chapter 2. poisson processes - 國立臺灣大學b92104/poisson.pdfchapter 2. poisson processes...

46
Chapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

Upload: others

Post on 30-Jan-2020

29 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Chapter 2. Poisson Processes

Prof. Ai-Chun PangGraduate Institute of Networking and Multimedia,

Department of Computer Science and Information Engineering,National Taiwan University, Taiwan

Page 2: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Outline

• Introduction to Poisson Processes

• Properties of Poisson processes

– Inter-arrival time distribution

– Waiting time distribution

– Superposition and decomposition

• Non-homogeneous Poisson processes (relaxing stationary)

• Compound Poisson processes (relaxing single arrival)

• Modulated Poisson processes (relaxing independent)

• Poisson Arrival See Average (PASTA)

Prof. Ai-Chun Pang, NTU 1

Page 3: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Introduction

t

1~x

2~x

3~x

0~S 1

~S 2

~S 3

~S 4

~S

)(~ tn Inter-arrivaltime

arrival epoch

(i) nth arrival epoch Sn isSn = x1 + x2 + . . . + xn =

∑ni=1 xi

S0 = 0(ii) Number of arrivals at time t is: n(t). Notice that:

{n(t) ≥ n} iff⇔ {Sn ≤ t}, {n(t) = n} iff⇔ {Sn ≤ t and Sn+1 > t}Prof. Ai-Chun Pang, NTU 2

Page 4: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Introduction

Arrival Process: X = {xi, i = 1, 2, . . .}; xi’s can be any

S = {Si, i = 0, 1, 2, . . .}; Si’s can be any

N = {n(t), t ≥ 0};−→ called arrival process

Renewal Process: X = {xi, i = 1, 2, . . .}; xi’s are i.i.d.

S = {Si, i = 0, 1, 2, . . .}; Si’s are general distributed

N = {n(t), t ≥ 0};−→ called renewal process

Poisson Process: X = {xi, i = 1, 2, . . .}; xi’s are iid exponential distributed

S = {Si, i = 0, 1, 2, . . .}; Si’s are Erlang distributed

N = {n(t), t ≥ 0};−→ called Poisson process

Prof. Ai-Chun Pang, NTU 3

Page 5: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Counting Processes

• A stochastic process N = {n(t), t ≥ 0} is said to be a counting processif n(t) represents the total number of “events” that have occurred upto time t.

• From the definition we see that for a counting process n(t) mustsatisfy:

1. n(t) ≥ 0.

2. n(t) is integer valued.

3. If s < t, then n(s) ≤ n(t).

4. For s < t, n(t) − n(s) equals the number of events that haveoccurred in the interval (s, t].

Prof. Ai-Chun Pang, NTU 4

Page 6: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Definition 1: Poisson Processes

The counting process N = {n(t), t ≥ 0} is a Poisson process with rate λ

(λ > 0), if:

1. n(0) = 0

2. Independent increments relaxed ⇒ Modulated Poisson Process

P [n(t) − n(s) = k1|n(r) = k2, r ≤ s < t] = P [n(t) − n(s) = k1]

3. Stationary increments relaxed ⇒ Non-homogeneous Poisson Process

P [n(t + s) − n(t) = k] = P [n(l + s) − n(l) = k]

4. Single arrival relaxed ⇒ Compound Poisson Process

P [n(h) = 1] = λh + o(h)

P [n(h) ≥ 2] = o(h)

Prof. Ai-Chun Pang, NTU 5

Page 7: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Definition 2: Poisson Processes

The counting process N = {n(t), t ≥ 0} is a Poisson process with rate λ

(λ > 0), if:

1. n(0) = 0

2. Independent increments

3. The number of events in any interval of length t is Poisson distributedwith mean λt. That is, for all s, t ≥ 0

P [n(t + s) − n(s) = n] = e−λt (λt)n

n!, n = 0, 1, . . .

Prof. Ai-Chun Pang, NTU 6

Page 8: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Theorem: Definitions 1 and 2 are equivalent.

