calculul instalatie de ancorare

Upload: sci-andrei

Post on 17-Feb-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Calculul Instalatie de Ancorare

    1/23

    4.9 Calculation of the mooring system

    In the following pages, the calculation of a mooring system for an oil tanker will be

    presented. For ship dimensions will be used LS Annes dimensions.

    Chapter 1

    Primary dimensions determination

    1.1 Length of the vessel [m]

    L ! "#$.$ m

    1.2 Service speed [ms]

    %! %&'#.$"(! ).")* m+s "."-

    %& ships ser%ice speed/ %&! "0 &d

    1.! "roude#s num$er

    Fr!v

    gL !6.168

    9.81105.5 ! #."1"2 ".3-

    % ser%ice speed

    g gra%itational acceleration 1.*"m+s3-

    L length of the %essel

    1.4 "inesse $loc% coefficient&

    4he block coefficient will be calculated using Logace%s formula for tankers and bulk

    carriers.

    56! "."#$ 7 ".)* ' Fr ! #.2*3 ".0-

  • 7/23/2019 Calculul Instalatie de Ancorare

    2/23

    1.' Length over $readth fraction&

    4here are used the ships dimensions.

    L

    B !

    105.5

    16.8 ! ).3* ".(-

    6 7 breadth of the ship/ 6!").* m

    1.( )raft of the vessel&

    Also, taken from ships particulars, 4 ! ).0 m

    1.* )isplacement [m!]

    8 ! L'6'4'56 ".$-

    8 ! "#$.$'").*').0'#.2*3 ! *20".1#$ m0

    1.+ ,eight [m]

    9 ! 2.( m

    1.9 "ree$oard [mm]

    F ! 94-'"#0 ".)-

    F! 2.().0-'"#0! ""## mm

    6ecause the block coefficient is greater than #.)*, the freeboard will be multiplied with m,

    where:

    m!Cb+0.68

    1.36 !".#2$ ".2-

    4herefore,

    F"! F'm ".*-

    F"! ""##'".#2$ ! ""*3.$ mm

  • 7/23/2019 Calculul Instalatie de Ancorare

    3/23

    Also, because the height of the ship is greater thanL

    15 !2.#0, the freeboard will be

    increased with m , where:

    m! 9L15

    'L0.48 ".1-

    m ! 2.( 7105.5

    15 -'105.5

    0.48 ! *#.)

    4herefore,

    F3! F"; m "."#-

    F3! ""*3.$;*#.) ! "3)0." mm

    1.1- echnical characteristics

    Sail area

  • 7/23/2019 Calculul Instalatie de Ancorare

    4/23

    hi! "$m / h!").3m

    a

  • 7/23/2019 Calculul Instalatie de Ancorare

    5/23

    Chapter 2

    /nchors

    4he Bruson anchor is chosen, a con%entional type stockless anchor.

  • 7/23/2019 Calculul Instalatie de Ancorare

    6/23

    Chapter !

    /nchor ca$le

    It is composed of a cable shackle, common links Coined by Coining links and an end link.Length of a shackle is 32.$ m and the cable has "* shackles.

    L6b! 3($ m L4b! 3$# m

    L6b7 length of the port side anchor chain

    L4b7 length of the starboard side anchor chain

    Specific weight:

    D! #.#"1*'d3! (1.$ kg+m 0."-

    !.1 Stoppers

    5able stoppers, usually known as slips, are pro%ided to hold the cable prior to letting go an

    anchor, or to act as pre%enters when the ship is riding on the brake of the cable holder, or to hold

    the cable temporarily so that the inboard part of the cable can be handled, or to house the anchor

    securely in the hawsepipe.

    5hoosing the stoppers for our installation, will reDuire finding the %alue of strength test of the

    stopper, gi%en by the relation:

  • 7/23/2019 Calculul Instalatie de Ancorare

    7/23

    i!;D'l4b-'a 0.3-

    a 7 %alue depending on the running speed of the cable, which will be considered "# m+min, and

    the cable caliber

    a! v2/d ! "##+$# ! 3

    i!0#)#;(1.$'3$#-'3 ! 0#*2# E&

    And for the port side:

    i! ;D'l6b-'a 0.0-

    i! 0#)#;(1.$'3($-'3 ! 0#02$ E&

    !.2 he anchor ha0se

    According to the ?omanian &a%al ?egister, the thickness of wall of the anchor hawse must

    respect the condition:

    s 0.4d therefore,

    s! 3# mm

    4he thickness of the inferior part of the hawse will be:

    sinf!3$ mm

    4he diameter of the hawse, according to the ?.&.?, is:

    n!003

    Q ! (21." mm 0.(-

    ! 0#)# E&

    Ge calculate a larger diameter:

    na! n; 3#.1 ! $## mm 0.$-

  • 7/23/2019 Calculul Instalatie de Ancorare

    8/23

    !.! he chain 0ell

    4here will be two circular wells, ha%ing the diameter:

    p! E'd ! 0#'$# ! "$## mm 0.)-

    k 7 structural coefficient : 0#H01

    4he %olume of the chain well is gi%en by the relation:

