cantilever wall

49
concrete = 23 x 400,000 = 9,150,000 48% reinforcement = 1,315 x 7,500 = 9,864,717 52% Rp 19,014,717 ,- /m' reinforcement = 57.50 kg/m3-concrete 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Upload: jantouck

Post on 15-Dec-2015

268 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Cantilever Wall

concrete = 23 x 400,000 = 9,150,000 48%reinforcement = 1,315 x 7,500 = 9,864,717 52%

Rp 19,014,717 ,- /m'

reinforcement = 57.50 kg/m3-concrete

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Page 2: Cantilever Wall

1 0.00 0.002 0.00 1.003 1.00 1.504 1.00 11.505 1.50 11.506 2.50 1.507 10.00 1.008 10.00 0.009 0.00 0.00

1 0.00 2.002 1.00 2.00

1 1.00 7.502 10.00 7.50

1 0.00 6.502 1.00 6.50

Page 3: Cantilever Wall

document.xlsx-04/18/2023

Location :

Top wall level = 79.00 mD1 - Hulu River bed level = 69.50 m

Ground water level = 75.00 m

River water level = 74.00 m

Foundation level = 67.50 m

Dimension (unit length)

H = 11.50 m B = 10.00 m L = 1.00 m

a

= 1.00 m = 0.50 m = 0.00 m

= 7.50 m = 1.50 m = 1.00 m

= 11.50 m = 1.00 m = 0.50 m

= 2.00 m = 7.50 m = 6.50 m

q = 0.50 Kh = 0.18

Backfill soil = 2.40 = 1.00

= 1.80

= 2.00 a = 0.00 (for stability analysis)

f = 30.0 a = 5.71 (for structural analysis)

c = 0.00 b = 0.00

Section of Retaining wall Foundation soil

= 1.00 Safety factor (normal) (seismic)

= 30.0 Overturning < B/6=1.92 B/3=3.33

= 0.00 Sliding > 2.00 1.25

Friction coefficient

m = 0.50 qmax > qa=qu/3 qae=qu/2

Uplift coefficient Allowable stress

= 1.00 = 60 90

Cover of bar = 1850 2775

Wall = 5.5 8.25

= 7 cm Young's modulus ratio

= 7 cm 24 16

Footing

= 7 cm

= 7 cm

b11 b12 b13

b21 b22 b23

h1 h31 h32

h4 hw1 hw2

t/m2

gc t/m3 gw t/m3

gsoil t/m3

gsat t/m3 o

o o

t/m2 o

gs' t/m3

fBo |e|

cB t/m2 fs

Reaction of foundation soil

Um Compressive sca kg/cm2

Tensile ssa kg/cm2

Shear ta kg/cm2

d back

d front

d upper

d lower

b12

H=h1

h31

b21 b23

q (t/m2)

h4

b11 b13

b22

h32

hw1

hw2

B

Page 4: Cantilever Wall

document.xlsx-04/18/2023

STABILITY : D1 - HuluS

Normal Condition Seismic Condition

a) Stability against overturning a) Stability against overturning

= 0.69 m < B/6 = 1.67 m OK! = 1.09 m < B/3 = 3.33 m OK!

b) Stability against sliding b) Stability against sliding

Fs = 2.02 > 2.00 OK! Fs = 1.26 > 1.25 OK!

= 26.72 < = 48.67 OK! = 29.93 < = 73.00 OK!

= 16.46 < = 48.67 OK! = 12.40 < = 73.00 OK!

|e| |e|

c) Reaction of foundation soil c) Reaction of foundation soil

q1 t/m2 qa t/m2 q1 t/m2 qae t/m2

q2 t/m2 qa t/m2 q2 t/m2 qae t/m2

Page 5: Cantilever Wall

document.xlsx-04/18/2023

Stressing of Reinforcement and Concrete Name of Structure : D1 - Hulu Location : 0

Normal Condition = 60

= 1850

= 5.5Young's modulus ratio = 24

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 90.0 150.0 150.0 150.07.0 back 7.0 back 7.0 lower 7.0 upper7.0 front 7.0 front 7.0 upper 7.0 lower83.0 143.0 143.0 143.0

M (ton m) 7 106 12 106 S (ton) 5 30 23 22

Bar size and spacing (mm)

Bar (As1) D 25 - 200 D 25 - 100 D 16 - 250 D 25 - 100Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 250 D 16 - 250

7 OK! 35 OK! 8 OK! 35 OK!390 OK! 1699 OK! 1080 OK! 1699 OK!0.61 OK! 2.11 OK! 1.62 OK! 1.52 OK!

Seismic Condition = 90

= 2775

= 8.25Young's modulus ratio = 16

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 90.0 150.0 150.0 150.07.0 7.0 7.0 7.07.0 7.0 7.0 7.083.0 143.0 143.0 143.0

M (ton m) 11 162 13 162 S (ton) 8 46 26 28

Bar size and spacing (mm)

Bar (As1) D 25 - 200 D 25 - 100 D 16 - 250 D 25 - 100Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 250 D 16 - 250

13 OK! 62 OK! 11 OK! 62 OK!583 OK! 2554 OK! 1204 OK! 2554 OK!0.93 OK! 3.19 OK! 1.82 OK! 1.95 OK!

Allowable compressive stress (sca) kg/cm2

Allowable tensile stress (ssa) kg/cm2

Allowable shearing stress (ta) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress sc Stress ss Stress t

Allowable compressive stress (sca) kg/cm2

Allowable tensile stress (ssa) kg/cm2

Allowable shearing stress (ta) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress sc Stress ss Stress t

D C

BB

A A

CD

D C

BB

A A

CD

Page 6: Cantilever Wall

Stability6/33

document.xlsx-04/18/2023

1. Design Data

1.1 Dimensions

B = 10.00 m H = 11.50 m

L = 1.00 m (unit length)

= 1.00 m = 7.50 m

= 0.50 m = 1.50 m

= 0.00 m = 1.00 m

= 11.50 m = 2.00 m

= 1.00 m = 7.50 m

= 0.50 m = 6.50 m

1.2 Parameters

q = 0.50

= 0.00 Section of Retaining Wall

= 2.40

= 1.00

Backfill soil Safety factor

= 1.80 = 1.00 Overturning

= 2.00 = 0.00 normal |e|<B/6=1.67m

c = 0.00 = 30.00 seismic |e|<B/3=3.33m

f = 30.00 m = 0.50 (Friction coefficient) Sliding

= 1.00 (Uplift coefficient) normal 2.00

b = 0.000 seismic 1.25

a = 0.000 (for stability analysis) Reaction of foundation soil

= 5.711 (for structural analysis) normal

d = 0.000 qa=qu/3

= 20.00 seismic

= 24.23 (for stability analysis in seismic condition, see Section 2.3) qae=qu/2

= 15.00

F = 10.204 Kh = 0.18

2. Stability Calculation

2.1 Case 1 (Normal condition, with vertical live load)1.00

q = 0.50 0.50

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 1

b11 b21

b12 b22

b13 b23

h1 h4

h31 hw1

h32 hw2

t/m2 (for normal condition)

