choosing the “correct” gc column dimensions and ... osi si si o si si oh ch 3 ch 3 ch 3 ch 3 ch...

30
1 Column Selection Page 1 Choosing the “Correct” GC Column Dimensions and Stationary Phase Daron Decker Chromatography Technical Specialist Column Selection Page 2 2-methyl heptane 4-methyl heptane m-xylene p-xylene “Nothing is useless it can always serve as a bad example” Custom Column: 150 m x 250m, 1.0 m SE-30 (PDMS) 60 o C isothermal; hydrogen carrier @ 28 cm/sec, split 1:100; t M = 8.9 min

Upload: nguyennguyet

Post on 27-May-2018

247 views

Category:

Documents


5 download

TRANSCRIPT

1

Column Selection

Page 1

Choosing the “Correct”

GC Column Dimensions

and Stationary Phase

Daron Decker

Chromatography Technical Specialist

Column Selection

Page 2

2-methyl heptane

4-methyl heptane

m-xylene

p-xylene

“Nothing is useless it can always serve as a bad example”Custom Column: 150 m x 250m, 1.0 m SE-30 (PDMS)

60oC isothermal; hydrogen carrier @ 28 cm/sec, split 1:100; tM = 8.9 min

2

Column Selection

Page 3

What You Know Matters

m-xylene

p-xylene

Column Selection

Page 4

Column

FlowController

Regulators

Air

Hyd

rogen

Carr

ier

Gas

Mol-Sieve

Traps

Fixed

Injection

Port Detector Electrometer

Recorder/Integrator

Restrictors

Cylinders or Generators

Typical Gas Chromatographic System

Picking the

appropriate

stationary phase and

optimum dimensions

for the column will

give the greatest

resolution in the

shortest analysis

time.

3

Column Selection

Page 6

Four Primary Selection Areas

Stationary Phase Type

Column Internal Diameter

Stationary Phase Film Thickness

Column Length

Column Selection

Page 7

Resolution

N = (gas, L, rc)

k = (T, df, rc)

a = (T, phase)

RN k

ks =

4 1

1

a

a

Efficiency

Retention

Selectivity

L = Length

rc = column radius

df = film thickness

T = temperature

4

Column Selection

Page 10

Resolution

RN k

ks =

4 1

1

a

a

Efficiency

Retention

Selectivity

L = Length

rc = column radius

df = film thickness

T = temperature

N = (gas, L, rc)

k = (T, df, rc)

a = (T, phase)

Column Selection

Page 11

Stationary Phase - Common Types

Siloxane polymers

Poly(ethylene) glycols

Porous polymers

5

Column Selection

Page 12

Liquid Phase

Carrier Gas

Porous Layer Open Tube (PLOT)

Wall Coated Open Tube (WCOT)

Solid Particles

Carrier Gas

Capillary Column Types

Column Selection

Page 13

HH

HO - - C-C-O - - H

H H n

Polyethylene glycol backbone

Stationary Phase Polymers

6

Page 14

Agilent J&W has over 50 different stationary phase offerings

WCOT Column Types

FactorFourTM Phases

VF-1ms, VF-5ms, VF-5ht, VF-5ht UltiMetal™

VF-17ms, VF-17ms for PAH, VF-35ms,

VF-200ms,VF-Xms, VF-23ms, VF-624ms,

VF-DA, VF-1301ms, VF-Pesticides,

VF-1701ms, VF-WAXms

7

Page 16

Column Typical Application

DB-624 EPA and USP volatiles

DB-VRX volatiles analysis

HP-VOC volatiles analysis

DB-502.2 EPA Method 502.2

DB-5.625 EPA semi-volatiles analysis

DB-608 EPA Method 608

DB-1701P EPA pesticides analysis

DB-MTBE total petroleum hydrocarbon (TPH)

HP-PONA petroleum hydrocarbon analysis

DB-HT SimDis hi-temp simulated distillation

DB-ALC1 & ALC2 blood alcohol analysis

HP-88 fatty acid methyl ester (FAME)

“Specialty phases” are columns that are optimized to perform

a specialized GC analysis.