    4b!l4b'ku'd3'"#) 0.2-

    ku7 filling coefficient/ ku! *.$

    4b!3$#'*.$'3$##'"#)! $.0 m0

    4he height of taluJare Jone:

    93!Dp

    2 ' tg K 0.*-

    where, K!($

    93!1500

    21=750mm

    4he %olume of taluJare Jone:

    V2=

    1

    3Dp

    2H2

    4 0.1-

    3!

    1

    31.520.75

    4! #.(( m0

    5omplete filling %olume:

  • 7/23/2019 Calculul Instalatie de Ancorare

    9/23

    "!3! (.*) m0 0."#-

    9eight of the complete filling Jone:

    H1=

    4V1

    Dp2 0.""-

    H1=

    44.86

    1.52=2.75m

    Free Jone height

    4his Jone is designed for maintenance and obser%ation of the cable

    H3

    15d/

    So, 90! 2$# mm

    6ut, 9!9";93;90 0."3-

    must be an integer, therefore, 90! ".$ m

    9!3.2$;#.2$;".$ ! $ m

    4he %olume of this Jone is gi%en by the relation:

    V3=H3Dp

    2

    4! 3.)$ m0 0."0-

    4he %olume of the chain well will be:

    t!;0! $.0;3.)$ ! 2.1$ m0 0."(-

  • 7/23/2019 Calculul Instalatie de Ancorare

    10/23

    Chapter 4

    ooring euipment

    3indlasses

    4he force of the cable holder must be at least:

    P1=9.8a d2=9.84.25502=104.125KN (."-

    4hrust force on a cable holder:

    Ft=1.5P1=156.2KN (.3-

    4.1 Calculation of the gipsy 0heel

  • 7/23/2019 Calculul Instalatie de Ancorare

    11/23

    Mitch of the cable is:

    p!*d / p!(## mm

    iameter of the cable holder:

    Dcb= 8dsin36

    =680.5mm (.0-

    4.2 he nominal P of the gipsy 0heel, measured in ?ot+min, is:

    nb= v

    40d103 (.(-

    nb= 10

    4050103=5m /min

    % 7 speed of lifting the cable/ %!"# m+min

    4.! omentum of the gipsy 0heel

    Mb=P

    1DCb2 (.$-

    Mb=104.125680.5

    2=35428Nm

    4.4 Po0er of gipsy 0heel

    Pb=Mbnb

    30 (.)-

  • 7/23/2019 Calculul Instalatie de Ancorare

    12/23

    Pb=354285

    30=18550W

    Chapter '

    Calculation of anchoring depth

    4he relation is:

    hmax=(Ks

    max

    Q

    q +2 !)+(Ks

    max

    Q

    q +2 !)2

    + 02

    $."-

    where: ksmaN7 break out coefficient of the anchor/ EsmaN!0

    D 7 specific mass of the cable

    7 total mass of the anchor

    f 7 friction coefficient of the cable/ f!#.#3$

    l37 shackle length/ l3!32.$ m

    l#7 length of the free cable

    0="b22 $.3-

    0=250227.5=195m

  • 7/23/2019 Calculul Instalatie de Ancorare

    13/23

    hmax=( 3306049.5 +27.50.025)+(3306049.5

    +27.50.025)2

    +1952=83.438m

    '.1 "i5ation limits:

    #max=0.87qg( 0

    2hmax2 )

    2hmax $.0-

    #max=0.8749.59.81(195283.4382)

    283.438=73364N

    '.2 "riction $et0een ca$le and ground coefficient:

    !$=

    q02qhmax

    2 2hmaxKsmaxQ

    2hmaxq2 $.(-

    ! $=49.5195249.583.4382283.43833060

    283.43849.527.5 =0.0251

    5ondition:

    |!$!|

  • 7/23/2019 Calculul Instalatie de Ancorare

    14/23

    )etermination of the tension variation in the gipsy 0heel 0hen heaving the

    anchor at depth h

    4his determination consists in going through ( steps:

    a- Mulling the ship on the anchoring line in the same time with hea%ing the shackles:

    4ension at the hawse pipe will be:

    "=0.87g (KsmaxQ+q2 !+qh )+qg h )."-

    where,

    h 7 anchorage depth will be 0# meters/

    4he tension at the gipsy wheel is calculated with:

    "b1="N1

    %ha&s' ).3-

    where, Ohawse #.1*

    4hese tensions will be calculated for l3!32.$ and l3!# meters.