t/m2 (for seismic condition)

gc t/m3

gw t/m3

Foundation soil

gsoil t/m3 gs' t/m3 (=gsat-gw)

gsat t/m3 cB t/m2

t/m2 fBo

o

Um fs >o fs >o

o qmax<qao (for stability analysis in normal condition, d = b)o (for structural analysis in normal condition, d = 2/3 f) qmax<qaeo

o (for structural analysis in seismic condition, d = 1/2 f)o ( = Arc tan(Kh) )

t/m2

q (t/m2)b12

b21 b22 b23

hw1

H=h1

h31

b11 b13

h32 h4

hw2

B

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

Pp1

qa1

qp1

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2qu2

Pu1Pu2

qu1

Page 7: Cantilever Wall

Stability7/33

document.xlsx-04/18/2023

(1) Vertical Load

No. Description W X W x X1 1.00 x 7.50 x 2.40 18.000 6.250 112.502 1.50 x 1.50 x 2.40 5.400 1.750 9.453 1.00 x 1.00 x 2.40 2.400 0.500 1.204 0.50 x 0.50 x 7.50 x 2.40 4.500 5.000 22.505 0.50 x 0.50 x 1.00 x 2.40 0.600 0.333 0.206 0.50 x 10.00 x 1.00 x 2.40 12.000 2.167 26.007 10.00 x 0.50 x 2.40 12.000 1.250 15.008 0.50 x 10.00 x 0.00 x 2.40 0.000 1.000 0.009 0.50 x 10.00 x 1.00 x 1.80 9.000 2.167 19.5010 7.50 x 4.00 x 1.80 54.000 6.250 337.5011 7.50 x 6.00 x 2.00 90.000 6.250 562.5012 0.50 x 7.50 x 0.50 x 2.00 3.750 7.500 28.13q 0.50 x 8.50 4.250 5.750 24.44

T o t a l(1 to q) 215.900 1,158.92Pu1 7.50 x 10.00 x 0.50 x -1.00 -37.500 6.667 -250.00Pu2 6.50 x 10.00 x 0.50 x -1.00 -32.500 3.333 -108.33

Total ( 1 to Pu2) 145.900 800.58

(2) Horizontal Load

Coefficient of Active earth pressure

Ka =

(for stability analysis)

a = 0.000 d = 0.000

= 0.750 = 0.500

= 1.000 = 0.500

= 1.000 = 1.000

Ka = 0.333 for stability analysis

(for structural analysis)

a = 5.711 d = 20.000

= 0.831 = 0.766

= 0.990 = 0.500

= 0.901 = 0.995

Ka' = 0.341 for structural analysis

Coefficient of Passive earth pressure

Kp =

a = 0.000 d = 0.000

= 0.750 = 0.500

= 1.000 = 0.500= 1.000 = 1.000

Kp = 3.000

qa1 = Ka x q = 0.167 ton/m

qa2 = = 2.400 ton/mqa3 = qa1 + qa2 = 2.567 ton/m

qa4 = = 2.500 ton/m

qw 1 = = 7.500 ton/m

qw 2 = = 6.500 ton/m

qp1 = = 6.000 ton/m

o o

Cos2(f -a) Sin(f+d)

Cos2a Sinf

Cos(a+d) Cosa

o o

Cos2(f -a) Sin(f+d)

Cos2a Sinf

Cos(a+d) Cosa

o o

Cos2(f+a) Sin(f+d)

Cos2a Sinf Cos(a -d) Cosa

Ka x (h1- hw1) x gsoil

Ka x hw1 x (gsat - gw)

hw1 x gw

hw2 x gw

Kp x h4 x (gsat - gw)

2

Cos2( f -a)

Cos2a x Cos(a+d) x 1+Sin(f+d) x Sinf

Cos(a+d) x Cos a

2

Cos2(f+a)

Cos2a x Cos( a -d) x 1 -Sin(f+d) x Sinf

Cos( a -d) x Cos a

Page 8: Cantilever Wall

Stability8/33

document.xlsx-04/18/2023

No. Description H Y H x YPa1 0.167 x 4.00 0.667 9.500 6.33Pa2 2.400 x 4.00 x 0.50 4.800 8.833 42.40Pa3 2.567 x 7.50 19.250 3.750 72.19Pa4 2.500 x 7.50 x 0.50 9.375 2.500 23.44Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77Pp1 -6.000 x 2.00 x 0.50 -6.000 0.667 -4.00

T o t a l 35.092 164.90

(3) Stability Calculation

a) Stability against overturning a) -1 Without Uplift

B = 10.00 m

1,158.92 - 164.90X = = = 4.604 m

215.900

B 10.00e = - X = - 4.604 = 0.396 m < B/6 = 1.667 m OK !

2 2 a) -2 With Uplift

B = 10.00 m

800.58 - 164.90X = = = 4.357 m

145.900

B 10.00e = - X = - 4.357 = 0.643 m < B/6 = 1.667 m OK !

2 2

b) Stability against sliding b)-1 Without Uplift Sliding force : = 35.092 ton

Resistance : = 0.50 x 215.900 = 107.950 ton

0.50 )

HR 107.950Fs = = = 3.076 > 2.00 OK !

35.092 b)-2 With Uplift Sliding force : = 35.092 ton

Resistance : = 0.50 x 145.900 = 72.950 ton

0.5 )

HR 72.950Fs = = = 2.079 > 2.00 OK !

35.092

c) Reaction of foundation soil6 x e

q1,2 = x ) B B

215.900 6 x 0.396

q1 = x (1 + ) = 26.720 < qa = 48.667 OK !10.00 10.00

215.900 6 x 0.396

q2 = x (1 - ) = 16.460 < qa = 48.667 OK !10.00 10.00

Reaction of Foundation Soil in Case 1

16.460 -

26.720 -

S W x X - S H x Y

S W

S W x X - S H x Y

S W

S H

HR = m x S W

(friction coefficient : m =

S H

S H

HR = m x S W

(friction coefficient : m =

S H

S W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 9: Cantilever Wall

Stability9/33

document.xlsx-04/18/2023

(applicable) (not applicable)

Page 10: Cantilever Wall

Stability10/33

document.xlsx-04/18/2023

2.2 Case 2 (Normal condition, without vertical live load)1.00

q = 0.50 0.50

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 2

(1) Vertical Load

No. Description W X W x X1 1.00 x 7.50 x 2.40 18.000 6.250 112.50 2 1.50 x 1.50 x 2.40 5.400 1.750 9.45 3 1.00 x 1.00 x 2.40 2.400 0.500 1.20 4 0.50 x 0.50 x 7.50 x 2.40 4.500 5.000 22.50 5 0.50 x 0.50 x 1.00 x 2.40 0.600 0.333 0.20 6 0.50 x 10.00 x 1.00 x 2.40 12.000 2.167 26.00 7 10.00 x 0.50 x 2.40 12.000 1.250 15.00 8 0.50 x 10.00 x 0.00 x 2.40 0.000 1.000 0.00 9 0.50 x 10.00 x 1.00 x 1.80 9.000 2.167 19.50 10 7.50 x 4.00 x 1.80 54.000 6.250 337.50 11 7.50 x 6.00 x 2.00 90.000 6.250 562.50 12 0.50 x 7.50 x 0.50 x 2.00 3.750 7.500 28.13