20+ Different “Specialty Phases”

Select TM Column Examples

Environmental applications

CP-Sil 88 for dioxins, Select mineral oil, CP-Select 624 CB

Chiral applications

CP-Chirasil Val, CP-Chirasil-DEX CB

Chemical applications

CP-Volamine, CP-Select CB for MTBE, CP-PONA C8, CP-Propox,

Select Silanes, CP-SimDist UltiMetal TM , CP-Lowox TM

Food and Beverage applications

CB-Carbowax 400, Select FAME, CP-Sil 88 for FAME, CP-FFAP CB

8

Page 18

PLOT columns are primarily, but not exclusively, used for the analysis of gases and low boiling

point solutes (i.e., boiling point of solute is at or below room temperature).

PLOT Column Types

• Agilent J&W PLOT columns begin

with the designation of

– GS (Gas Solid) or

– HP-PLOT followed by a specific name

– 10 stationary phases

• GS-OxyPLOT

• GS-Alumina

• HP-PLOT Al2O3 “M”

• HP-PLOT Al2O3 “S”

• HP-PLOT Al2O3 “KCl”

• HP-PLOT MoleSieve

• GS-CarbonPLOT

• HP-PLOT Q

• HP-PLOT U

• GS-GasPro

• GS-OxyPLOT: oxygenates

• HP-PLOT Molesieve: O2, N2, CO, Methane

• HP-PLOT Alumina and GS-Alumina: complex hydrocarbon gas matrices, ethylene and

propylene purity, 1,4-butadiene

• HP-PLOT Q: freons, sulfides

• HP-PLOT U: C1 to C7 hydrocarbons, CO2, Polar Hydrocarbons

• GS-GasPro: freons, sulfurs, inorganic gases

• GS-CarbonPLOT: inorganic and organic gases

19

PLOT GC Columns from Varian Line

Porous Polymers

• CP-PoraBOND Q

• CP-PoraBOND U

• CP-PoraPLOT Q

• CP-PoraPLOT U

• CP-PoraPLOT S

• CP-PoraPLOT Q-HT

• CP-PoraPLOT amines

Zeolites

• Molsieve 5A

• Molsieve 13x

Alumina

• KCL

• Na2SO4

• MAPD

Multi Layer

• CP-Lowox

Porous Silica

• SilicaPLOT

Graphatised Carbon

• CP-CarboPLOT P7

• CP-CarboBOND

SelectTM permanent gases

9

Column Selection

Page 20

k2 = partition ratio of 2nd peak

k1 = partition ratio of 1st peak

Why Is Stationary Phase Type Important?

a

=k2

k1

a

Influence of

Column Selection

Page 21

Selectivity

Relative spacing of the chromatographic peaks

The result of all non-polar, polarizable and polar interactions

that cause a stationary phase to be more or less retentive to

one analyte than another

10

Column Selection

Page 22

Optimizing Selectivity

Match analyte polarity to stationary phase polarity

-like dissolves like(oil and water don’t mix)

Take advantage of unique interactions between analyte and

stationary phase functional groups

Column Selection

Page 23

Compounds - Properties

Compounds Polar AromaticHydrogenBonding

Dipole

Toluene no yes no induced

Hexanol yes no yes yes

Phenol yes yes yes yes

Decane no no no no

Naphthalene no yes no induced

Dodecane no no no no

11

Column Selection

Page 24

100% Methyl Polysiloxane (boiling point column?)

Strong Dispersion

No Dipole

No H Bonding

0 2 4 6 8 10 12 14 16

1

2

3

4

5

6

1. Toluene 110o

2. Hexanol 156o

3. Phenol 182o

4. Decane (C10) 174o

5. Naphthalene 218o

6. Dodecane (C12) 216o

Column Selection

Page 25

5% Phenyl

Strong Dispersion

No Dipole

Weak H Bonding

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

100% Methyl

12

34

56

5% Phenyl

12

34

5,6

Strong Dispersion

No Dipole

No H Bonding

1. Toluene

2. Hexanol

3. Phenol

4. Decane (C10)

5. Naphthalene

6. Dodecane (C12)

12

Column Selection

Page 26

50% Phenyl

Strong Dispersion

No Dipole

Weak H Bonding

50% Phenyl

0 2 4 6 8 10 12 14 16

100% Methyl

12

34

56

0 2 4 6 8 10 12 14 16

12 4 3 6 5

Strong Dispersion

No Dipole

No H Bonding

1. Toluene 110o

2. Hexanol 156o

3. Phenol 182o

4. Decane (C10) 174o

5. Naphthalene 218o

6. Dodecane (C12) 216o

Column Selection

Page 27

14% Cyanopropylphenyl

Strong Dispersion

None/Strong Dipole (Ph/CNPr)