Proof. We show that Definition 1 implies Definition 2. To start, fix u ≥ 0and let

g(t) = E[e−un(t)]

We derive a differential equation for g(t) as follows:

g(t + h) = E[e−un(t+h)]

= E{e−un(t)e−u[n(t+h)−n(t)]

}= E

[e−un(t)

]E{e−u[n(t+h)−n(t)]

}by independent increments

= g(t)E[e−un(h)

]by stationary increments (1)

Prof. Ai-Chun Pang, NTU 7

Page 9: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Theorem: Definitions 1 and 2 are equivalent.

Conditioning on whether n(t) = 0 or n(t) = 1 or n(t) ≥ 2 yields

E[e−un(h)

]= 1 − λh + o(h) + e−u(λh + o(h)) + o(h)

= 1 − λh + e−uλh + o(h) (2)

From (1) and (2), we obtain that

g(t + h) = g(t)(1 − λh + e−uλh) + o(h)

implying that

g(t + h) − g(t)h

= g(t)λ(e−u − 1) +o(h)h

Prof. Ai-Chun Pang, NTU 8

Page 10: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Theorem: Definitions 1 and 2 are equivalent.

Letting h → 0 givesg′(t) = g(t)λ(e−u − 1)

or, equivalently,g′(t)g(t)

= λ(e−u − 1)

Integrating, and using g(0) = 1, shows that

log(g(t)) = λt(e−u − 1)

or

g(t) = eλt(e−u−1) → the Laplace transform of a Poisson r. v.

Since g(t) is also the Laplace transform of n(t), n(t) is a Poisson r. v.

Prof. Ai-Chun Pang, NTU 9

Page 11: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Theorem: Definitions 1 and 2 are equivalent

Let Pn(t) = P [n(t) = n].We derive a differential equation for P0(t) in the following manner:

P0(t + h) = P [n(t + h) = 0]

= P [n(t) = 0, n(t + h) − n(t) = 0]

= P [n(t) = 0]P [n(t + h) − n(t) = 0]

= P0(t)[1 − λh + 0(h)]

HenceP0(t + h) − P0(t)

h= −λP0(t) +

o(h)h

Letting h → 0 yieldsP ′

0(t) = −λP0(t)

Since P0(0) = 1, thenP0(t) = e−λt

Prof. Ai-Chun Pang, NTU 10

Page 12: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Theorem: Definitions 1 and 2 are equivalent

Similarly, for n ≥ 1

Pn(t + h) = P [n(t + h) = n]

= P [n(t) = n, n(t + h) − n(t) = 0]

+P [n(t) = n − 1, n(t + h) − n(t) = 1]

+P [n(t + h) = n, n(t + h) − n(t) ≥ 2]

= Pn(t)P0(h) + Pn−1(t)P1(h) + o(h)

= (1 − λh)Pn(t) + λhPn−1(t) + o(h)

ThusPn(t + h) − Pn(t)

h= −λPn(t) + λPn−1(t) +

o(h)h

Letting h → 0,P ′

n(t) = −λPn(t) + λPn−1(t)

Prof. Ai-Chun Pang, NTU 11

Page 13: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

The Inter-Arrival Time Distribution

Theorem. Poisson Processes have exponential inter-arrival timedistribution, i.e., {xn, n = 1, 2, . . .} are i.i.d and exponentiallydistributed with parameter λ (i.e., mean inter-arrival time = 1/λ).

Proof.

x1 : P (x1 > t) = P (n(t) = 0) =e−λt(λt)0

0!= e−λt

··· x1 ∼ e(t;λ)

x2 : P (x2 > t|x1 = s)

= P{0 arrivals in (s, s + t]|x1 = s}= P{0 arrivals in (s, s + t]}(by independent increment)

= P{0 arrivals in (0, t]}(by stationary increment)

= e−λt ··· x2 is independent of x1 and x2 ∼ exp(t;λ).