T o t a l (1 to 12) 211.650 1134.48 Pu1 7.50 x 10.00 x 0.50 x -1.00 -37.500 6.667 -250.00 Pu2 6.50 x 10.00 x 0.50 x -1.00 -32.500 3.333 -108.33

Total ( 1 to Pu2) 141.650 776.15

(2) Horizontal Load

Coefficient of Active earth pressure

Ka = 0.333 (for stability analysis)

Ka ' = 0.341 (for structural analysis)

Coefficient of Passive earth pressure

Kp = 3.000

qa1 = Ka x q = 0.167 ton/m

qa2 = = 2.400 ton/m

qa3 = qa1 + qa2 = 2.567 ton/m

qa4 = = 2.500 ton/m

qw 1 = = 7.500 ton/m

qw2 = = 6.500 ton/m

qp1 = = 6.000 ton/m

No. Description H Y H x YPa1 0.167 x 4.00 0.667 9.500 6.33Pa2 2.400 x 4.00 x 0.50 4.800 8.833 42.40Pa3 2.567 x 7.50 19.250 3.750 72.19Pa4 2.500 x 7.50 x 0.50 9.375 2.500 23.44Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77Pp1 -6.000 x 2.00 x 0.50 -6.000 0.667 -4.00

T o t a l 35.092 164.90

t/m2

Ka x (h1- hw1) x gsoil

Ka x hw1 x (gsat - gw)

hw1 x gw

hw2 x gw

Kp x h4 x (gsat - gw)

Cos2a x Cos(a+d) x

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

9

Pp1

qa1

qp1

7

1

10

12

2 3

5

6

8

4

11

Pw2

qw2qu2 Pu2

qu1

Pu1

Page 11: Cantilever Wall

Stability11/33

document.xlsx-04/18/2023

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 10.00 m

1,134.48 - 164.90X = = = 4.581 m

211.650

B 10.00e = - X = - 4.581 = 0.419 m < B/6 = 1.667 m OK !

2 2 a)-2 With Uplift

B = 10.00 m

776.15 - 164.90X = = = 4.315 m

141.650

B 10.00e = - X = - 4.315 = 0.685 m < B/6 = 1.667 m OK !

2 2

b) Stability against sliding b)-1 without Uplift Pressure Sliding force : = 35.092 ton

Resistance : = 0.50 x 211.650 = 105.825 ton

0.5 )

HR 105.825Fs = = = 3.02 > 2.00 OK !

35.092 b)-2 with Uplift Pressure Sliding force : = 35.092 ton

Resistance : = 0.50 x 141.650 = 70.825 ton

0.5 )

HR 70.825Fs = = = 2.02 > 2.00 OK !

35.092

c) Reaction of foundation soil

6 x eq1,2 = x )

B B

211.650 6 x 0.419

q1 = x (1 + ) = 26.486 < qa = 48.667 OK !10.00 10.00

211.650 6 x 0.419

q2 = x (1 - ) = 15.844 < qa = 48.667 OK !10.00 10.00

15.844 -

26.486 -

(applicable) (not applicable)

Reaction of Foundation Soil in Case 2

S W x X - S H x Y

S W

S W x X - S H x Y

S W

S H

HR = m x S W

(friction coefficient : m =

S H

S H

HR = m x S W

(friction coefficient : m =

S H

S W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 12: Cantilever Wall

Stability12/33

document.xlsx-04/18/2023

2.3 Case 3 (Seismic condition)1.00

0.50

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 3

(1) Vertical Load = Same as Case 2

(2) Horizontal Load

f = 30.00 a = 0.000 (for stability analysis) F = 10.204

b = 0.00 a = 5.711 (for structural analysis) =

q = 0.00 Kh = 0.18

Coefficient of Active earth pressure

Kae =

(for stability analysis)

a = 0.000 d = 24.23

= 0.177 = 0.500

= 0.354 then D = 20.73

0.514 0.858

= 0.450

0.885 = 0.811

= 0.984 = 0.339

= 1.000 = 1.000

= 0.825

Kae = 0.438 (for stability analysis)

(for structural analysis)

a = 5.711 d = 15.00

0.941 = 0.707

= 0.984 = 0.339

= 0.990 = 0.995

0.858

o o o

o o (F Arc tan(Kh) )

t/m2 (for seismic condition)

o o

tan d = Sin f Sin ( F + D - b )1 - Sin f Cos ( F + D - b )

sin D= Sin ( F + b )Sin f

Sin (F+ b ) = Sin f

Sin D

Sin(F+D-b) = Cos(F+D-b)=

tan d

Cos2(f-F-a)= Sin(f+d)

CosF Sin(f-b-F)

Cos2a Cos(a-b)

Cos(a+d+F)

o o

Cos2(f-F-a)= Sin(f+d)

CosF Sin(f-b-F)

Cos2a Cos(a-b)

Cos(a+d+F)=

2

Cos2( - -f F a)

CosF x Cos2a x Cos( + +a d F) x 1+Sin( + )f d x Sin( - -f b F)

Cos( + +a d F) x Cos( -a b)

Pa1

qa1

qa2qa3qw1

Pa2

Pa3Pw1

O

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2

Pp1

qp1Pu1

qu2 Pu2qu1

Page 13: Cantilever Wall

Stability13/33

document.xlsx-04/18/2023

Kae = 0.481 (for structural analysis)

Coefficient of Passive earth pressure

Kpe =

a = 0.000 d = 24.23

0.885 = 0.101= 0.984 = 0.339

= 1.000 = 1.0000.970

Kpe = 1.406

qa1 = = 3.154 ton/mqa2 = qa2 = 3.154 ton/m

qa3 = = 3.285 ton/m

qw 1 = = 7.500 ton/m

qw 2 = = 6.500 ton/m

qp1 = = 2.812 ton/m

No. Description H Y H x Y1 0.18 x 18.00 3.240 0.500 1.622 0.18 x 5.40 0.972 0.750 0.733 0.18 x 2.40 0.432 0.500 0.224 0.18 x 4.50 0.810 1.167 0.955 0.18 x 0.60 0.108 1.167 0.136 0.18 x 12.00 2.160 4.833 10.447 0.18 x 12.00 2.160 6.500 14.048 0.18 x 0.00 0.000 4.833 0.00

Pw1 0.50 x 7.50 x 7.50 28.125 2.500 70.31Pw2 0.50 x -6.50 x 6.50 -21.125 2.167 -45.77Pa1 0.50 x 3.15 x 4.00 6.307 8.833 55.71pa2 3.15 x 7.50 23.652 3.750 88.70Pa3 0.50 x 3.285 x 7.50 12.319 2.500 30.80Pp1 -2.812 x 2.00 x 0.50 -2.812 2.000 -5.62

T o t a l 56.348 222.24

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 10.00 m

1,134.48 - 222.24X = = = 4.310 m

211.650

B 10.00e = - X = - 4.310 = 0.690 m < B/3 = 3.333 m OK !

