ch5 z transform

29
1 DIGITAL SIGNAL PROCESSING Chapter 5: Z-TRANSFORM AND ITS APPLICATIONS TO THE ANALYSIS OF LTI SYSTEMS Reference: S J.Orfanidis, ”Introduction to Signal Processing”, Prentice –Hall , 1996,ISBN 0-13-209172-0 M. D. Lutovac, D. V. Tošić, B. L. Evans, “Filter Design for Signal Processing Using MATLAB and Mathematica”, Prentice Hall, 2001 Lectured by Assoc. Prof. Dr. Thuong Le-Tien National Distinguished Lecturer Tel: 08-38654184; 0903 787 989 Email: [email protected] , [email protected] Dated on Oct 2013

Upload: long-le-quang

Post on 28-May-2017

306 views

Category:

Documents


4 download

TRANSCRIPT

1

DIGITAL SIGNAL PROCESSING

Chapter 5: Z-TRANSFORM AND ITS APPLICATIONS TO THE ANALYSIS OF LTI SYSTEMS

Reference: S J.Orfanidis, ”Introduction to Signal Processing”, Prentice –Hall , 1996,ISBN 0-13-209172-0M. D. Lutovac, D. V. Tošić, B. L. Evans, “Filter Design for Signal Processing Using MATLAB and Mathematica”, Prentice Hall, 2001

Lectured by Assoc. Prof. Dr. Thuong Le-TienNational Distinguished LecturerTel: 08-38654184; 0903 787 989

Email: [email protected], [email protected]

Dated on Oct 2013

2

What the chapter can be presented.

1. Basis properties

2. Region of Convergence (ROC)

3. Causality and Stability

4. Frequency spectrum

5. Inverse Z-Transform

3

1. Basis Properties

Z-transform is basically as a tool for the analysis, Design and implementation of digital filters. Z transform of a discrete time signal x(n)

X(z) = … +x(-2)z2 + x(-1)z + x(0) + x(1)z-1 + x(2)z-2 + …

if x(n) is causal, only negative power z-n, n 0 appear in the expansion.

n

n

nznxzX

4

Z-transform of the transfer function h(n):

Example:

(a) h = {h0, h1, h2, h3} = {2,3,5,2}

(b) h = {h0, h1, h2, h3, h4} = {1,0,0,0,-1}

Their Z-transform

a) H(z)= h0 + h1z-1 + h2 z-2 + h3 z-3

= 2 + 3z-1 + 5z-2 + 2z-3

b) H(z)= h0 + h1z-1 + h2 z-2 + h3 z-3 + h4 z-4 =

1 - z-4

n

n

nznhzH

5

Z-transform has the three most important properties that facilitate the analysis and synthesis of linear systems

•* Linearity property

•* Delay property

•* Convolution property

zXazXanxanxa 2211Z

2211

zXzDnxzXnx DZZ

zHzXzYnx*nhny

6

Example: Two filters of the above filters can be written in the following closed forms

(a) h(n) = 2(n) + 3(n-1) + 5(n-2) + 2(n-3)

(b) h(n) = (n) - (n-4)

Their transfer functions can be obtained using the linearity and delay properties.

z-transfrom of (n) is unity.

1z0znn 0n

n

nZ

,...1.3

,1.2

,1.1

33

22

11

zzn

zzn

zzn

Z

Z

Z

7

Example: using the unit step identity u(n)-u(n-1)=(n), valid for all n, and the z-transform properties, determine the z-transforms of two signals:

(a) x(n) = u(n) (causal) (b) x(n) = -u(-n-1) (anticausal)

Solve:

(a) x(n) - x(n-1) = u(n) - u(n-1) = (n)

1

1Z

z1

1zX1zXzzXn1nxnx

321Z z2z5z323n22n51n3n2

4Z z1zH4nnnh

(b) x(n)-x(n-1)=-u(-n-1)+u(-(n-1)-1)= u(-n)-u(-n-1)=(-n)

1

1Z

z1

1zX1zXzzXn1nxnx

7

8

Example: determine the output by carrying out the convolution operation as multiplication in z-domain

h={1,2,-1,1}, x={1,1,2,1,2,2,1,1} Solve

Z-transformH(z)= 1 + 2z-1 - z-2 + z-3

X(z)= 1 + z-1 + 2z-2 + z-3 + 2z-4 + 2z-5 + z-6 + z-7

Y(z) = X(z)H(z)Y(z)= 1 + 3z-1 + 3z-2 + 5z-3 + 3z-4 + 7z-5 + 4z-6 + 3z-7 + 3z-8 +z-10

The coefficients of the powers of z are the convolution output samples:

y=h*x={1, 3, 3, 5, 3, 7, 4, 3, 3, 3, 0, 1}

9

2. Region of Convergence (ROC)ROC of X(z) is defined to be that subset of the complex z-plane C for which the series of the

formula converges, that is

The ROC is an important concept in many respects: It allows the unique inversion of the Z-transform and provides convenient characterizations of the causality and stability properties of a signal or system.

n

n

nznxzXCzROC

10

Example, a causal signal:

x(n)=(0.5)nu(n)={1,0.5,0.52,…}

Using the infinite geometric series formula

Which is valid for x < 1 and diverges otherwise

The convergence of the geometric series requires:

Then, ROC={zCz>0.5} outside the circle of radius 0.5

x1

1xz5.0zX

0n

n

0n

n1

5.0z

z

z5.01

1zX

1

5.0z1z5.0x 1

x1

1x...xxx1

0n

n32

11

Example for an anticausal signal x(n)=-(0.5)nu(-n-1)