⇒ The procedure repeats for the rest of xi’s.Prof. Ai-Chun Pang, NTU 12

Page 14: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

The Arrival Time Distribution of the nth Event

Theorem. The arrival time of the nth event, Sn (also called the waitingtime until the nth event), is Erlang distributed with parameter (n, λ).

Proof. Method 1 :

··· P [Sn ≤ t] = P [n(t) ≥ n] =∞∑

k=n

e−λt(λt)k

k!

··· fSn(t) =

λe−λt(λt)n−1

(n − 1)!(exercise)

Method 2 :

fSn(t)dt = dFSn

(t) = P [t < Sn < t + dt]

= P{n − 1 arrivals in (0, t] and 1 arrival in (t, t + dt)} + o(dt)

= P [n(t) = n − 1 and 1 arrival in (t, t + dt)] + o(dt)

= P [n(t) = n − 1]P [1 arrival in (t, t + dt)] + o(dt)(why?)

Prof. Ai-Chun Pang, NTU 13

Page 15: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

The Arrival Time Distribution of the nth Event

=e−λt(λt)n−1

(n − 1)!λdt + o(dt)

··· limdt→0

fSn(t)dt

dt= fSn

(t) =λe−λt(λt)n−1

(n − 1)!

Prof. Ai-Chun Pang, NTU 14

Page 16: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Conditional Distribution of the Arrival Times

Theorem. Given that n(t) = n, the n arrival times S1, S2, . . . , Sn havethe same distribution as the order statistics corresponding to n i.i.d.uniformly distributed random variables from (0, t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Order Statistics. Let x1, x2, . . . , xn be n i.i.d. continuous randomvariables having common pdf f . Define x(k) as the kth smallest valueamong all xi’s, i.e., x(1) ≤ x(2) ≤ x(3) ≤ . . . ≤ x(n), then x(1), . . . , x(n)

are known as the “order statistics” corresponding to random variablesx1, . . . , xn. We have that the joint pdf of x(1), x(2), . . . , x(n) is

fx(1),x(2),...,x(n)(x1, x2, . . . , xn) = n!f(x1)f(x2) . . . f(xn),

where x1 < x2 < . . . < xn (check the textbook [Ross]).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Prof. Ai-Chun Pang, NTU 15

Page 17: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Conditional Distribution of the Arrival Times

Proof. Let 0 < t1 < t2 < . . . < tn+1 = t and let hi be small enough so thatti + hi < ti+1 , i = 1, . . . , n.

··· P [ti < Si < ti + hi, i = 1, . . . , n|n(t) = n]

=

P

⎛⎝ exactly one arrival in each [ti, ti + hi]

i = 1, 2, . . . , n, and no arrival elsewhere in [0, t]

⎞⎠

P [n(t) = n]

=(e−λh1λh1)(e−λh2λh2) . . . (e−λhnλhn)(e−λ(t−h1−h2...−hn))

e−λt(λt)n/n!

=n!(h1h2h3 . . . hn)

tn

···P [ti < Si < ti + hi, i = 1, . . . , n|n(t) = n]

h1h2 . . . hn=

n!tn

Prof. Ai-Chun Pang, NTU 16

Page 18: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Conditional Distribution of the Arrival Times

Taking limhi→0,i=1,...,n

( ), then

fS1,S2,...,Sn|n(t)(t1, t2, . . . , tn|n) =n!tn

, 0 < t1 < t2 < . . . < tn.

Prof. Ai-Chun Pang, NTU 17

Page 19: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Conditional Distribution of the Arrival Times

Example (see Ref [Ross], Ex. 2.3(A) p.68). Suppose that travellers arriveat a train depot in accordance with a Poisson process with rate λ. Ifthe train departs at time t, what is the expected sum of thewaiting times of travellers arriving in (0, t)? That is, E[

∑n(t)i=1 (t−Si)] =?

t. . . . . . . . . .