2 2

B = 10.00 m

776.15 - 222.24X = = = 3.910 m

141.650

B 10.00e = - X = - 3.910 = 1.090 m < B/3 = 3.333 m OK !

2 2

o o

Cos2(f-F+a)= Sin(f-d) CosF Sin(f+b-F)

Cos2a Cos(a-b)Cos(a+d-F)=

Kae x ( h1 - hw1) x gsoil

Kae x hw1 x (gsat - gw)

hw1 x gw

hw2 x gw

Kp x h4 x (gsat - gw)

S W x X - S H x Y

S W

a)-2 With Uplift

S W x X - S H x Y

S W

2

Cos2( - +f F a)

CosF x Cos2a x Cos( + -a d F) x 1-Sin( - )f d x Sin( + -f b F)

Cos( + -a d F) x Cos( -a b)

Page 14: Cantilever Wall

Stability14/33

document.xlsx-04/18/2023

b) Stability against sliding b)-1 Without Uplift Sliding force : = 56.348 ton

Resistance : = 0.50 x 211.650 = 105.825 ton

0.50 )

HR 105.825Fs = = = 1.88 > 1.25 OK !

56.348 b)-2 With Uplift Sliding force : = 56.348 ton

Resistance : = 0.50 x 141.650 = 70.825 ton

0.50 )

HR 70.825Fs = = = 1.26 > 1.25 OK !

56.348

c) Reaction of foundation soil

(applicable)

6 x eq1,2 = x )

B B

211.650 6 x 0.690

q1 = x (1 + ) = 29.927 < qae = 73.000 OK !10.00 10.00

211.650 6 x 0.690

q2 = x (1 - ) = 12.403 < qae = 73.000 OK !10.00 10.00

(not applicable)

q1' = = = - qae = -3 x (B/2-|e|)

12.403

29.927 -

(applicable) (not applicable)

-

- -

(not applicable) (not applicable)

Reaction of Foundation Soil in Case 3

S H

HR = m x S W

(friction coefficient : m =

S H

S H

HR = m x S W

(friction coefficient : m =

S H

c-1) in case, |e| < B/6

S W(1 +

t/m2 t/m2

t/m2 t/m2

c-2) in case, B/6 < |e| < B/3

2 x S W

t/m2 t/m2

t/m2

t/m2 t/m2

in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3

t/m2

t/m2 t/m2

in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3

Page 15: Cantilever Wall

Stability15/33

document.xlsx-04/18/2023

2.4 Bearing Capacity of soil

(1) Design Data

= 30.00 = 0.00 = 1.00

B = 10.00 m z = 2.00 m L = 1.00 m (unit length)f

(2) Ultimate Bearing Capacity of soil, (qu) ######

Calculation of ultimate bearing capacity will be obtained by applying the following ### Terzaghi's formula : ###

###

qu = ######

Shape factor (Table 2.5 of KP-06) ###

a = 1.00 b = 0.50

Shape of footing : 1 (strip)

Shape of footing a b1 strip 1.00 0.502 square 1.30 0.403 rectangular, B x L 1.11 0.40

(= 1.09 + 0.21 B/L)(B > L) (= 1.09 + 0.21 L/B)

4 circular, diameter = B 1.30 0.30

Bearing capacity factor (Figure 2.3 of KP-06, by Capper)

Nc = 36.0 Nq = 23.0 = 20.0

f Nc Nq0 5.7 0.0 0.05 7.0 1.4 0.0

10 9.0 2.7 0.215 12.0 4.5 2.320 17.0 7.5 4.725 24.0 13.0 9.530 36.0 23.0 20.035 57.0 44.0 41.037 70.0 50.0 55.039 > 82.0 50.0 73.0

= 0.000

= 46.000

= 100.000

qu = 146.000

(3) Allowable Bearing Capacity of soil, (qa)

qa = qu / 3 = 48.667 (safety factor = 3 , normal condition)

qae = qu / 2 = 73.000 (safety factor = 2 , seismic condition)

fBo cB t/m2 gs' t/m3 (=gsat-gw)

(a x c x Nc) + (gsoil' x z x Nq) + (b x gsoil x B x Ng)

(B < L)

Ng

Ng

(a x c x Nc)

(gsoil x z x Nq)

(b x gsoil x B x Ng)

t/m2

t/m2

t/m2

Page 16: Cantilever Wall

Structure16/33

document.xlsx-04/18/2023

3. Structure Calculation

3.1 Normal Condition

(1) Wall 1.00

q = 0.50 0.50

0.00

10.00

0.9

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load Diagram on Wall in Normal ConditionKa = 0.341

a = 5.711

d = 20.00= 0.901

= = 0.307

a) Section A - A

h = 4.00 m

qa1 = = 0.153 ton/m

qa2 = = 2.210 ton/m

No. Description Ha Y (from A-A) Ha x YPa1 0.153 x 4.00 0.614 2.000 1.228 Pa2 2.210 x 4.00 x 0.50 4.420 1.333 5.894

T o t a l 5.034 7.122

Sa = 5.034 ton Ma = 7.122 ton m

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 0.153 ton/m

qa2 = = 2.210 ton/mqa3 = qa1 + qa2 = 2.364 ton/m

qa4 = = 1.842 ton/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hb Y (from B-B) Ha x YPa1 0.153 x 4.00 0.614 8.000 4.911 Pa2 2.210 x 4.00 x 0.50 4.420 7.333 32.416 Pa3 2.364 x 6.00 14.182 3.000 42.546 Pa4 1.842 x 6.00 x 0.50 5.525 2.000 11.051 Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000 Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 (20.833)

T o t a l 30.242 106.090

Sb = 30.242 ton Mb = 106.090 ton m

t/m2

o

o

cos (a+d)

Kha Ka x cos (a+d)

Kha x q

Kha x h x gsoil

hw1 hw2

Kha x q

Kha x h x gsoil

Kha x hw2 x (gsat - gw)

hw1 x gw

hw2 x gw

qa1

qa4 qa3qw1

Pw1 Pa4

Pa2

Pa1

qa2

Pa3 B

A

B

A

Pw2

qw2

Page 17: Cantilever Wall

Structure17/33

document.xlsx-04/18/2023

(2) FootingCase 1 (with vertical live load) Case 2 (without vertical live load)

q = 0.50 q = 0.50

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

10.260

24.925 16.460 15.844

24.155 23.825

25.694 25.422

26.720 26.486

in case, e < 0 in case, e < 0

- - - -

- - - -

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -25.694 x 1.00 -25.694 0.500 -12.847

