Cambridge International Examinations

Download Cambridge International Examinations

Post on 12-Nov-2014

669 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

<p>CAMBRIDGE INTERNATIONAL EXAMINATIONSGCE Advanced Subsidiary Level and GCE Advanced Level</p> <p>MARK SCHEME for the November 2003 question papers</p> <p>9702 PHYSICS9702/01 9702/02 9702/03 9702/04 9702/05 9702/06 Paper 1 (Multiple Choice (AS)), maximum mark 40 Paper 2 (Structured Questions (AS)), maximum mark 60 Paper 3 (Practical (AS)), maximum mark 25 Paper 4 (Structured Questions (A2 Core)), maximum mark 60 Paper 5 (Practical (A2)), maximum mark 30 Paper 6 (Options (A2)), maximum mark 40</p> <p>These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination. All Examiners are instructed that alternative correct answers and unexpected approaches in candidates scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. Mark schemes must be read in conjunction with the question papers and the Report on the Examination.</p> <p>CIE will not enter into discussions or correspondence in connection with these mark schemes.</p> <p>CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.</p> <p>November 2003</p> <p>GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL</p> <p>MARK SCHEME MAXIMUM MARK: 40</p> <p>SYLLABUS/COMPONENT: 9702/01 PHYSICS Paper 1 (Multiple Choice (AS))</p> <p>Page 1</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS - NOVEMBER2003 Question Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Key C C A D D B B A C B D A C B B C D B B A Question Number 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40</p> <p>Syllabus 9702 Key D C A D D A D B B D A A C B D B D C B C</p> <p>Paper 01</p> <p> University of Cambridge Local Examinations Syndicate 2003</p> <p>November 2003</p> <p>GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL</p> <p>MARK SCHEME MAXIMUM MARK: 60</p> <p>SYLLABUS/COMPONENT: 9702/02 PHYSICS Paper 2 (Structured Questions (AS))</p> <p>Page 1</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS - NOVEMBER 2003</p> <p>Syllabus 9702</p> <p>Paper 02</p> <p>Categorisation of marks The marking scheme categorises marks on the MACB scheme. B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidates answer. M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidates answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded. A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored. Conventions within the marking scheme BRACKETS Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks. UNDERLINING In the marking scheme, underlining indicates information that is essential for marks to be awarded.</p> <p> University of Cambridge Local Examinations Syndicate 2003</p> <p>Page 2</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS - NOVEMBER 2003</p> <p>Syllabus 9702</p> <p>Paper 02</p> <p>1 (a)</p> <p>(i) (ii)</p> <p>acceleration (allow a definition of acceleration) ............................ B1 the velocity is decreasing or force/acceleration is in negative direction accept body is decelerating/slowing down ............... B1 e.g. separation of dots becomes constant/does not continue to increase (must make a reference to the diagram) ........................ B1 distance = 132 cm........................................................................ B1 at constant speed, distance travelled in 0.1 s = 25 cm (allow 1 cm)............................................................................... C1 distance = 132 + (4 x 25) = 232 cm ...................................................................... A1 s = ut + at2 1.6 = x 9.8 x t2 (allow g = 10 m s-2 ............................................ C1 t = 0.57 s ...................................................................................... C1 hence 6 photographs (bald answer scores 2 marks only) ........... A1 mass: measure of bodys resistance/inertia to changes in velocity/motion ............................................................................. B1 weight: effect of gravitational field on mass or force of gravity ..... B1 any further comment e.g. mass constant, weight varies/ weight = mg/scalar and vector ..................................................... B1 e.g. where gravitational field strength changes (change) in fluid surrounding body. 1 each, max 2 ................... B2 force x perpendicular distance .....................................................M1 (of the force) from the pivot .......................................................... A1 no resultant force (in any direction) .............................................. B1 no resultant moment (about any point)......................................... B1 [2]</p> <p>(b)</p> <p>(i) (ii)1 (ii)2</p> <p>[4]</p> <p>(c)</p> <p>[3]</p> <p>2 (a)</p> <p>[3] [2] [2] [2] [1]</p> <p>(b) 3 (a) (b) (c) (i) (ii)1 (ii)2 (ii)3 4 (a) (i)1 (i)2 (i)3 (i)4</p> <p>correct direction in both................................................................ B1 moment = 150 x 0.3 = 45 N m (1 sig. fig. -1) ................................ A1 torque = 45 N m i.e. same is (i) .................................................... A1 45 = 0.12 x T................................................................................ C1 T = 375 N ..................................................................................... A1 amplitude = 0.4(0) mm ................................................................. A1 wavelength = 7.5 x 10-2 m (1 sig. fig. -1 unless already penalised) ........................................ A1 period = 0.225 ms ........................................................................ C1 frequency = 1/T = 4400 Hz........................................................... A1 v = f = 4400 x 7.5 x 10-2 ................................................................... C1 = 330 m s-1............................................................................... A1</p> <p>[4]</p> <p>[6]</p> <p> University of Cambridge Local Examinations Syndicate 2003</p> <p>Page 3</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS - NOVEMBER 2003</p> <p>Syllabus 9702</p> <p>Paper 02</p> <p>(a) (b)</p> <p>(ii) (i) (ii)</p> <p>reasonable shape, same amplitude and wavelength doubled ...... B1 1.7(2) m ..................................................................................... A1 d sin2 = n (double slit formula scores 0/2) 1.72 x 10-6 x sin 2 = 590 x 10-9 ..................................................... C1 2 = 20.1 (allow 20) .................................................................... A1 L = 1.5 tan20.1 .......................................................................... C1 L = 1.1 m...................................................................................... A1 arrow from B towards A................................................................ B1 E = V/d = 450/(9.0 x 10-2) ..................................................................... C1 = 5.0 x 103 N C-1 (accept 1 sig. fig) .......................................... A1 energy = qV or Eqd .................................................................... C1 = 1.6 x 10-19 x 450........................................................... A1 = 7.2 x 10-17 J.................................................................. A0 Ek = mv2 7.2 x 10-17 = x 9.1 x 10-31 x v2 ................................................... C1 v = 1.26 x 107 m s-1 ...................................................................... A1 line from origin, curved in correct direction but not level out ....... B1</p> <p>[1]</p> <p>(iii) 5 (a) (i) (ii)</p> <p>[5]</p> <p>[3]</p> <p>(b)</p> <p>(i)</p> <p>(ii)</p> <p>[4] [1]</p> <p>(c) 6 (a) (i) (ii) (b) (i)</p> <p>26 protons.................................................................................... B1 30 neutrons .................................................................................. B1 mass = 56 x 1.66 x 10-27 ............................................................. C1 (allow x 1.67 x 10-27 but 0/2 for use of 26 or 30) = 9.3 x 10-26 kg .................................................................. A1 density = mass/volume where volume = 4/3 x x r3 .................... C1 = (9.3 x 10-26)/(4/3 x x {5.7 x 10-15}3) = 1.2 x 1017 kg m-3 .......................................................... A1 nucleus occupies only very small fraction of volume of atom or lot of empty space inside atom ............................................... B1 (do not allow spacing between atoms) any further good physics e.g. nuclear material is very dense ....... B1 [2]</p> <p>(ii)</p> <p>[4]</p> <p>(c)</p> <p>[2]</p> <p>7 (a)</p> <p>(i)</p> <p>P = Vi ....................................................................................... C1 1200 = 240 x i ..............................................................................M1 i = 5.0 A ....................................................................................... A0 V = iR 240 = 5.0 x R ............................................................................... C1 R = 48 ....................................................................................... A1 p.d. = (5.0 x 4.0 =) 20 V ............................................................... A1 mains voltage = (240 + 20 =) 260 V ............................................. A1 P = (20 x 5.0 =) 100 W ................................................................. A1 power input = 1200 + 100 = 1300 W ............................................ C1 efficiency = 1200/1300 = 0.92 ...................................................... A1 [3] [2]</p> <p>(ii)</p> <p>[4]</p> <p>(b)</p> <p>(i) (ii) (iii)</p> <p>(c)</p> <p> University of Cambridge Local Examinations Syndicate 2003</p> <p>November 2003</p> <p>GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL</p> <p>MARK SCHEME MAXIMUM MARK: 25</p> <p>SYLLABUS/COMPONENT: 9702/03 PHYSICS Paper 3 (Practical (AS))</p> <p>Page 1</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS NOVEMBER 2003</p> <p>Syllabus 9702</p> <p>Paper 03</p> <p>(c) (ii)</p> <p>Percentage uncertainty in first value of d Uncertainty = 1 mm or 2 mm scores 1 mark. Ratio idea correct scores 1 mark.</p> <p>2/1/0</p> <p>(e) (i)</p> <p>Readings 3/2/1/0 6 sets of values for d/T scores 1 mark. Check a value for T. Underline checked value. Tick if correct and score 1 mark. Ignore rounding errors. If incorrect, write in correct value and do not award the mark. If there is no record of the number of oscillations then do not award this mark. If there are no raw times do not award this mark. If t for T then do not award this mark and ecf into the calculation for d/T. Check a value for d/T. Underline this value. Tick if correct and score 1 mark. Ignore rounding errors. If incorrect, write in correct value and do not award the mark. ecf for T. Help given by Supervisor, then -1. Excessive help then -2. Misread stopwatch 1. Repeated readings For each value of d there must be at least two values of t. Do not award this mark if all of the repeats are identical. Reasonable time used for oscillations At least half of the raw times must be greater than 20 s. If there are no raw times do not award this mark. 1</p> <p>(e) (i)</p> <p>(e) (i)</p> <p>1</p> <p>(e) (i)</p> <p>Quality of results 2/1/0 Judge by scatter of points about the line of best fit. 6 trend plots with little scatter scores 2 marks. 5 trend plots with little scatter scores 1 mark. Wrong trend of plots cannot score these marks (i.e. t increases as d increases) Column headings Apply to d/T only. Consistency Apply to d only. All the values of d must be given to the nearest millimetre. Significant figures Apply to d/T only. d/T must be given to the same number, or one more than, the number of significant figures as the least accurate data. Check each value by row. Justification for sf in d/T Answer must relate sf in d (and t) to sf in d/T. Do not allow answers in terms of decimal places. Raw data ideas or reference to T instead of t can score 1/2 marks. 1 1 1</p> <p>(e) (i) (e) (i) (e) (i)</p> <p>(e) (ii)</p> <p>2/1/0</p> <p>(f) (i)</p> <p>Axes Scales must be such that the plotted points occupy at least half the graph grid in both the x and y directions. Scales must be labelled with the quantities plotted. Do not allow awkward scales (e.g. 3:10, 6:10, 7:10 etc.). Ignore unit. Do not allow large gaps in the scale (i.e. 4 large squares or more). Plotting of points Count the number of plots and write as a ringed number on the grid. All observations must be plotted. There must be at least 5 plots on the grid. Check a suspect plot. Circle and tick if correct. If incorrect, show correct position with arrow, and do not award the mark. Work to half a small square. University of Cambridge Local Examinations Syndicate 2003</p> <p>1</p> <p>(f) (i)</p> <p>1</p> <p>Page 2</p> <p>Mark Scheme A/AS LEVEL EXAMINATIONS NOVEMBER 2003</p> <p>Syllabus 9702</p> <p>Paper 03</p> <p>(f) (i)</p> <p>Line of best fit There must be a reasonable balance of points about the line of best fit. Only a straight line drawn through a linear trend is allowable.</p> <p>1</p> <p>(f) (ii)</p> <p>Determination of gradient 1 used must be greater than half the length of the drawn line. x/y scores zero. The value must be negative (if the line has a negative gradient). Check the read-offs. Work to half a small square. y-intercept 1 The value may be read directly or calculated using y = mx + c and a point on the line. Gradient equated with -2/g Value of g Accept 9.3 m s-2 &lt; g &lt; 10.3 m s-2. This mark can only be scored if the gradient has been used. Unit of g Must be consistent with the working. Intercept equated with To A numerical value is expected. Allow ecf from candidates value in (f) (ii). Unit of To 1 1</p> <p>(f) (ii)</p> <p>(g1) (g2)</p> <p>(g3) (g4)</p> <p>1 1</p> <p>(g5) (h)</p> <p>1</p> <p>Suggested improvement; e.g. 1 Measure the time for a greater number of oscillations: Use a thinner rod/knife edge for the stop: Use a fiducial marker/projection on screen: Use an electronic timing method (e.g. light gates &amp; timer/datalogger &amp; motion sensor/laser &amp; timer) Use larger values of d. Do not allow repeat readings, more sensitive stopwatch, do the experiment in a vacuum, switch the fans off, use heavier bob, avoid parallax error or use a computer.</p> <p>25 marks in total.</p> <p> University of Cambridge Local Examination...</p>

Recommended

View more >