1~S 2

~S 3

~S )(~

~tnS

Prof. Ai-Chun Pang, NTU 18

Page 20: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Conditional Distribution of the Arrival Times

Answer. Conditioning on n(t) = n yields

E[n(t)∑i=1

(t − Si)|n(t) = n] = nt − E[n∑

i=1

Si]

= nt − E[n∑

i=1

u(i)] (by the theorem)

= nt − E[n∑

i=1

ui] (···n∑

i=1

u(i) =n∑

i=1

ui)

= nt − t

2· n =

nt

2(··· E[ui] =

t

2)

To find E[n(t)∑i=1

(t − Si)], we should take another expectation

··· E[n(t)∑i=1

(t − Si)] =t

2· E[n(t)]︸ ︷︷ ︸

=λt

=λt2

2

Prof. Ai-Chun Pang, NTU 19

Page 21: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Superposition of Independent Poisson Processes

Theorem. Superposition of independent Poisson Processes

(λi, i = 1, . . . , N), is also a Poisson process with rateN∑1

λi.

Poisson

Poisson

Poisson

Poisson

1λ2λ

Nλrate = ∑

N

1λi

<Homework> Prove the theorem (note that a Poisson process mustsatisfy Definitions 1 or 2).

Prof. Ai-Chun Pang, NTU 20

Page 22: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

Theorem.

• Given a Poisson process N = {n(t), t ≥ 0};• If ni(t) represents the number of type-i events that occur by time

t, i = 1, 2;

• Arrival occurring at time s is a type-1 arrival with probability p(s),and type-2 arrival with probability 1 − p(s)

⇓then

• n1, n2 are independent,

• n1(t) ∼ P (k;λtp), and

• n2(t) ∼ P (k;λt(1 − p)), where p =1t

∫ t

0p(s)ds

Prof. Ai-Chun Pang, NTU 21

Page 23: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

Poisson∫ ))(;( dsspk λPoisson

∫ − ))](1[;( dsspk λPoisson

λp(s)

1-p(s)

special case: If p(s) = p is constant, then

PoissonpλPoisson rate

)1( p−λPoisson rate

λp

1-p

Prof. Ai-Chun Pang, NTU 22

Page 24: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

Proof. It is to prove that, for fixed time t,

P [n1(t) = n, n2(t) = m] = P [n1(t) = n]P [n2(t) = m]

=e−λpt(λpt)n

n!· e−λ(1−p)t[λ(1 − p)t]m

m!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P [n1(t) = n, n2(t) = m]

=∞∑

k=0

P [n1(t) = n, n2(t) = m|n1(t) + n2(t) = k] · P [n1(t) + n2(t) = k]

= P [n1(t) = n, n2(t) = m|n1(t) + n2(t) = n + m] · P [n1(t) + n2(t) = n + m]

Prof. Ai-Chun Pang, NTU 23

Page 25: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

• From the “condition distribution of the arrival times”, any eventoccurs at some time that is uniformly distributed, and is independentof other events.

• Consider that only one arrival occurs in the interval [0, t]:

P [type - 1 arrival|n(t) = 1]

=∫ t

0P [type - 1 arrival|arrival time S1 = s, n(t) = 1]

×fS1|n(t)(s|n(t) = 1)ds

=∫ t

0P (s) · 1

tds =

1t

∫ t

0P (s)ds = p

Prof. Ai-Chun Pang, NTU 24

Page 26: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

··· P [n1(t) = n, n2(t) = m]

= P [n1(t) = n, n2(t) = m|n1(t) + n2(t) = n + m] · P [n1(t) + n2(t) = n + m]

=

⎛⎝ n + m

n

⎞⎠ pn(1 − p)m · e−λt(λt)n+m

(n + m)!

=(n + m)!

n!m!pn(1 − p)m · e−λt(λt)n+m

(n + m)!

=e−λpt(λpt)n

n!· e−λ(1−p)t[λ(1 − p)t]m

m!

Prof. Ai-Chun Pang, NTU 25

Page 27: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

Example (An Infinite Server Queue, textbook [Ross]).