-1.026 x 1.00 x 0.50 -0.513 0.667 -0.342 T o t a l -23.207 -11.789

Case 2 (without vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -25.422 x 1.00 -25.422 0.500 -12.711

-1.064 x 1.00 x 0.50 -0.532 0.667 -0.355 T o t a l -22.954 -11.666

Case 1 Sc = -23.207 ton Mc = -11.789 ton mCase 2 Sc = -22.954 ton Mc = -11.666 ton m

t/m2 t/m2

in case, e > 0 in case, e > 0

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

1

1

C

C

D

D

4

3

26

1

C

C

D

D

3

4

3 1 3

4

5

4

62 2

6

26

Page 18: Cantilever Wall

Structure18/33

document.xlsx-04/18/2023

b) Section D - D

Case 1 (with vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 7.50 x 2.40 18.000 3.750 67.500

0.500 x 7.50 x 2.40 x 0.50 4.500 2.500 11.2504 4.000 x 7.50 x 1.80 54.000 3.750 202.500

6.000 x 7.50 x 2.00 90.000 3.750 337.5000.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.750

5 0.500 x 7.50 3.750 3.750 14.0636 -16.460 x 7.50 -123.450 3.750 -462.938

-7.695 x 7.50 x 0.50 -28.856 2.500 -72.141 T o t a l 21.694 116.484

Case 2 (without vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 7.50 x 2.40 18.000 3.750 67.500

0.500 x 7.50 x 2.40 x 0.50 4.500 2.500 11.2504 4.000 x 7.50 x 1.80 54.000 3.750 202.500

6.000 x 7.50 x 2.00 90.000 3.750 337.5000.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.750

6 -15.844 x 7.50 -118.830 3.750 -445.613-7.981 x 7.50 x 0.50 -29.931 2.500 -74.827

T o t a l 21.489 117.061

Case 1 Sd = 21.694 ton Md = 116.484 ton mcase 2 Sd = 21.489 ton Md = 117.061 ton m

3.2 Seismic Condition

(1) Wall 1.00

0.50

0.00

10.00

10.50

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load diagram on Wall for Seismic caseKae = 0.481

a = 5.711

d = 15.00= 0.935

= = 0.450 Kh = 0.18

a) Section A - A

h = 4.00 m

qa1 = = 3.239 t/mNo. Description Hae Y (from A-A) Hae x Y1 0.500 x 4.000 x 0.400 x 2.400 x 0.180 0.346 1.333 0.461 2 4.000 x 0.500 x 2.400 x 0.180 0.864 2.000 1.728 3 0.500 x 4.000 x 0.000 x 2.400 x 0.180 0.000 1.333 0.000

Pa1 3.239 x 4.000 x 0.500 6.479 1.333 8.638 T o t a l 7.688 10.827

Sae = 7.688 ton Mae = 10.827 ton m

o

o

cos (a+d)

Khea Kae x cos (a+d)

Khae x h x gsoil

2

Pa2

Pa1

qa2

qa1

qa3

Pa3

A A

B B

1 3

Pw1 Pw2

qw2qw1

Page 19: Cantilever Wall

Structure19/33

document.xlsx-04/18/2023

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 3.463 t/mqa2 = qa1 = 3.463 t/m

qa3 = = 2.699 t/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hbe Y (from B-B) Hbe x YPa1 3.463 x 4.00 x 0.50 6.926 7.333 50.794Pa2 3.463 x 6.00 20.779 3.000 62.338Pa3 2.699 x 6.00 x 0.50 8.098 2.000 16.197Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 -20.833

1 0.500 x 10.00 x 1.00 x 2.40 x 0.18 2.160 3.333 7.2002 10.000 x 0.50 x 2.40 x 0.18 2.160 5.000 10.8003 0.500 x 10.00 x 0.00 x 2.40 x 0.18 0.000 3.333 0.000

T o t a l 45.624 162.495

Sbe = 45.624 ton Mbe = 162.495 ton m

(2) Footing

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

12.403 -

25.546

28.175 -

29.927 -

in case, e < 0 and |e| < B/6

- - - -

- - -

Load Diagram on Footing in Seismic Case

hw1 hw2

Khae x h x gsoil

Khae x hw1 x ( gsat - gw)

hw1 x gw

hw2 x gw

in case, e < B/6 in case, B/6 < e < B/3

in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

t/m2 t/m2

t/m2

t/m2 t/m2

t/m2 t/m2

in case, e < 0 and B/6 < |e| < B/3

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2

D

1

1

C

C

D

D

2

4

5

3 1

C

C

D

D

2

3

4

3 1 3

4 4

6

62

2

6

Page 20: Cantilever Wall

Structure20/33

document.xlsx-04/18/2023

a) Section C - C

No. Description Hce X (from C-C) Hce x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -28.175 x 1.00 -28.175 0.500 -14.087

-1.752 x 1.00 x 0.50 -0.876 0.667 -0.584 T o t a l -26.051 -13.271

Sce = -26.051 ton Mce = -13.271 ton m

b) Section D - D

No. Description Hde X (from D-D) Hde x X3 1.000 x 7.50 x 2.40 18.000 3.750 67.500

0.500 x 7.50 x 2.40 x 0.50 4.500 2.500 11.2504 10.000 x 7.50 x 1.92 144.000 3.750 540.000

0.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.7505 -12.403 x 7.50 -93.023 3.750 -348.834

-13.143 x 7.50 x 0.50 -49.286 2.500 -123.216 T o t a l 27.941 165.450

Sde = 27.941 ton Mde = 165.450 ton m

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Section A - A 7.122 7.122 10.827 5.034 5.034 7.688 Section B - B 106.090 106.090 162.495 30.242 30.242 45.624 Section C - C 11.789 11.666 13.271 23.207 22.954 26.051 Section D - D 116.484 117.061 165.450 21.694 21.489 27.941

(2) Design bending moment and shear force

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Section A - A 7.122 10.827 5.034 7.688 Section B - B 106.090 162.495 30.242 45.624 Section C - C 11.789 13.271 23.207 26.051 Section D - D 106.090 162.495 21.694 27.941

Notes: --

Moment at Section C-C < Moment at Section B-BMoment at Section D-D < Moment at Section B-B

Page 21: Cantilever Wall

Structure (2)21/33

document.xlsx-04/18/2023

3. Structure Calculation

3.1 Normal Condition

(1) Wall 1.00

q = 0.50 0.50

0.00

10.00

0.9

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load Diagram on Wall in Normal ConditionKa = 0.341

a = 5.711

d = 20.00= 0.901

= = 0.307

a) Section A - A

h = 4.00 m

qa1 = = 0.153 ton/m

qa2 = = 2.210 ton/m

No. Description Ha Y (from A-A) Ha x YPa1 0.153 x 4.00 0.614 2.000 1.228 Pa2 2.210 x 4.00 x 0.50 4.420 1.333 5.894

