characteristics of heat transfer of nanofluids in engine cooling

22
CHARACTERISTICS OF HEAT TRANSFER OF CHARACTERISTICS OF HEAT TRANSFER OF NANOFLUIDS IN ENGINE COOLING NANOFLUIDS IN ENGINE COOLING ركات ح م ل ا د ي ر ب ت ى ف و ن ا ن ل ا ع ئا و م ل ارة ر ح للا ا ق ت ناص ا و خ ركات ح م ل ا د ي ر ب ت ى ف و ن ا ن ل ا ع ئا و م ل ارة ر ح للا ا ق ت ناص ا و خSubmitted By: ENG. HUSSEIN EL SAYED ENG. HUSSEIN EL SAYED ALI ALI [email protected] [email protected] Helwan University Helwan University Faculty of Engineering Faculty of Engineering Mechanical Power Eng. Mechanical Power Eng. Dep. Dep. Mattaria-Cairo Mattaria-Cairo : Under Supervision PROF. DR. ABDEL HAMID B. PROF. DR. ABDEL HAMID B. HELALI HELALI DR. MOHAMED H. SHEDID DR. MOHAMED H. SHEDID DR. HALA MAHMOUD ABDEL DR. HALA MAHMOUD ABDEL HAMID HAMID

Upload: faculty-og-engineering-helwan-university

Post on 29-Nov-2014

179 views

Category:

