos é a noção de que “os objetivos principais dos elementos em um painel elétrico são: a) proteger o operador e b) propiciar uma lógica de comando”. Partindo do princípio da proteção do operador uma seqüência genérica dos elementos necessários à partida e manobra de motores. A) Seccionamento: Só pode ser operado sem carga. Usado durante a manutenção e verificação do circuito. B) Proteção contra correntes de curto-circuito: Destina-se a proteção dos condutores do circuito terminal. C) Proteção contra correntes de sobrecarga: para proteger as bobinas do enrolamento do motor. D) Dispositivos de manobra: destinam-se a ligar e desligar o motor de forma segura, ou seja, sem que haja o contato do operador no circuito de potência, onde circula a maior corrente. 1

Upload: anderson-silva

Post on 29-Nov-2014

1.186 views

Category:

Business


4 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Comandos elétricos

COMANDOS ELÉTRICOS

Os comandos elétricos têm por finalidade a manobra de motores elétricos que são os elementos finais de potência em um circuito automatizado. Entende-se por manobra o estabelecimento e condução, ou a interrupção de corrente elétrica em condições normais e de sobre-carga.

Dentre os motores os que ainda têm a maior aplicação no âmbito industrial são os motores de indução trifásicos, pois em comparação com os motores de corrente contínua, de mesma potência, ele tem menor tamanho, menor peso e exigem menos manutenção.

Um dos pontos fundamentais para o entendimento dos comandos elétricos é a noção de que “os objetivos principais dos elementos em um painel elétrico são: a) proteger o operador e b) propiciar uma lógica de comando”.

Partindo do princípio da proteção do operador uma seqüência genérica dos elementos necessários à partida e manobra de motores.

A) Seccionamento: Só pode ser operado sem carga. Usado durante a manutenção e verificação do circuito.

B) Proteção contra correntes de curto-circuito: Destina-se a proteção dos condutores do circuito terminal.

C) Proteção contra correntes de sobrecarga: para proteger as bobinas do enrolamento do motor.

D) Dispositivos de manobra: destinam-se a ligar e desligar o motor de forma segura, ou seja, sem que haja o contato do operador no circuito de potência, onde circula a maior corrente.

1

Page 2: Comandos elétricos

É importante repetir que no estudo de comandos elétricos é importante ter a seqüência mostrada na figura em mente, pois ela consiste na orientação básica para o projeto de qualquer circuito.Ainda falando em proteção, as manobras (ou partidas de motores) convencionais, são dividas em dois tipos, segundo a norma IEC 60947:

I. Coordenação do tipo 1: Sem risco para as pessoas e instalações, ou seja,desligamento seguro da corrente de curto-circuito. Porém podem haver danos aocontator e ao relé de sobrecarga.

II. Coordenação do tipo 2: Sem risco para as pessoas e instalações. Não pode haver danos ao relé de sobrecarga ou em outras partes, com exceção de leve fusão dos contatos do contator e estes permitam uma fácil separação sem deformações significativas.

I. Coordenação do tipo 1: Sem risco para as pessoas e instalações, ou seja,desligamento seguro da corrente de curto-circuito. Porém pode haver danos aocontator e ao relé de sobrecarga.

II. Coordenação do tipo 2: Sem risco para as pessoas e instalações. Não pode haver danos ao relé de sobrecarga ou em outras partes, com exceção de leve fusão dos contatos do contator e estes permitam uma fácil separação sem deformações significativas.

2

Page 3: Comandos elétricos

MOTORES

É a máquina destinada a transformar energia elétrica em energia mecânica de rotação.

É o mais usado de todos os tipos de motores, pois combina as

vantagens de utilização de energia elétrica (baixo custo, facilidade de

transporte e simplicidade de comando) com sua construção simples, custo

reduzido e grande versatilidade de adaptação às cargas dos mais diversos

tipos.

MOTORES MONOFÁSICOS

Devido ao baixo preço e a robustez de um motor de indução, sua aplicação faz necessário onde há uma rede elétrica trifásica, para produzir um campo magnético rotativo são motores de pequenas potência com ligação monofásica a dos fios. O motor possui um estator, rotor, capacitor e na grande maioria das um interruptor centrífugo.

Princípio de Funcionamento

Quando o motor alcança 75% de sua velocidade de trabalho, o interruptor centrífugo abre e desliga o enrolamento auxiliar e o capacitor deixando de funcionar, o motor fica funcionando apenas com o campo principal.