T o t a l 5.034 7.122

Sa = 5.034 ton Ma = 7.122 ton m

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 0.153 ton/m

qa2 = = 2.210 ton/mqa3 = qa1 + qa2 = 2.364 ton/m

qa4 = = 1.842 ton/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hb Y (from B-B) Ha x YPa1 0.153 x 4.00 0.614 8.000 4.911 Pa2 2.210 x 4.00 x 0.50 4.420 7.333 32.416 Pa3 2.364 x 6.00 14.182 3.000 42.546 Pa4 1.842 x 6.00 x 0.50 5.525 2.000 11.051 Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000 Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 (20.833)

T o t a l 30.242 106.090

Sb = 30.242 ton Mb = 106.090 ton m

t/m2

o

o

cos (a+d)

Kha Ka x cos (a+d)

Kha x q

Kha x h x gsoil

hw1 hw2

Kha x q

Kha x h x gsoil

Kha x hw2 x (gsat - gw)

hw1 x gw

hw2 x gw

qa1

qa4 qa3qw1

Pw1 Pa4

Pa2

Pa1

qa2

Pa3 B

A

B

A

Pw2

qw2

Page 22: Cantilever Wall

Structure (2)22/33

document.xlsx-04/18/2023

(2) FootingCase 1 (with vertical live load) Case 2 (without vertical live load)

q = 0.50 q = 0.50

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

10.260

24.925 16.460 15.844

24.155 23.825

20.308 25.694 19.835 25.422

26.720 26.486

in case, e < 0 in case, e < 0

- - - -

- - - -

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -25.694 x 1.00 -25.694 0.500 -12.847

-1.026 x 1.00 x 0.50 -0.513 0.667 -0.342 T o t a l -23.207 -11.789

Case 2 (without vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -25.422 x 1.00 -25.422 0.500 -12.711

-1.064 x 1.00 x 0.50 -0.532 0.667 -0.355 T o t a l -22.954 -11.666

Case 1 Sc = -23.207 ton Mc = -11.789 ton mCase 2 Sc = -22.954 ton Mc = -11.666 ton m

t/m2 t/m2

in case, e > 0 in case, e > 0

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

1

1

C

C

D

D

4

3

26

1

C

C

D

D

3

4

3 1 3

4

5

4

62 2

6

26

E

E

E

E

Page 23: Cantilever Wall

Structure (2)23/33

document.xlsx-04/18/2023

c) Section E - E

Case 1 (with vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 3.75 x 2.40 9.000 1.875 16.875

0.500 x 3.75 x 2.40 x 0.50 2.250 1.250 2.8134 4.000 x 3.75 x 1.80 27.000 1.875 50.625

6.000 x 3.75 x 2.00 45.000 1.875 84.3750.500 x 3.75 x 2.00 x 0.50 1.875 2.500 4.688

5 0.500 x 3.75 1.875 1.875 3.5166 -16.460 x 3.75 -61.725 1.875 -115.734

-3.848 x 3.75 x 0.50 -7.214 1.250 -9.018 T o t a l 18.061 38.139

Case 2 (without vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 3.75 x 2.40 9.000 1.875 16.875

0.500 x 3.75 x 2.40 x 0.50 2.250 1.250 2.8134 4.000 x 3.75 x 1.80 27.000 1.875 50.625

6.000 x 3.75 x 2.00 45.000 1.875 84.3750.500 x 3.75 x 2.00 x 0.50 1.875 2.500 4.688

6 -15.844 x 3.75 -59.415 1.875 -111.403-3.991 x 3.75 x 0.50 -7.483 1.250 -9.353

T o t a l 18.227 38.619

Case 1 Sd = 18.061 ton Md = 38.139 ton mCase 2 Sd = 18.227 ton Md = 38.619 ton m

3.2 Seismic Condition

(1) Wall 1.00

0.50

0.00

10.00

10.50

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load diagram on Wall for Seismic caseKae = 0.481

a = 5.711

d = 15.00= 0.935

= = 0.450 Kh = 0.18

a) Section A - A

h = 4.00 m

qa1 = = 3.239 t/mNo. Description Hae Y (from A-A) Hae x Y1 0.500 x 4.000 x 0.400 x 2.400 x 0.180 0.346 1.333 0.461 2 4.000 x 0.500 x 2.400 x 0.180 0.864 2.000 1.728 3 0.500 x 4.000 x 0.000 x 2.400 x 0.180 0.000 1.333 0.000

Pa1 3.239 x 4.000 x 0.500 6.479 1.333 8.638 T o t a l 7.688 10.827

Sae = 7.688 ton Mae = 10.827 ton m

o

o

cos (a+d)

Khea Kae x cos (a+d)

Khae x h x gsoil

2

Pa2

Pa1

qa2

qa1

qa3

Pa3

A A

B B

1 3

Pw1 Pw2

qw2qw1

Page 24: Cantilever Wall

Structure (2)24/33

document.xlsx-04/18/2023

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 3.463 t/mqa2 = qa1 = 3.463 t/m

qa3 = = 2.699 t/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hbe Y (from B-B) Hbe x YPa1 3.463 x 4.00 x 0.50 6.926 7.333 50.794Pa2 3.463 x 6.00 20.779 3.000 62.338Pa3 2.699 x 6.00 x 0.50 8.098 2.000 16.197Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 -20.833

1 0.500 x 10.00 x 1.00 x 2.40 x 0.18 2.160 3.333 7.2002 10.000 x 0.50 x 2.40 x 0.18 2.160 5.000 10.8003 0.500 x 10.00 x 0.00 x 2.40 x 0.18 0.000 3.333 0.000

T o t a l 45.624 162.495

Sbe = 45.624 ton Mbe = 162.495 ton m

(2) Footing

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

12.403 -

25.546

18.975 28.175 -

29.927 -

in case, e < 0 and |e| < B/6

- - - -

- - -

Load Diagram on Footing in Seismic Case

hw1 hw2

Khae x h x gsoil

Khae x hw1 x ( gsat - gw)

hw1 x gw

hw2 x gw

in case, e < B/6 in case, B/6 < e < B/3

in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

t/m2 t/m2

t/m2

t/m2 t/m2

t/m2 t/m2

in case, e < 0 and B/6 < |e| < B/3

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2

D

1

1

C

C

D

D

2

4

5

3 1

C

C

D

D

2

3

4

3 1 3

4 4

6

62

2

6

Page 25: Cantilever Wall

Structure (2)25/33

document.xlsx-04/18/2023

a) Section C - C

No. Description Hce X (from C-C) Hce x X1 1.000 x 1.00 x 2.40 2.400 0.500 1.200

0.500 x 1.00 x 2.40 x 0.50 0.600 0.333 0.2002 -28.175 x 1.00 -28.175 0.500 -14.087

-1.752 x 1.00 x 0.50 -0.876 0.667 -0.584 T o t a l -26.051 -13.271

Sce = -26.051 ton Mce = -13.271 ton m

b) Section E - E

No. Description Hde X (from D-D) Hde x X3 1.000 x 3.75 x 2.40 9.000 1.875 16.875

0.500 x 3.75 x 2.40 x 0.50 2.250 1.250 2.8134 10.000 x 3.75 x 1.92 72.000 1.875 135.000