Convergence with x < 1 and diverges otherwise

Let x=0.5z-1,

The same result as the causal case except the ROC

x1

xx...xxx

1m

m32

1m1

1m

1m

m1

z5.01

z5.0

x1

xxz5.0zX

1z5.01

1

5.0z

zzX

1m

m11

n

n11

n

nnz5.0z5.0z5.0zX

12

5.0z1z5.0x 1

5.0zCzROC

5.0z :ROC where

,5.01

115.0

5.0z :ROC where

,5.01

15.0

1

1

znu

znu

Zn

Zn

az :ROC where,az1

11nua

az :ROC where,az1

1nua

1

Zn

1

Zn

To summarize, the z-transform

Generally

13

Example:

1z where,1

111

1z where,1

11

1z where,1

11

1z where ,1

1

1

1

1

1

znu

znu

znu

znu

Zn

Zn

Z

Z

14

15

Example: determine z-transforms and ROCs

,...}0,1,0,1,0,1,0,1,0,1,0,1{2

ncos x(n)6.

u(n)(-0.8)u(n)(0.8)2

1 x(n)5.

,...0,1,0,1,0,1,0,1u(n)1u(n)2

1 x(n)4.

10)-u(n -u(n)(-0.8) x(n)3.

u(n)(-0.8) x(n)2.

10)-u(n x(n)1.

nn

n

n

n

nu

16

Solve (1) Delay property: ROC z > 1.

(2)

(3) x(n) = (-0.8)nu(n) - (-0.8)10(-0.8)n -10 u(n-10))

Using the finite geometric series

1

1010

1

1010

1 z8.01

z8.01

z8.01

z8.0

z8.01

1zX

x1

x1x...xx1

N1N2

1

1010

z1

zzUzzX

8.08.0z :ROC with ,8.01

11

z

zX

1

1010

1

101099221

z8.01

z8.01

az1

za1za...zaaz1zX

17

(4) ROC z > 1.

(5)

ROC z>0.8

(6)

211 z64.01

1

z8.01

1

z8.01

1

2

1zX

)n(ua)n(ua2

1)n(ue)n(ue

2

1nu

2

ncos)n(x n*n2/nj2/nj

211 1

1

1

1

1

1

2

1

zzzzX

a=e j/2 =j and a*=e -j/2 =-j.

211 z1

1

jz1

1

jz1

1

2

1zX

17

18

3. Causality and Stability*Causal case:

The common ROC of all terms:

•Anticausal case

•ROC

...1nupA1nupAnx n22

n11

21 pz,pz

...nupAnupAnx n22

n11

...zp1

A

zp1

AzX

12

21

1

1

21 pz,pz ii

pmaxz

ii

pz min

19

Example:Find the Z-Transform and possible convergence region

x(n) = (0.8)nu(n) + (1.25)nu(n)

A system is said to be stable if its ROC contains the unit circle

20

4 Frequency SpectrumDiscrete time Fourier transform - DTFT

The evaluation of the z-transform on the unit circle:

Frequency response H() of a linear system h(n) with transfer function H(z):

n

n

njenxX

0jez

XenxznxzX

n

n

njn

n

n

ez j

n

n

njenhH

21

Digital frequency:

Nyquist interval [-fs/2, fs/2] - < <

Fourier spectrum of signal x(nT) periodic replication of the original analog spectrum at multiples of fs.

jez

zHH

sf

f2

n

f/jfn2^

senTxfX

22

Example

deX2

1nx nj

n

22dX

2

1nx

dfefXf

1nx

S

S

S

f

f

f/jfn2

S

n- ,enx nj 0

m

0 m22X

INVERSE DTDT

Parseval

23

Zeros and Poles of X(z) or H(z), on the z-plane, effect on the spectrum of X() or H().

Example, consider a function has one pole

z = p1 and one zero z = z1.

1

11

1

11

pz

zz

zp1

zz1zX

1

j

1j

1j

1j

pe

zeX

pe

zeX

24

GEOMETRIC INTERPRETATION OF FREQUENCY SPECTRUM

Example: A causal complex sinusoid

25

1-M

M1-

2

21-

1

1

1-M

1-2

1-1

zp-1

A...

zp-1

A

zp-1

A

)zp-(1 )zp-(1 )zp-(1

zN

zD

zNzX

1

1

pzij

1j

pz1

iizp1

zNzXzp1A

Inverse Z-transform

26

11

1

21

1

z25.11z8.01

z05.22

zz05.21

z05.22zX

1

21

121

1

z25.11

A

z8.01

A

zz05.21

z05.22zX

1z8.01

z05.22zXz25.11A

18.0/25.11

8.0/05.22

z25.11

z05.22zXz8.01A

25.1z

1

1

25.1z1

2

8.0z

1

1

8.0z1

1

Example:

27

Partial Fraction (PF)

1-M

1-2

1-1

1-M

1-2

1-1

zp-1zp-1zp-1

)zp-(1 )zp-(1 )zp-(1

M210

A...

AAA

zN

zD

zNzX

0z0 zXA

zD

zRzQ

zD

zRzDzQ

zD

zNzX

27

28

Example: Compute all possible inverse Z-transform and stabilityfeature of the function

Inverted causal, stable:

Inverted anti-causal, unstable:

Solution

29

Example:

Find possible inverse Z-transform

Solution:

Four poles devide the z-plane into four ROC regions