Tipos de Motores Monofásicos

Encontram-se motores monofásicos com 2, 4,ou 6 terminais:

Os motores de 2 terminais são construídos para funcionar em uma tensão apenas 110 ou 220V e não permitem inversão de rotação;

Os motores de 4 terminais são construídos para funcionar em uma tensão 110 ou 220V, porém permitem inversão da rotação;

Os motores de 6 terminais são destinados a funcionar em duas tensões 110 e 220V e permitem ainda inversão de rotação.

MOTORES TRIFÁSICOS

3

Page 4: Comandos elétricos

É a conexão elétrica dos terminais do motor, a fim de proporcionar ao mesmo condições de funcionamento.

Pode-se encontrar o motor trifásico com 3,6,9 ou 12 terminais e para fazer a mudança de rotação basta inverter duas fases entre si.

Ligação do motor trifásico de 3 terminais – São construídos para funcionar em uma tensão, 220, 380, 440 ou 760V.

Ligação do motor trifásico de 6 terminais – Podem ser ligados em duas tensões diferentes.

Ligação em triângulo (Δ) Ligação em estrela (Υ)

Obs: A

ligação em Δ é sempre a menor tensão do motor. Os terminais também podem ser identificados com letras: U,V, W, X, Y, Z. Relacionadas respectivamente aos números.

Ligação do motor trifásico de 9 terminais – São em pregados também para duas tensões, 220/440V. São construídos para ligação em estrela(Υ) ou em duplo estrela (Υ Υ) ou em triângulo (Δ) e duplo triângulo (Δ Δ).

4

Page 5: Comandos elétricos

Ligação do motor trifásico de 12 terminais – São construídos para atender as 4 tensões; 220, 380, 440 e 760V.

Principais Tipos:

Quanto a corrente

Motor de Corrente Alternada: são os mais usados, pois toda a linha de

distribuição de energia elétrica é feita em corrente alternada. Trabalham sob o

princípio da indução eletromagnética, campos girantes. Podem ser

monofásicos ou trifásicos.

Motor de Corrente Contínua: são motores de custo mais elevado e, além disso, precisam de uma fonte de corrente contínua, ou de um dispositivo que converta corrente alternada em contínua. Podem funcionar com velocidade ajustável entre amplos limites e se prestam a controles de grande flexibilidade e precisão. Por isso, seu uso é restrito a casos especiais em que estas exigências compensam o custo mais alto da instalação.

Motor Universal: podem tanto ser utilizado em corrente contínua como em

corrente alternada.

Ex.:eletrodomésticos (Característica: rotor bobinado e coletor na ponta do eixo)

Quanto a velocidadeMotor síncrono: Funciona com velocidade fixa.ns – Velocidade síncrona do campo magnético girante do motor;f – Freqüência da rede de alimentação (no Brasil é de 60Hz);p – Número de pólos do motor;

ns = 120 X f p

5

Page 6: Comandos elétricos

Motor de indução ou assíncrono - funciona normalmente com uma velocidade constante que varia ligeiramente com a carga mecânica aplicada ao seu eixo.

Escorregamento (s) – A velocidade entre o campo magnético do estator e a velocidade do rotorS = ns – n

ns

Divide-se em duas partes principais:

Estator: “pacote” de chapas de ferro por onde circula o campo

magnético gerado pela rede de alimentação. É a parte estática (parada)

do motor.

Rotor: Está acoplado ao eixo, podendo ser bobinado ou “gaiola de

esquilo”, sendo este último o mais empregado. É a parte girante do

motor, por onde circula o campo magnético induzido.

DADOS DE PLACA DO MOTOR DE INDUNÇÃO

Modelo: 90S 1189

90 S 1189

tipo de carcaça data de fabricação novembro de 1989

espaço em milímetros entre o centro do eixo e a base.

6

Page 7: Comandos elétricos

Freqüência nominal (Hz): De acordo com as normas, os motores

devem funcionar satisfatoriamente com freqüência até + ou - 5% da

freqüência nominal do país.

Tensão nominal (V): É o valor de tensão para a qual o motor foi

especificado para funcionamento em regime nominal. De acordo com as

normas, o motor deve funcionar satisfatoriamente com tensões até + ou

– 10% da tensão nominal, desde que a freqüência seja a nominal.

Potência Nominal (kW ou C.V.): É a potência que o motor pode

fornecer continuamente, dentro de suas características nominais. (1CV =

736W e 1HP = 746W).

Corrente nominal: É a corrente absorvida quando o motor funciona.

Velocidade nominal (rpm); É a velocidade do motor quando ele

fornece a potência nominal, sob tensão e freqüência nominais, medida

em rotações por minuto.

Fator de serviço (FS): É o valor que, aplicado à potência nominal,

indica a sobrecarga permissível que pode ser aplicada continuamente

ao motor, sob condições especificadas de tensão e freqüências

nominais.