0.500 x 3.75 x 2.00 x 0.50 1.875 2.500 4.6885 -12.403 x 3.75 -46.511 1.875 -87.209

-6.571 x 3.75 x 0.50 -12.322 1.250 -15.402 T o t a l 26.292 56.764

Sde = 26.292 ton Mde = 56.764 ton m

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Section A - A 7.122 7.122 10.827 5.034 5.034 7.688 Section B - B 106.090 106.090 162.495 30.242 30.242 45.624 Section C - C 11.789 11.666 13.271 23.207 22.954 26.051 Section E - E 38.139 38.619 56.764 18.061 18.227 26.292

(2) Design bending moment and shear force

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Section A - A 7.122 10.827 5.034 7.688 Section B - B 106.090 162.495 30.242 45.624 Section C - C 11.789 13.271 23.207 26.051 Section E - E 38.619 56.764 18.227 26.292

Notes: --

Moment at Section C-C < Moment at Section B-BMoment at Section D-D < Moment at Section B-B

Page 26: Cantilever Wall

Re-bar 26/33

document.xlsx-04/18/2023

Reinforcement Bar Arrangement and Stress

Normal Condition Name of Structure : D1 - Hulu Location : 0

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back front upper upperBending moment M kgfcm 712,163 10,609,021 1,178,900 10,609,021 Shearing force (joint) S kgf 5,034 30,242 23,207 21,694 Axial force N kgf 0 0 0 0

Height of member h cm 90.0 150.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 83.0 143.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 24 24 24 24

Required R-bar Asreq cm2 5.18 45.09 4.69 45.09

R-bar arrangement 25~200 16~250 25~100 16~125 16~250 16~250 25~100 16~250

Reinforcement As cm2 24.54 8.04 49.09 16.08 8.04 8.04 49.09 8.04Perimeter of R-bar U cm 39.27 ok 78.54 ok 20.11 ok 78.54 ok

Dist. from neutral axis x cm 25.93 47.45 21.64 47.45

Compressive stress kgf/cm2 7.4 35.2 8.0 35.2Allowable stress kgf/cm2 60.0 60.0 60.0 60.0

ok ok ok okTensile stress kgf/cm2 390 1,699 1,080 1,699 Allowable stress kgf/cm2 1,850 1,850 1,850 1,850

ok ok ok okShearing stress at joint t kgf/cm2 0.61 2.11 1.62 1.52Allowable stress kgf/cm2 5.50 5.50 5.50 5.50

ok ok ok ok

Resisting Moment Mr kgfcm 3,350,296 13,748,467 1,565,235 13,738,413 Mr for compression Mrc kgfcm 3,350,296 14,771,164 4,568,003 14,733,743 x for Mrc cm 21 44 17 44

kgf/cm2 2,598 2,693 6,427 2,690 Mr for tensile Mrs kgfcm 3,620,083 13,748,467 1,565,235 13,738,413 x for Mrs cm 27 55 19 55

kgf/cm2 62 59 20 59 Distribution bar (>As/6 and >Asmin) 4.09 1.34 8.18 2.68 1.34 1.34 8.18 1.34

16~250 16~250 16~125 16~250 16~200 16~200 16~200 16~200Reinforcement As cm2 8.04 8.04 16.08 8.04 10.05 10.05 10.05 10.05

ok ok ok ok ok ok ok ok

Minimum requirement of distribution bar As min = 4.50 cm2

Section A-A Section B-B Section C-C Section D-Dlower lower

scsca

ssssa

ta

ss for Mrc

sc for Mrs

Page 27: Cantilever Wall

Re-bar 27/33

document.xlsx-04/18/2023

Reinforcement Bar Arrangement and Stress

Seismic ConditionName of Structure : D1 - HuluLocation : 0

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back frontBending moment M kgfcm 1,082,719 16,249,484 1,327,143 16,249,484 Shearing force (joint) S kgf 7,688 45,624 26,051 27,941 Axial force N kgf 0 0 0 0

Height of member h cm 90.0 150.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 83.0 143.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 16 16 16 16

Required R-bar Asreq cm2 5.15 45.18 3.49 45.18

R-bar arrangement 25~200 16~250 25~100 16~125 16~250 16~250 25~100 16~250

Reinforcement As cm2 24.54 8.04 49.09 16.08 8.04 8.04 49.09 8.04Perimeter of R-bar U cm 39.27 78.54 20.11 78.54

Dist. from neutral axis x cm 21.91 40.19 17.94 40.19

Compressive stress kgf/cm2 13.1 62.4 10.8 62.4Allowable stress kgf/cm2 90.0 90.0 90.0 90.0

ok ok ok okTensile stress kgf/cm2 583 2,554 1,204 2,554 Allowable stress kgf/cm2 2,775 2,775 2,775 2,775

ok ok ok okShearing stress at joint t kgf/cm2 0.93 3.19 1.82 1.95Allowable stress kgf/cm2 8.25 8.25 8.25 8.25

ok ok ok ok

Resisting Moment Mr kgfcm 4,067,715 17,311,334 2,188,388 17,279,913 Mr for compression Mrc kgfcm 4,067,715 17,311,334 5,253,008 17,279,913 x for Mrc cm 18 36 14 36

kgf/cm2 3,231 3,304 7,766 3,302 Mr for tensile Mrs kgfcm 4,934,281 18,933,061 2,188,388 18,920,938 x for Mrs cm 21 43 15 43

kgf/cm2 102 99 36 99

Distribution bar (>As/6 and >Asmin) 16~250 16~250 16~125 16~250 16~200 16~200 16~200 16~200Reinforcement As cm2 8.04 8.04 16.08 8.04 10.05 10.05 10.05 10.05

Section A-A Section B-B Section C-C Section D-Dlower upper upper lower

scsca

ssssa

ta

ss for Mrc

sc for Mrs

Page 28: Cantilever Wall

Re-bar 28/33

document.xlsx-04/18/2023

Data of Reinforcement Barf Sectional Perimeter Arrangement Area Perimeter

Area (mm) (cm2) (cm) (cm2) (cm)

12 1.131 3.770 12@125 9.05 30.1612@150 7.54 25.13 Footing (heel)12@250 4.52 15.0812@300 3.77 12.57 upper

16 2.011 5.027 16@125 16.08 40.21 3,861,855 16@150 13.40 33.51 18,227 16@250 8.04 20.11 0 16@300 6.70 16.76

19 2.835 5.969 19@125 22.68 47.75 125.019@150 18.90 39.79 7.019@250 11.34 23.88 118.019@300 9.45 19.90 100.0

22 3.801 6.912 22@125 30.41 55.29 2422@150 25.34 46.0822@250 15.21 27.65 19.4422@300 12.67 23.04

25 4.909 7.854 49.09 78.54 25~200 16~25025@150 32.72 52.3625@250 19.63 31.42 24.54 8.0425@300 16.36 26.18 39.27 ok