Poisson λ departure

G

• Gs(t) = P (S ≤ t), where S = service time

• Gs(t) is independent of each other and of the arrival process

• n1(t): the number of customers which have left before t;

• n2(t): the number of customers which are still in the system attime t;

⇒ n1(t) ∼? and n2(t) ∼?

Prof. Ai-Chun Pang, NTU 26

Page 28: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

Answer.n1(t): the number of type-1 customersn2(t): the number of type-2 customers

type-1: P (s) = P (finish before t)

= P (S ≤ t − s) = Gs(t − s)

type-2: 1 − P (s) = Gs(t − s)

··· n1(t) ∼ P

(k;λt · 1

t

∫ t

0Gs(t − s)ds

)

n2(t) ∼ P

(k;λt · 1

t

∫ t

0Gs(t − s)ds

)

Prof. Ai-Chun Pang, NTU 27

Page 29: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Decomposition of a Poisson Process

··· E[n1(t)] = λt · 1t

∫ t

0G(t − s)ds

= λ

∫ 0

tG(y)(−dy)

t − s = y

s = t − y

= λ

∫ t

0G(y)dy

As t → ∞, we have

limt→∞E[n2(t)] = λ

∫ t

0G(y)dy = λE[S] (Little’s formula)

Prof. Ai-Chun Pang, NTU 28

Page 30: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Non-homogeneous Poisson Processes

• The counting process N = {n(t), t ≥ 0} is said to be a non-stationaryor non-homogeneous Poisson Process with time-varying intensityfunction λ(t), t ≥ 0, if:

1. n(0) = 0

2. N has independent increments

3. P [n(t + h) − n(t) ≥ 2] = o(h)

4. P [n(t + h) − n(t) = 1] = λ(t) · h + o(h)

• Define “integrated intensity function” m(t) =∫ t

0λ(t′)dt′.

Theorem.

P [n(t + s) − n(t) = n] =e−[m(t+s)−m(t)][m(t + s) − m(t)]n

n!Proof. < Homework >.

Prof. Ai-Chun Pang, NTU 29

Page 31: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Non-homogeneous Poisson Processes

Example. The “output process” of the M/G/∞ queue is anon-homogeneous Poisson process having intensity functionλ(t) = λG(t), where G is the service distribution.

Hint. Let D(s, s + r) denote the number of service completions in theinterval (s, s + r] in (0, t]. If we can show that

• D(s, s + r) follows a Poisson distribution with mean λ∫ s+rs G(y)dy,

and

• the numbers of service completions in disjoint intervals areindependent,

then we are finished by definition of a non-homogeneous Poissonprocess.

Prof. Ai-Chun Pang, NTU 30

Page 32: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Non-homogeneous Poisson Processes

Answer.

• An arrival at time y is called a type-1 arrival if its servicecompletion occurs in (s, s + r].

• Consider three cases to find the probability P (y) that an arrival attime y is a type-1 arrival:

s s+r t

Case 1 Case 2 Case 3

y y y

– Case 1: y ≤ s.

P (y) = P{s − y < S < s + r − y} = G(s + r − y) − G(s − y)

– Case 2: s < y ≤ s + r.

P (y) = P{S < s + r − y} = G(s + r − y)

Prof. Ai-Chun Pang, NTU 31

Page 33: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Non-homogeneous Poisson Processes

– Case 3: s + r < y ≤ t.P (y) = 0

• Based on the decomposition property of a Poisson process, weconclude that D(s, s + r) follows a Poisson distribution with meanλpt, where p = (1/t)

∫ t0 P (y)dy.∫ t

0P (y)dy =

∫ s

0[G(s + r − y) − G(s − y)]dy +

∫ s+r

sG(s + r − y)dy

+∫ t

s+r(0)dy

=∫ s+r

0G(s + r − y)dy −

∫ s

0G(s − y)dy

=∫ s+r

0G(z)dz −

∫ s

0G(z)dz =

∫ s+r

sG(z)dz

Prof. Ai-Chun Pang, NTU 32

Page 34: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Non-homogeneous Poisson Processes