EX.: um motor com FS = 1,15, suporta continuamente 15% acima de sua

potência.

Obs: Esta é uma reserva de potência que dá ao motor uma capacidade de

suportar melhor o funcionamento em condições desfavoráveis. Não confundir o

FS com capacidade de sobrecarga momentânea, ou seja, apenas durante

alguns segundos. A WEG fabrica seus motores podendo suportar uma

sobrecarga de até 60% sobre o nominal durante 15 segundos.

7

Page 8: Comandos elétricos

Classe de isolamento (ISOL)

Define o limite máximo de temperatura que o enrolamento do motor pode

suportar continuamente, sem que haja redução de sua vida útil. Conforme

ABNT (Associação Brasileira de Normas Técnicas), as principais classes de

isolamento e suas temperaturas limites são:

Classe de isolamento Temperatura limite

Y 900 C

A 1050 C

E 1200 C

B 1300 C

F 1550 C

H 1800 C

C 4000 C

Regime de serviço (REG.S.): Também chamado de regime de

funcionamento, indica a forma de utilização do motor no acionamento da

carga. É o grau de regularidade da carga a que o motor é submetido. Os

motores normais são projetados para regime contínuo, isto é,

funcionamento com cargas constantes, iguais à potência do motor.

Regime de Serviço

S1 Regime ContínuoFuncionamento com carga constante

atingindo seu equilíbrio térmico

S2 Regime de Tempo LimitadoFuncionamento com carga constante não

atingindo seu equilíbrio térmico

S3 Regime Intermitente PeriódicoSeqüência de ciclos idênticos a carga

constante-repouso

S4Regime Intermitente Periódico com

partidasSeqüência de ciclos idênticos, partida-

carga constante-repouso

S5Regime Intermitente Periódico com

Frenagens ElétricasSeqüência de ciclos e regimes idênticos

com partida e carga constante

S6Regime de Funcionamento Contínuo

com Carga Intermitente

Seqüência de ciclos e regimes idênticos com carga constante , funcionamento a vazio, não existindo período de repouso

S7Regime de Funcionamento Contínuo

com Frenagens ElétricasSeqüência de ciclos e regimes idênticos

com partida e carga constante

S8Regime de Funcionamento Contínuo com Mudança Periódica na Relação

Carga/Velocidade de Rotaçãoxxxx

8

Page 9: Comandos elétricos

Grau de proteção (IP): É um código padronizado pelas letras IP (índice

de proteção) que definem, segundo a norma IEC 34-5 e ABNT NBR-

6146, os graus de proteção dos equipamentos elétricos contra

penetração de corpos sólidos estranhos e contato acidental, além de

penetração de líquidos, seguidas por dois algarismos.

Ex.: IP 54 – equipamento com proteção completa contra toque, acúmulo de

poeira nociva e respingos de água em todas as direções.

10 algarismo – grau de proteção contra penetração de corpos sólidos estranhos

e contato acidental.

20 algarismo – grau de proteção contra penetração de líquidos.

9

Page 10: Comandos elétricos

Categoria de conjugado (CAT): Conjugado – também chamado de

torque, momento ou binário, é a medida do esforço necessário para girar

o eixo.

Obs: A categoria de conjugado é a classificação conforme as características de

conjugado em relação à velocidade e à corrente de partida. Conforme definição

da norma NBR 7094, os motores de indução são classificados como:

Categoria N

Com conjugado de partida normal e corrente de partida normal, constituem a

maioria dos motores encontrados no mercado. São utilizados para

acionamento de cargas normais tais como bombas, máquinas operatrizes e

ventiladores.

Categoria H

Com alto conjugado de partida e corrente de partida normal. Usados para

cargas que exigem maior conjugado na partida, como peneiras,

transportadores, carregadores, cargas com alta inércia, britadores, etc.

Categoria D

Conjugado de partida alto, corrente de partida normal, com velocidade nominal

mais baixa que das categorias anteriores. Usados em prensas excêntricas e

máquinas semelhantes, onde a carga apresenta picos periódicos; em

elevadores e em cargas que necessitam de conjugado de partida muito alto e

corrente de partida limitada.

Ip/In

Fator multiplicador da corrente nominal que indica a corrente na partida. Par

vencer a inércia e iniciar o movimento acelerando até a velocidade nominal, o

motor de indução solicita à rede de alimentação uma corrente superior a

corrente nominal. Para se conhecer o valor da corrente de partida, basta

multiplicar a corrente nominal pelo Ip/In.