32 8.042 10.053 32~125 64.34 80.4232@150 53.62 67.02 31.8632@250 32.17 40.2132@300 26.81 33.51 Calculation Check 22.6

12@250 + 16@250 12,16@125 12.56 35.19 12.56 35.19 60.012,19@125 15.86 38.96 15.86 38.96 ok12,22@125 19.73 42.73 19.73 42.73 1,465 12,25@125 24.15 46.50 24.15 46.50 1,850 12,32@125 36.69 55.29 36.69 55.29 ok16,19@125 19.38 43.99 19.38 43.99 1.5416,22@125 23.25 47.76 23.25 47.76 5.5016,25@125 27.67 51.53 27.67 51.53 ok16,32@125 40.21 60.32 40.21 60.32 19,22@125 26.55 51.53 26.55 51.53 3,623,270 19,25@125 30.97 55.30 30.97 55.30 3623270.47619,32@125 43.51 64.09 43.51 64.09 22 22,25@125 34.84 59.07 34.84 59.07 2673.99317422,32@125 47.38 67.86 47.38 67.86 4,289,501 25,32@125 51.80 71.63 51.80 71.63 27

12@300 + 16@300 12,16@150 10.47 29.33 10.47 29.33 59 12,19@150 13.22 32.47 13.22 32.47 4.09 1.3412,22@150 16.44 35.61 16.44 35.61 16~200 16~30012,25@150 20.13 38.75 20.13 38.75 10.05 6.7012,32@150 30.58 46.08 30.58 46.08 ok ok16,19@150 16.15 36.66 16.15 36.66 16,22@150 19.37 39.80 19.37 39.80 16,25@150 23.06 42.94 23.06 42.94 16,32@150 33.51 50.27 33.51 50.27

Section E-Elower

25@75

Page 29: Cantilever Wall

Re-bar 29/33

document.xlsx-04/18/2023

19,22@150 22.12 42.94 22.12 42.94 19,25@150 25.81 46.08 25.81 46.08 19,32@150 36.26 53.41 36.26 53.41 22,25@150 29.03 49.22 29.03 49.22 22,32@150 39.48 56.55 39.48 56.55 25,32@150 43.17 59.69 43.17 59.69

Footing (heel)

5,676,445 26,292

0

125.07.0

118.0100.0

16

18.75

25~200 16~250

24.54 8.0439.27

26.77

38.990.0

ok 2,120 2,775

ok2.238.25

ok

4,706,450 4,706,450 19 3,405 5,815,251 22 95

16~200 16~30010.05 6.70

Section E-Eupper lower

Page 30: Cantilever Wall

document.xlsx-04/18/2023

Reinforcement Bar Arrangement( D1 - Hulu )

1.00 0.50 0.00

+ 79.00

D25~2004.00 D16~250

D16~25011.50 D16~250

D25~100 D16~125D16~250

D16~125D16~200 D16~200

7.50 D25~100 D16~250 + 69.500.50

1.00+ 67.50

D16~250D16~200 D16~250 D16~200

7.50 1.50 1.00

10.00

Section of Retaining wall

concrete = 23 m3reinforcement = 1,315 kgcost estimate = 19,014,717

D

A A

B BC

CD

Page 31: Cantilever Wall

4. Wooden Pile (Not applicable for this Project)

4.1 Bearing Capacity of a Pile

(1) Design data

Diameter of wooden pile D = 15.0 cm Length of pile L = 2.00 m

Area of pile section A = = 0.018 Perimeter of pile W = = 0.471 m SPT N-Value = 30

Ni : Average N value in a soil layer = 30

fi : friction of soil = 0.20 x Ni = 6.00

(2) Ultimate vertical bearing capacity, (qu)

qu == ( 40 x 30.0 x 0.018 )+( 0.471 x 6.00 x 2.0 )= 21.206 + 5.655 = 26.861 ton/pile

(3) Ultimate vertical bearing capacity, (qu)

qa = qu/n = 26.861 / 3 = 8.954 ton/pile

(safety factor : n = 3)

4.2 Allowable horizontal bearing capacity

Horizontal bearing capacity depend on displacement of a pile

(1) Design data

Class of timber (pile) : III Class

E = 80,000 (Young's modulus)d = Allowable horizontal displacement = 0.01 mN = SPT N-value is assumed as = 30

I = = 2,485.0 (I : Moment of Inertia for a pile)64

(2) Horizontal bearing capacity of one pile (Ha)

= 0.20 E = 28 x N

Kh =

= 0.20 x( 28 x 30.0 )x( 15.0 = 22.041

Kh x D 22.041 x 15.0b = = = 0.025 cm

4 EI 4 x 80,000 x 2,485.0

Kh x D 22.041 x 15.0 Ha = x d = x 1 = 13,020.22 kg

b 0.025= 13.020 ton

1/4 x p x D2 m2

p x D

t/m2

(40 x N x A) + (W x fi x li)

kg/cm2

p x D4

cm4

aa x E x D-3/4

)-3/4 kg/cm3

4 4

Page 32: Cantilever Wall

(3) Allowable horizontal bearing capacity due to the stress of a pile itself

Ha =

s = Allowable stress of timber III class = 75.00

W = = 331.34 ; (W : section modulus of a pile)32

Ma = s x W = 75.00 x 331.34 = 24,850.5 kg cm

Ha == 2 x 0.025 x 24,850.5 = 1,262.06 kg/pile = 1.262 ton/pile

Allowable horizontal bearing capacity acting on the pile top depend upon the allowable stress of pile itself.

4.3 Spacing of Pile (1) For horizontal load

Ha = 1.262 ton/pile ; (Ha : Horizontal load carried by pile)

Hr = H - Hf = = 56.348 - 78.581 = -22.233 ton/m

Ha 1.262 Spacing of pile = = = -0.06 m

Hr -22.233

Spacing of pile = -0.06 m (center to center) by horizontal force

(2) For vertical load

V = 215.900 ton/m : Vertical load carried by pile

qa = 8.954 ton/pile : Allowable vertical bearing capacity of a pile

qa 8.954 Spacing of pile = = = 0.04 m

V 215.900

= 2.00 m ),

Vp = -177.334 ton/m : Vertical load carried by pile

qa = 8.954 ton/pile : Allowable vertical bearing capacity of a pile

qa 8.954 Spacing of pile = = = -0.05 m

Vp -177.334

= 2.00 m ),

2 x b x Ma

kg/cm2

p x D3

cm3

2 x b x Ma

H - V x tan(2f/3)

Spacing of pile can be determined 0.75 m for a pile ( f 150, L

Spacing of pile can be determined 1.50 m for a pile ( f 150, L

Page 33: Cantilever Wall

12th Oct, Stability AnalysisUplift pressure are added for stability analysis.

Reinforcement Bar ArrangementReinforcement bar for Footing (heel) are collected.

Jan. 7, '03 Stability

(distributed width of reaction of foundation soil)

Structure

(distributed width of reaction of foundation soil)

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.