cmos circuits

36
CONCORDIA VLSI D E SIG N LA B 1 CMOS Circuits

Upload: yeriel

Post on 30-Jan-2016

68 views

Category:

Documents


4 download

DESCRIPTION

CMOS Circuits. Combination and Sequential. VDD. PMOS. Network. Output. Inputs. NMOS. Network. Static Combinational Network. CMOS Circuits Pull-up network-PMOS Pull-down network- NMOS Networks are complementary to each other - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

1

CMOS Circuits

Page 2: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

2

Combination and Sequential

Page 3: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

3

Static Combinational Network

PMOSNetwork

NMOSNetwork

Inputs Output

VDDCMOS Circuits

• Pull-up network-PMOS• Pull-down network- NMOS• Networks are complementary to each other• When the circuit is dormant, no current flows between supply lines.• Number of the NMOS transistors (PMOS transistors) equals to the number of the inputs.• Output load is capacitive

Page 4: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

4

NAND Gates

Transistors in Parallel

(W/L)1 (W/L)2 (W/L)eff

1/Rcheff = (1/Rch1) + (1/Rch2)

WL-----

eff

WL-----

1

WL-----

2+=

Transistors in Series

WL-----

eff

WL-----

1

1– WL-----

2

1–+

1–=

Rcheff = Rch1 + Rch2

(W/L)1

(W/L)2

(W/L)eff

Page 5: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

5

CMOS NAND GateDC Analysis

Two possible scenarios:1. Both inputs are toggling2. One input is toggling, the other one set high

Assumptions: MP2=MP1=MPMN1=MN2=MNW/L for MP = (W/L)pW/L for MN = (W/L)n

InverterVTC

Page 6: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

6

Gate Sizing

To obtain equal Rise and Fall time,

Size the series / parallel transistors

to have an equivalent of a single PU or PD

inverter transistor in your design

Page 7: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

7

Sizing the CMOS Gate

Page 8: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

8

NAND Gates: Analysis

Scenario #1-Both inputs are togglingL-H > (W/L)eff = 2(W/L)pH-L > (W/L)eff = 1/2(W/L)nKR|NAND = 1/4 KR|INV

Scenario #2- One input is togglingL-H > (W/L)eff = (W/L)pH-L > (W/L)eff = 1/2(W/L)nKR|NAND = 1/2 KR|INV

Vout

Vin

VOH

VOLVx2 Vx1

Vin=Vout

InverterOne input toggling

Two inputs toggling

Page 9: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

9

NAND Gates: Analysis

VDD

MP1MP2

MN1

MN2

A

B

X

CL

Switching AnalysisScenario #1-Both inputs are togglingtPLH |NAND = 1/2tPLH |INVERTER

tPHL |NAND = 2tPHL |INVERTER

Scenario #2- One input is togglingtPLH |NAND = tPLH |INVERTER

tPHL |NAND = 2tPHL |INVERTER

Page 10: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

10

NAND Gate: Power Dissipation

VDD

MP1MP2

MN1

MN2

A

B

X

CL

Pac= α.f . C VDD2

A B X 0 0 1 1 0 1 0 1 1 1 1 0

α = P (X=1). P (X=0) assuming A and B have equal probabilities for 1 and 0α = (1/4). (3/4)= 3/16C = CL + C parasitic

Page 11: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

11

Increasing the inputs

Page 12: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

12

NOR Gate: Analysis

DC Analysis/ AC Analysis

Two possible scenarios:1. Both inputs are toggling (one is set low)2. One input is toggling, the other one set high

Assumptions: AP2=BP1=MP AN1=BN2=MNW/L for MP = (W/L)pW/L for MN = (W/L)n

Compare with a CMOS inverter: MP/MNKR, and the shift in VTC

Propagation delay tPLH and tPHL

Page 13: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

13

4 INPUT NOR GateVDD

A

B

C

D

A B C D CL

X

Very slow rise time and rise delays

Could be compensated by increasing of PMOS transistor size.