Ex.: Ip/In = 7

In = 15A

Ip = Ip/In X In

Ip = 15 x 7 = 105 A

10

Page 11: Comandos elétricos

DISJUNTOR-MOTOR

É um equipamento destinado ao comando e a proteção dos motores, levando em consideração a corrente de partida.

Dependendo do fabricante conseguem manobrar e proteger motores

com In da ordem de 95 A, com capacidade de interrupção de até 100 kA,

podendo substituir os fusíveis.

Podem ser termomagnéticos ou apenas magnéticos. Podem ter

atuação por botão de comando ou por botão rotativo.

Assegura total proteção ao circuito elétrico e ao motor através de

seus disparadores térmicos (ajustável para proteção contra sobrecargas e

dotado de mecanismos diferencial com sensibilidade a faltas de fase) e

magnético (calibrado em 12 vezes a In para proteção contra curtos-

circuitos).

É possível ser associado a blocos aditivos* de vários tipos. Os

contatos NA ou NF aditivos montados lateralmente à esquerda são

chamados “acionados”. Os montados lateralmente à direita são chamados

“acionadores”, estes últimos disparam por mínima tensão ou por emissão

de tensão.

Pode ter montagem em cofre, e pode ser comando na porta do

painel. Pode trabalhar associado diretamente a contatores e a relés de

sobrecarga. Podem ser fixados em trilho de 35mm ou através de

parafusos. Os parafusos de ligação elétrica são normalmente do tipo

imperdível. Podem ser travados quanto ao ligamento através de cadeado.

Podem ser acionados por botão de soco com chave.

11

Page 12: Comandos elétricos

12

Page 13: Comandos elétricos

Variação de tensão: Para garantir um bom funcionamento dos contatores,

deve-se alimentar as bobinas com tensões nominais e estáveis. De um modo

geral as bobinas são comercializadas para operar na faixa de 0,85 a 1,1 x Un

13

Page 14: Comandos elétricos

(tensão nominal), porém para valores precisos deve-se consultar o catálogo do

fabricante.

Tensão de comando (Ub): É a tensão a ser aplicada nos terminais das

bobinas dos contatores.

Posição de montagem: Os contatores normalmente devem ser montados

sobre parede vertical. No entanto admitem-se inclinações que variam de

acordo com o tipo do contator e sua fabricação.

ACESSÓRIOS

Bloco Aditivo de Contatos Auxiliares: Bloco acoplável ao contator com

contatos auxiliares que podem ser encaixados frontal ou lateralmente no

contator. Estes blocos podem ser encontrados com 1, 2 ou 4 contatos

auxiliares, de vários tipos (1NA + 1NF, 2NA + 1NF, 4NA,etc.).

Bloco Aditivo Temporizado: Bloco acoplável aos contatores com

temporizador pneumático ou eletrônico, ao repouso (retardo no desligamento)

ou ao trabalho (retardo na ligação).

14

Page 15: Comandos elétricos

Bloco Supressor de Sobretensão: Utilizados no amortecimento das

sobretensões provocadas por contatores durante as operações de abertura,

sobretensões estas que podem colocar em risco de dano componentes

sensíveis à variações de tensão, ligados em paralelo com a bobina do contator.

Intertravamento Mecânico: Combinação que garante mecanicamente a

impossibilidade de fechamento simultâneo entre dois contatores, mesmo

quando submetidos a choques mecânicos mais violentos na direção do

fechamento.

Bobinas: São encontradas em diversos níveis de tensão em CA (12V, 24V,

48V, 120V, 220V, 380V, 440V e 600V) ou em CC (12V, 24V, 48V, 125V, 220V,

440V e 600V), dependendo do fabricante.

15

Page 16: Comandos elétricos

RELÉ TÉRMICO DE SOBRECARGA

Dispositivo de proteção e, eventualmente, de comando à distância, cuja

operação é produzida pelo movimento relativo de elementos mecânicos, sob a

ação de determinados valores de corrente nos circuitos de entrada.

PRINCÍPIO DE FUNCIONAMENTO

O funcionamento dos relés de sobrecarga de atuação mecânica baseia-

se no princípio da dilatação linear de dois metais diferentes quando acoplados

rigidamente.

A curvatura de um bimetal numa dada temperatura depende da

diferença entre os dois coeficientes e tende sempre para o lado do material de

menor coeficiente.

16

Page 17: Comandos elétricos

Circuito Principal ou de Potência

É composto por uma cacaça de material isolante, três bimetais de

aquecimento, alavanca de deserme, terminais de entrada (1L1, 3L3 e 5L3) e

terminais de saída (2T1, 4T2 e 6T3).

Circuito Auxiliar ou de Comando

17

Page 18: Comandos elétricos

Funcionamento Básico do Relé de Sobrecarga

18