Weak/Moderate H Bonding (Ph/CNPr)

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

100% Methyl

12

34

56

1 2 4 63

514% Cyano-

propylphenyl

Strong Dispersion

No Dipole

No H Bonding

1. Toluene

2. Hexanol

3. Phenol

4. Decane (C10)

5. Naphthalene

6. Dodecane (C12)

13

Column Selection

Page 28

50% Cyanopropyl

Strong Dispersion

Strong Dipole

Moderate H Bonding

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

100% Methyl

12

34

56

41

6 2

5 3

50%

Cyanopropyl

Strong Dispersion

No Dipole

No H Bonding

1. Toluene

2. Hexanol

3. Phenol

4. Decane (C10)

5. Naphthalene

6. Dodecane (C12)

Column Selection

Page 29

100% Polyethylene Glycol

Strong Dispersion

Strong Dipole

Moderate H Bonding

0 2 4 6 8 10 12 14 16

41 6

2

5 3100% PEG

0 2 4 6 8 10 12 14 16

100% Methyl

12

34

56

Strong Dispersion

No Dipole

No H Bonding

1. Toluene

2. Hexanol

3. Phenol

4. Decane (C10)

5. Naphthalene

6. Dodecane (C12)

14

Column Selection

Page 30

Selectivity is important but not everything…

Inertness and Bleed can be critical factors in column

selection.

Temperature limits will play a role as well.

Column Selection

Page 31

Stationary Phase Bleed

A thermodynamic equilibrium process that occurs to some

degree in all columns, and is proportional to the mass amount of

stationary phase inside the capillary tubing/carrier gas flow path

Polysiloxane backbone releases low molecular weight, cyclic

fragments

Is negligible in low temperature, O2-free, clean GC systems

Increased by increased temperature, oxygen exposure, or

chemical damage

15

Column Selection

Page 32

Bleed: Why Does It Happen?“Back Biting” Mechanism of Product Formation

+

Repeat

Si Si Si Si Si Si SiO O O O O O OH

CH3 CH3 CH3 CH3 CH3 CH3 CH3

CH3 CH3 CH3 CH3 CH3 CH3 CH3

OHSiSi O Si O Si O

CH3 CH3 CH3 CH3

CH3 CH3 CH3 CH3

SiO O

O

CH3H3C

H3C

H3C

SiSiCH3

CH3

O

O O O O

OSi

HO

H3C

CH3 CH3 CH3 CH3

Si SiSi Si Si Si

CH3

CH3

CH3

CH3CH3 CH3

CH3

CH3

CH3

Cyclic products are

thermodynamically

more stable!

Column Selection

Page 33

DB-5ms Structure

CH3

CH3

CH3 CH

3

CH3

CH3

Si

Si

Si

Si

O

O

O

ODB-5 Structure

DB-55% Phenyl

CH3

CH3

CH3

CH3 CH

3

CH3 CH

3

CH3

Si

Si

Si

SiO

O

DB-5ms Structure

DB-5ms1.Increased stability2.Different selectivity3.Optimized to match DB-5

16

Column Selection

Page 34

Solid line: DB-5ms 30 m x .25 mm I.D. x .25 m

Dashed line:DB-5 30 m x .25 mm I.D. x .25 m

Oven: 60o C isothermal

Carrier gas: H2 at 40 cm/sec

1: Ethylbenzene

2: m-Xylene

3: p-Xylene

4: o-Xylene

Difference in Selectivity

Column Selection

Page 35

Four Types Of Low Bleed Phases

Phases tailored to “mimic” currently existing polymers

-Examples: DB-5ms, DB-35ms, DB-17ms, DB-225ms

Phases unrelated to any previously existing polymers

-Examples: DB-XLB

Optimized manufacturing processes

-DB-1ms, HP-1ms, HP-5ms

Hand selected columns

17

Column Selection

Page 36

Benefits of Low Bleed Phases PAH Sensitivity Using HP-35MS

1. Naphthalene

2. Acenaphthylene

3. Acenaphthene

4. Fluorene

5. Phenanthrene

6. Anthracene

7. Fluoranthene

8. Pyrene

9. Benz[a]anthracene

10. Chrysene

11. Benzo[b]fluoranthene

12. Benzo[k]fluoranthene

13. Benzo[a]pyrene

14. Indeno[1,2,3,-

c,d]anthracene

15. Dibenz[a,h]anthracene

16. Benzo[g,h,i]perylene

Columns: 30 m x 0.32 mm x 0.35 um.