Implications: Silicon Area Input capacitance

Page 14: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

14

Practical Considerations 1. Minimize the use of NOR gates2. Minimize the fan-in of NOR gates3. Limit the fan-in to 4 for NAND gates4. Use De morgan’s theorem to reduce the number of fan-in per gate

Example:

F = ABCDEFGH = (ABCD) + (EFGH)

Page 15: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

15

Complex CMOS Gate

Page 16: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

16

Reducing Output Capacitance

Page 17: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

17

Pseudo nMOS

Page 18: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

18

Pseudo nMOS NAND/NOR Gates

From Lecture #4For acceptable operation

WN=1.5 WP for our Process respecting min WP

Page 19: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

19

Pseudo nMOS Complex Gates

From Lecture #4For acceptable operation

WN=1.5 WP for our Process respecting min WP

Page 20: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

20

CASCODE LOGIC

Lad is cross coupled pMOS

transistors

Logic is series and parallel

complementary transistors

Input and Output are in

Complementary forms

Page 21: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

21

CSACODE Inverter/Nand Gate

Page 22: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

22

CASCODE Complex Gate

Page 23: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

23

DCVS trees for a full adder Sum and Carry

Pull-Down Networks

S’(A,B,C) = A’BC’ + A’B’C + ABC + AB’C’S (A,B,C) = A’B’C’ + A’BC + ABC’ + AB’C

C(A,B,C) = AB + BC + AC

Page 24: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

24

Transmission Gate

Bi-directional switch, passes digital signalsLess complex and more versatile than AND gate Passes analog signals

Problems: Large ON resistance during transitions of input signals Large input and output capacitance (useful for data storage applications) Capacitive coupling

Applications:Multiplexers, encoders, latches, registersvarious combinational logic circuits

C

C

A B

BA

C

C

C

C

A B TGA B

C

INV included

Page 25: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

25

NMOS/PMOS as Pass Transistors

Vi Vo

C

CL

NMOS Transistor Passes weak “1” signal Vo = VDD -VTN

Passes “0” signal undegraded

Vo

Vi

VDD -VTN

Vi Vo

C

CL

VDD -VTN

Vo

Vi

-VTP

-VTP

PMOS Transistor

Passes “1” signal undegraded

Passes weak “0” signal Vo= -VTP

Page 26: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

26

TX Gate: Characteristics

C

Vin Vo

Vo

Vin

0V |VTP| VDD-VTN VDD

nmos:lin nmos:sat nmos:offpmos:sat pmos:lin pmos:lin

Req,pReq,n

Req,TX

Vo

R

VDD-VTN VDD0

Page 27: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

27

AND, NAND

A B F

0 0 0

0 1 0

1 0 0

1 1 1

Page 28: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

28

OR, NOR

A B F

0 0 0

0 1 1

1 0 1

1 1 1

Page 29: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

29

A multiplexer

C A B F C A B F

0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

Page 30: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

30

XOR

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Page 31: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

31

Four to one multiplexer

Page 32: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

32

TX Gate: Layout

VDD

VSS

VOVi

C

C C CFor data path structure

P+P+

N+N+

Page 33: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

33

NAND Gates: Layout

Layout Transistors in Series

Transistors in Parallel

Page 34: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

34

NAND Gates: Layout

A BX

Metal IIVia

VDD

GND

Page 35: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

35

NOR Gate: Layout

ABX

VDD

GND

Page 36: CMOS Circuits

CONCORDIAVLSI DESIGN LAB

36

Analysis and Design of Complex Gate

A B C D E F

A B C D E F

VDD

GND

OUT

active(diffusion)

n+ layermetalpolysilicon

contact

p+ layer

N-well

Analysis

1. Construct the schematic2. Determine the logic function.3. Determine transistor sizes.4. Determine the input pattern to cause slowest and fastest operations.5. Determine the worst case rise delay (tPLH)and fall delay (tPHL)6. Determine the best case rise and fall delays.