Engineering


11 download

DESCRIPTION

seminar for MSc in heat transfer engineering

TRANSCRIPT

  • 1. HHeellwwaann UUnniivveerrssiittyy FFaaccuullttyy ooff EEnnggiinneeeerriinngg MMeecchhaanniiccaall PPoowweerr EEnngg.. DDeepp.. MMaattttaarriiaa--CCaaiirroo CHARACTERISTICS OOFF HHEEAATT TTRRAANNSSFFEERR OOFF NNAANNOOFFLLUUIIDDSS IINN EENNGGIINNEE CCOOOOLLIINNGG Submitted By: EENNGG.. HHUUSSSSEEIINN EELL SSAAYYEEDD AALLII eenngghhssmm8866@@ggmmaaiill..ccoomm Under Supervision: PPRROOFF.. DDRR.. AABBDDEELL HHAAMMIIDD BB.. HHEELLAALLII DDRR.. MMOOHHAAMMEEDD HH.. SSHHEEDDIIDD DDRR.. HHAALLAA MMAAHHMMOOUUDD AABBDDEELL HHAAMMIIDD
  • 2. CCOONNTTEENNTTSS:: IINNTTRROODDUUCCTTIIOONN LLIITTEERRAATTUURREE SSUURRVVEEYY TTHHEE PPRREESSEENNTT WWOORRKK
  • 3. IINNTTRROODDUUCCTTIIOONN
  • 4. IINNTTRROODDUUCCTTIIOONN:: Cooling becomes one of the top technical challenges facing high-tech. industries such as microelectronics, transportation, manufacturing, metrology, and vehicles, etc. For reciprocating engine, under full load conditions, 1025% of the heat supplied by the fuel is lost through the walls, whereas under part load, the wall heat loss increases to reach a value higher than 30% at zero load which lead to thermal loading and mechanical stresses causing fatigue cracking [1]
  • 5. IINNTTRROODDUUCCTTIIOONN:: Localized Nucleate boiling in very high Temp-erature zones of engine cylinder head Cracks typically form when a cylinder head undergoes too much thermal stress Consequently, the wall metal temperature must be less than about 400 oC for cast iron and 300 oC for aluminum alloy [2]
  • 6. IINNTTRROODDUUCCTTIIOONN ((ccoonntt..)):: Conventional methods to increase heat flux rates: Traditional coolant fluids with chemical additives, Extended surfaces such as fins, and Increasing flow rates. These conventional methods have already utilized to their maximum potential due to their limitations. Nanofluids are promising to meet and enhance the challenges
  • 7. IINNTTRROODDUUCCTTIIOONN ((ccoonntt..)):: Nanofluids, coined by Dr. Choi 1995, are new class of nanotechnology-based heat transfer fluids that are engineered by stably suspending a small amount of particles, fibers, or tubes with dimensions on the order of 1-100 nm. Nanofluids (nano particles mixed with base fluid)
  • 8. Materials for Nanoparticles and Base Fluids: Nanoparticle materials include Oxide ceramics such as Al2O3, CuO Metal carbides such as SiC Nitrides such as AlN, SiN Metals such as Al, Cu Nonmetals such as Graphite, carbon nanotubes Layered such as Al + Al2O3, Cu + C PCM such as S/S Base fluids include Water Ethylene- or tri-ethylene-glycols and other coolants Oil and other lubricants Bio-fluids Polymer solutions Other common fluids IINNTTRROODDUUCCTTIIOONN ((ccoonntt..))::
  • 9. IINNTTRROODDUUCCTTIIOONN ((ccoonntt..)):: Comparison of the thermal conductivity of common liquids, polymers and solids [3]
  • 10. IINNTTRROODDUUCCTTIIOONN ((ccoonntt..)):: Nanofluid compared to conventional solid-liquid suspensions: High specific surface area, High dispersion stability , Reduced pumping power for equivalent heat transfer rate, Reduced particle clogging as compared to convention slurries , and Adjustable properties, including thermal conductivity and surface wettability, by varying particle concentration to suit different applications.
  • 11. Thermo-physical Properties of Nano-fluids: Effect of Particle VVoolluummee CCoonncceennttrraattiioonn [4] Knf / Kbf aass %% (Al2O3 in water) EEffffeecctt ooff TTeemmppeerraattuurree [4] Knf / Kbf aass TT (Al2O3 in water) IINNTTRROODDUUCCTTIIOONN ((ccoonntt..))::
  • 12. LLIITTEERRAATTUURREE RREEVVIIEEWW
  • 13. AAUUTTHHOORR CCOOOOLLAANNTT RREESSUULLTTSS AAbbddeell--HHaammiidd BB.. HHeellaallii 22000022 ((ccoonnvveennttiioonnaall mmeetthhoodd)) PPGG aanndd EEGG//DDII WWaatteerr hh bbyy 3399,, 8833%% aatt 1155,, 2200%% PPGG HHoossnnyy ZZ.. AAbboouu--ZZiiyyaann 22000033 ((ccoonnvveennttiioonnaall mmeetthhoodd)) DDiissttiilllleedd WWaatteerr tthhrroouugghh vvaarriiaabbllee TT--dduuccttss hh bbyy 2277%% aatt wwiiddtthh aassppeecctt rraattiioo bbyy 4433%% hh bbyy 6600%% aatt vv ffrroomm 11 ttoo 22 mm//ss hh bbyy 1122%% aatt TTbb ffrroomm 6600 ttoo 8800 CC DDeevvddaattttaa PP.. KKuullkkaarrnnii 22000088 AAll22OO33//EEGG--WWaatteerr 4455 nnmm 22,, 44,, 66%% vvooll.. HH..EExx.. eeffffiicciieennccyy bbyy 33..8855%% aatt 66%% vvooll.. LLIITTEERRAATTUURREE RREEVVIIEEWW::
  • 14. AAUUTTHHOORR CCOOOOLLAANNTT RREESSUULLTTSS MM.. EEfftteekkhhaa,, AA.. AAll22OO33//DDII WWaatteerr 4400 nnmm KKeesshhaavvaarrzz.. 22001100 00..11,, 00..55,, 11,, 22%% vvooll.. hh bbyy 11..55 aanndd 2233%% ffoorr 00..11 aanndd 22%% vvooll.. MM..MM.. HHeeyyhhaatt,, FF.. KKoowwssaarryy.. 22001122 AAll22OO33//EEGG--WWaatteerr 5500 nnmm 11,, 22,, 33%% vvooll.. WWaarrmm--uupp TTiimmee rreedduuccttiioonn 1100..22,, 1177..22,, 2299..33%% MM RRaajjaa,, RR VViijjaayyaann.. 22001133 AAll22OO33//DDII WWaatteerr 4400..33 nnmm 00..55,, 11,, 11..55,, 22%% vvooll.. UU bbyy 1111,, 1188,, 2233,, 2288%% MMoohhaammeedd HH.. SShheeddiidd.. 22001144 AAll22OO33//WWaatteerr 2255 nnmm 00..22,, 00..55,, 11,, 55%% vvooll.. hh bbyy 66..44%% aatt 11%% aanndd 3366..11%% aatt 55%% vvooll.. LLIITTEERRAATTUURREE RREEVVIIEEWW ((ccoonntt..))::
  • 15. TTHHEE PPRREESSEENNTT WWOORRKK
  • 16. PPRREESSEENNTT WWOORRKK:: The used nanofluid: Al2O3/DI Water (nanoparticles: gamma, 50 nm, 3600 kg/m3) Objectives: Investigation of the heat transfer enhancement for forced convection and sub-cooled boiling for the following parameters: 1. Bulk temperatures (50 : 70 C) 2. Flow velocities (1, 2, 2.5 m/s) Simulated to engine operating conditions 3. Heat flux, and 4. Nanofluid concentrations (0 : 3%)
  • 17. PPRREESSEENNTT WWOORRKK ((ccoonntt..)):: Expected results in the form of graphs:
  • 18. PPRREESSEENNTT WWOORRKK ((ccoonntt..)):: Proposed scheme of Test rig: 1. Supply tank 2. Main cooling liquid tank 3. Cooling coil 4. Immersion heater 5. Circulating pump 6. By-pass valve 7. Flow control valve 8. Flow meter 9. Test duct 10. Test specimen 11. Bulk liquid TCs 12. Pressure gage 13. Drain valve 14. Cooling water inlet
  • 19. PPRREESSEENNTT WWOORRKK ((ccoonntt..)):: Test Section:
  • 20. PPRREESSEENNTT WWOORRKK ((ccoonntt..)):: Details of section A-A:
  • 21. RReeffeerreenncceess:: [1] Hosny Z. Abou-Ziyan. Forced convection and sub-cooled flow boiling heat transfer in asymmetrically heated ducts of T-section. Elsevier Science; 2003 [2] Helali AB. Evaluation of propylene glycol and ethylene glycol engine coolant additives under forced convection and boiling conditions. Res Eng J, Helwan Univ 2002. [3] Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer appli-cations. Particuology 2009;7:14150