Carrier: H2, constant flow, 5 psi at 100 oC.

Injector: 275 oC, splitless, 1 ul , 0.5-5ppm.

Oven: 100 oC to 250 oC (5 min.) at 15 oC/min.,; then to 320 oC (10 min.) at 7.5 oC/min.

Detector: FID, 320 oC.

5 10 15 20 25 min.

HP-35MS

1

2

3

4

5 6

7

8

9 10

11

12 13 14

1516

Commercially

Available 35% phenyl

column

Benzo[ghi]perylene

S/N = 120

Benzo[ghi]perylene

S/N = 15

Column Selection

Page 37

Benefits of Low Bleed PhasesDB-35ms vs Standard 35% Phenyl

Benzo[g,h,i]perylene, 1ng

200000

400000

600000

800000

1000000

1200000

1400000

10.00 12.00 14.00 16.00 18.00 20.00 22.00

Standard 35% Phenyl

DB-35ms

18

Column Selection

Page 38

M/Z ->

Abundance

50

78

96

135

157

207

223

253

276

331

346

377

405

439

50 100 150 200 250 300 350 4000

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

Scan 1118 (20.560 min): 3901004.D

Standard 35%

Phenyl

M/Z ->

Abundance

78

119

138207

239

274

276

315377

50 100 150 200 250 300 350 4000

10000

20000

30000

40000

50000

60000

70000

80000

Scan 1138 (20.640 min): 3901004.D

DB-35ms

Higher Spectral Purity

Column Selection

Page 39

Polarity vs Stability/Temperature Range

Polarity Stability

Temperature Range

19

Column Selection

Page 40

Stationary Phase Selection

Existing information

Selectivity/Polarity

Critical separations

Temperature limits

Application designed

Examples: DB-VRX, DB-MTBE, DB-TPH, DB-ALC1,

DB-ALC2, DB-HTSimDis, DB-Dioxin, HP-VOC, etc.

Choose the column phase that gives the best separation

but not at the cost of robustness or ruggedness.

Column Selection

Page 42

Resolution

N = (gas, L, rc)

k = (T, df, rc)

a = (T, phase)

RN k

ks =

4 1

1

a

a

Efficiency

Retention

Selectivity

L = Length

rc = column radius

df = film thickness

T = temperature

20

Column Selection

Page 43

Column Diameter - Theoretical Efficiency

I.D. (mm) n/m

0.05 23,160

0.10 11,580

0.20 5830

0.25 4630

0.32 3660

0.45 2840

0.53 2060

0.18 6,660

Column Selection

Page 44

Column Diameter and Capacity

Like Polarity

Phase/Solute

0.25 µm film thickness

I.D. (mm) Capacity (ng)

0.05 1-2

0.18 25-55

0.20 35-70

0.25 80-160

0.32 110-220

0.53 1000-2000

0.45 600-800

0.10 6-13

21

Column Selection

Page 45

Column Diameter - Inlet Head Pressures (Helium)

30 meters

Hydrogen pressures x 1/2

I.D (mm) Pressure (psig)

0.10 90-130

0.20 25-40

0.25 15-25

0.32 10-20

0.45 3-7

0.53 2-4

0.18 30-45

0.05 275-400

Column Selection

Page 46

Column Diameter and Carrier Gas Flow

Lower flow rates: Smaller diameter columns

Higher flow rates: Larger diameter columns

Low flow rates : GC/MS

High flow rates: Headspace, purge & trap

22

Column Selection

Page 47

Diameter Summary

To increase Diameter

Efficiency Smaller

Resolution Smaller

Pressure Smaller

Capacity Larger

Flow rate Larger

Column Selection

Page 49

Resolution

N = (gas, L, rc)

k = (T, df, rc)

a = (T, phase)

RN k

ks =

4 1

1

a

a

Efficiency

Retention

Selectivity

L = Length

rc = column radius

df = film thickness

T = temperature

23

Column Selection

Page 50

Film Thickness and Retention: Isothermal

Constant Diameter

Normalized to 0.25 µm

Thickness (µm) Retention Change

0.10 0.40

0.25 1.00

1.0 4.00

3.0 12.0

5.0 20.0

Column Selection

Page 51

Film Thickness and Resolution

RWhen solute k > 5

Rdf

When solute k < 5

df

or T

or T

(early eluters)