• Because of

– the independent increment assumption of the Poisson arrivalprocess, and

– the fact that there are always servers available for arrivals,

⇒ the departure process has independent increments

Prof. Ai-Chun Pang, NTU 33

Page 35: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Compound Poisson Processes

• A stochastic process {x(t), t ≥ 0} is said to be a compound Poissonprocess if

– it can be represented as

x(t) =n(t)∑i=1

yi, t ≥ 0

– {n(t), t ≥ 0} is a Poisson process

– {yi, i ≥ 1} is a family of independent and identically distributedrandom variables which are also independent of {n(t), t ≥ 0}

• The random variable x(t) is said to be a compound Poisson randomvariable.

• E[x(t)] = λtE[yi] and V ar[x(t)] = λtE[y2i ].

Prof. Ai-Chun Pang, NTU 34

Page 36: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Compound Poisson Processes

• Example (Batch Arrival Process). Consider a parallel-processingsystem where each job arrival consists of a possibly random numberof tasks. Then we can model the arrival process as a compoundPoisson process, which is also called a batch arrival process.

• Let yi be a random variable that denotes the number of taskscomprising a job. We derive the probability generating functionPx(t)(z) as follows:

Px(t)(z) = E[zx(t)

]= E

[E[zx(t)|n(t)

]]= E

[E[zy1+···+yn(t) |n(t)

]]= E

[E[zy1+···+yn(t)

]](by independence of n(t) and {yi})

= E[E[zy1

]· · ·E

[zyn(t)

]](by independence of y1, · · · , yn(t))

= E[(Py(z))n(t)

]= Pn(t) (Py(z))

Prof. Ai-Chun Pang, NTU 35

Page 37: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Modulated Poisson Processes

• Assume that there are two states, 0 and 1, for a “modulating process.”

0 1

• When the state of the modulating process equals 0 then the arrive rateof customers is given by λ0, and when it equals 1 then the arrival rateis λ1.

• The residence time in a particular modulating state is exponentiallydistributed with parameter μ and, after expiration of this time, themodulating process changes state.

• The initial state of the modulating process is randomly selected and isequally likely to be state 0 or 1.

Prof. Ai-Chun Pang, NTU 36

Page 38: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Modulated Poisson Processes

• For a given period of time (0, t), let Υ be a random variable thatindicates the total amount of time that the modulating process hasbeen in state 0. Let x(t) be the number of arrivals in (0, t).

• Then, given Υ, the value of x(t) is distributed as a non-homogeneousPoisson process and thus

P [x(t) = n|Υ = τ ] =(λ0τ + λ1(t − τ))ne−(λ0τ+λ1(t−τ))

n!

• As μ → 0, the probability that the modulating process makes notransitions within t seconds converges to 1, and we expect for this casethat

P [x(t) = n] =12

{(λ0t)ne−λ0t

n!+

(λ1t)ne−λ1t

n!

}

Prof. Ai-Chun Pang, NTU 37

Page 39: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Modulated Poisson Processes

• As μ → ∞, then the modulating process makes an infinite number oftransitions within t seconds, and we expect for this case that

P [x(t) = n] =(βt)ne−βt

n!, where β =

λ0 + λ1

2

• Example (Modeling Voice).

– A basic feature of speech is that it comprises an alternation ofsilent periods and non-silent periods.

– The arrival rate of packets during a talk spurt period is Poissonwith rate λ1 and silent periods produce a Poisson rate with λ0 ≈ 0.

– The duration of times for talk and silent periods are exponentiallydistributed with parameters μ1 and μ0, respectively.

⇒ The model of the arrival stream of packets is given by a modulatedPoisson process.