(later eluters)

24

Column Selection

Page 52

Analysis of Noble & Fixed Gases

Using HP PLOT MoleSieve

5

2 4 6 8

6

4

2

13

1 . Neon2. Argon3. Oxygen4. Nitrogen5. Krypton6. Xenon

Column:

Carrier:Oven:

Sample:

HP-PLOT/MoleSieve30 m x 0.53 mm x 50HP part no.Helium, 4 ml/min35°(5250 l, split (ratio 50:1)

min) at 25°

m

Time (min)

19095P-MS0

C (3min) to 120° CC/min

Other Retention - Adsorption

Column Selection

Page 53

Film Thickness and Capacity

0.32 mm I.D.

Like Polarity Phase/Solute

Thickness (µm) Capacity (ng)

0.10 50-100

0.25 125-250

0.50 250-300

1 500-1000

3 1500-3000

5 2500-5000

25

Column Selection

Page 54

Film Thickness and Bleed

More stationary phase = More degradation products

Column Selection

Page 55

Film Thickness and Inertness

1.0

active inactive active inactive

3.0

active inactive

0.25

26

Column Selection

Page 56

Film Thickness Summary

To Increase Make Film

Retention Thicker

Resolution (k<5) Thicker

Resolution (k>5) Thinner

Capacity Thicker

Bleed Thicker

Inertness Thicker

Efficiency Thinner

Column Selection

Page 58

Resolution

N = (gas, L, rc)

k = (T, df, rc)

a = (T, phase)

RN k

ks =

4 1

1

a

a

Efficiency

Retention

Selectivity

L = Length

rc = column radius

df = film thickness

T = temperature

27

Column Selection

Page 59

Column Length and Efficiency (Theoretical Plates)

0.25 mm ID

n/m = 4630 (for k = 5)

Length (m) n

15 69,450

30 138,900

60 277,800

Column Selection

Page 60

Column Length and Resolution

Length X 4 = Resolution X 2

R a n aL

t a L

28

Column Selection

Page 61

Column Length VS Resolution and Retention:

Isothermal

Double the plates, double the time

but not double the the resolution

15 m 60 m30 m

R=0.84

2.29 min

R=1.68

8.73 min

R=1.16

4.82 min

Column Selection

Page 62

Column Length and Cost

15m30m

60m

$ $ $ $ $ $ $

29

Column Selection

Page 63

Length Summary

To Increase Length

Efficiency Longer

Resolution Longer

Analysis Time Longer

Pressure Longer

Cost Longer

Column Selection

Regular Unleaded Gasoline California Phase I

0 20 40 60 80Time (min.)

“Normal”

2 3 4 56

7

8

910

11

12

13

31

32

30

29

14

15

19

16

17

18

20

21

2322

24

26

25

28

27

3837

3534

33

36

39

Column: DB-PETRO 100

100m x 0.25 mm I.D., 0.5 µm

Carrier: H2, 24 psig, 31 cm/s

Oven: 35°C// 9.5 min// 13.3 °/min// 45°//

11 min// 1.4 °/min// 60°// 11min//

2.7°/min// 220°// 3.6 min

Injector: Split 1:200, 0.2 µL

Detector: FID @ 300°C

0 10 20 30Time (min.)

High Speed

Column: DB-1

40 m x 0.10 mm I.D., 0.20 µm

Carrier: H2, 78 psig, 34.8 cm/s

Oven: 35°C// 3.6 min // 36.1°/min//

45°C// 4.15 min // 3.91°/min//

60°C// 4.15 min//6.9°/ min//

220°C// 1.38 min

Injector: Split 1:400, 250°C, 0.2 µL

Detector: FID @ 300°C

2 3 4 5 6

7

8

910

12

13

14 24

25

26

11

15

19

18

17

16

20

21

2223

27

28

29

30

31

3233

34 35

36

38

3937

30

Column Selection

Page 65

Still Can’t Decide Which Column to Use?????

…Call Us!!!

TECHNICAL SUPPORT

Agilent 1-800-227-9770 #3, #3, #1

866-912-6701 (Daron)

E-mail: [email protected]