Prof. Ai-Chun Pang, NTU 38

Page 40: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Poisson Arrivals See Time Averages (PASTA)

• PASTA says: as t → ∞Fraction of arrivals who see the system in a given state

upon arrival (arrival average)

= Fraction of time the system is in a given state (time average)

= The system is in the given state at any random time

after being steady

• Counter-example (textbook [Kao]: Example 2.7.1)

0 1 2 3 4 51 1

1/2 1/2

service time = 1/2inter-arrival time = 1

Prof. Ai-Chun Pang, NTU 39

Page 41: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Poisson Arrivals See Time Averages (PASTA)

– Arrival average that an arrival will see an idle system = 1

– Time average of system being idle = 1/2

• Mathematically,

– Let X = {x(t), t ≥ 0} be a stochastic process with state space S,and B ⊂ S

– Define an indicator random variable

u(t) =

⎧⎨⎩ 1, if x(t) ∈ B

0, otherwise

– Let N = {n(t), t ≥ 0} be a Poisson process with rate λ denoting thearrival process

then,

Prof. Ai-Chun Pang, NTU 40

Page 42: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Poisson Arrivals See Time Averages (PASTA)

limt→∞

∫ t

0u(s)dn(s)

n(t)= lim

t→∞

∫ t

0u(s)ds

t

(arrival average) (time average)

• Condition – For PASTA to hold, we need the lack of anticipationassumption (LAA): for each t ≥ 0,

– the arrival process {n(t + u) − n(t), u ≥ 0} is independent of{x(s), 0 ≤ s ≤ t} and {n(s), 0 ≤ s ≤ t}.

• Application:

– To find the waiting time distribution of any arriving customer

– Given: P[system is idle] = 1 − ρ; P[system is busy] = ρ

Prof. Ai-Chun Pang, NTU 41

Page 43: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Poisson Arrivals See Time Averages (PASTA)

Poisson

Poisson

Case 1: system is idle

Case 2: system is busy

⇒ P (w ≤ t) = P (w ≤ t|idle) · P (idle upon arrival)

+ P (w ≤ t|busy) · P (busy upon arrival)

Prof. Ai-Chun Pang, NTU 42

Page 44: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Memoryless Property of the Exponential Distribution

• A random variable x is said to be without memory, or memoryless, if

P [x > s + t|x > t] = P [x > s] for all s, t ≥ 0 (3)

• The condition in Equation (3) is equivalent to

P [x > s + t, x > t]P [x > t]

= P [x > s]

orP [x > s + t] = P [x > s]P [x > t] (4)

• Since Equation (4) is satisfied when x is exponentially distributed (fore−λ(s+t) = e−λse−λt), it follows that exponential random variable arememoryless.

• Not only is the exponential distribution “memoryless,” but it is theunique continuous distribution possessing this property.

Prof. Ai-Chun Pang, NTU 43

Page 45: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Comparison of Two Exponential Random Variables

Suppose that x1 and x2 are independent exponential random variableswith respective means 1/λ1 and 1/λ2. What is P [x1 < x2]?

P [x1 < x2] =∫ ∞

0P [x1 < x2|x1 = x]λ1e

−λ1xdx

=∫ ∞

0P [x < x2]λ1e

−λ1xdx

=∫ ∞

0e−λ2xλ1e

−λ1xdx

=∫ ∞

0λ1e

−(λ1+λ2)xdx

=λ1

λ1 + λ2

Prof. Ai-Chun Pang, NTU 44

Page 46: Chapter 2. Poisson Processes - 國立臺灣大學b92104/Poisson.pdfChapter 2. Poisson Processes Prof. Ai-Chun Pang Graduate Institute of Networking and Multimedia, Department of Computer

Minimum of Exponential Random Variables

Suppose that x1, x2, · · · , xn are independent exponential random variables,with xi having rate μi, i = 1, · · · , n. It turns out that the smallest of the xi

is exponential with a rate equal to the sum of the μi.

P [min(x1, x2, · · · , xn) > x] = P [xi > x for each i = 1, · · · , n]

=n∏

i=1

P [xi > x] (by independence)

=n∏

i=1

e−μix

= exp

{−(

n∑i=1

μi

)x

}

How about max(x1, x2, · · · , xn)? (exercise)

Prof. Ai-Chun Pang, NTU 45