    For l3!32.$ :

    "N(

    (1)=0.879.81(33060+49.527.50.025+49.530)+49.59.8130

    4&I"-! "#$**# &

    "b((1)=

    105880

    0.98=108041N

  • 7/23/2019 Calculul Instalatie de Ancorare

    15/23

    For l3!#:

    4&I3-! "#$$1# & and 4bI

    3-! "#22(( &

    b- Mulling the ship in anchoring line, while dumping the shank of the anchor, respecting

    the neNt conditions:

    4&IIP"Q!4&I

    3-!"#$$1# &/

    4&II3-!4&III/

    4bII"-!4bI

    3-!"#22(( &/

    4bII3-!4bIII/

    c- 6reaking ground, using the neNt conditions:

    "N(((=0.87g ( )sminQ+qh )+0.87)dg (Q+qh) ).0-

    "b(((= "N(((%h a&s'

    ).(-

    where: kd dynamic coefficient/ kd!3

    ksmin minimum breaking coefficient/ ksmin!"

    "N(((=0.879.81(13060+49.530 )+0.8729.81(3060+49.530)

    N(((=" "")02# &

  • 7/23/2019 Calculul Instalatie de Ancorare

    16/23

    "b(((= ""*2($ &

    4he neNt condition must be respected:

    M" R 4bi"-R! "#("3$ & R "#*#(" &

    Ft R 4bIII"-R! "$)"*2 & R ""*2($ &

    4he second condition is not fulfilled, so @band Mbfrom the gipsy wheel calculation will be

    modified:

    Mb=

    P1Dcb2

    Mb=1125410.68

    2=38263Nm

    4herefore, we recalculate the power on the gipsy wheel:

    Pb=Mbnb

    30 ).$-

    Pb=382635

    30=20035W

    d- 9ousing the anchor by respecting these conditions:

    "N(V=0.87g(Q+qh$)

    ).)-

    where # *h $*h

    "b(V="N(V

    %ha&s' ).2-

  • 7/23/2019 Calculul Instalatie de Ancorare

    17/23

    For h!h!0# m

    "N(V

    (1)=0.879.81(3060+49.530)=38790N

    "b(V(1)=

    38790

    0.98=39582N

    For h!#

    "N(V(2)

    !3)"") & and "b(V(2)

    !3))(1 &

    Chapter *

    )etermination of e5ternal forces that act upon the ship and verification of the

    heaving line

    *.1 3ater forceis composed of the friction force Faf- and the waste force Far-

    Fa!Faf;Far 2."-

    4he friction force is defined by:

  • 7/23/2019 Calculul Instalatie de Ancorare

    18/23

    Fa!=1

    2+a( c !+,c!)-.va

    2

  • 7/23/2019 Calculul Instalatie de Ancorare

    19/23

    %a7 speed of water/ 3 m+s

    ,c!7 correction term for the hull co%ered with clamshells/

    ,c!=1.9103

    /

    So,

    Fa!=1

    21.026(1.92103+1.9103 )25164=19.7KN

    ?esidual force is gi%en by the relation:

    Fa/=1

    2+ac/(LB")

    2/3v a2 [KN]

    2.)-

    where, cr7 usual residual coefficient/ cf! #.2'"#0

    cr 7 coefficient depending on the breadth, the draft of the ship and the residual

    coefficient

    c/$=c/+0.16(B"2.5)103 2.2-

    c/$=0.7103+0.16( 16.86.3 2.5)103=7.266104

    4herefore,

    Fa/=1

    21.0260.7103(105.516.86.3)2 /34=0.717KN

    4he friction force is added to the residual force so that the water force will be found.

  • 7/23/2019 Calculul Instalatie de Ancorare

    20/23

    Fa=19.7+0.717=20.415KN

    *.2 he 0ind force

    Fv=0.001pv0 v[KN] 2.*-

    where, A%7 reef surface/

    p%7 wind pressure/ p%! $2 &+m3

    4he reef surface will be calculated with the following relation:

    0v=1.6103F

    2L(sin1+BLc2s1)[m2] 2.1-

    4he calculations of F%and A%will be made for >!#/

    2 and arctgL

    B .

    For >!#,

    0v=1.61031263.1105.5( 16.8105.51)=33.95m2

    Fv=0.0015733.95=1.935KN

    For >!

    2 ,

    A%! 3"0.3" m3 F%! "3."$ E&

  • 7/23/2019 Calculul Instalatie de Ancorare

    21/23

    For1=a/ctg

    L

    B ,

    A%! 3"$.*1 m3 F%! "3.0 E&

    *.! 3ave forces

    F&=p&0 i

  • 7/23/2019 Calculul Instalatie de Ancorare

    22/23

    F&=0.39972.765=29.03KN

    For 1=

    2 ,

    Ai! ()$.3$$ m3 Fw! "*$.)0 E&

    For 1=82.1 ,

    Ai! (2".#33 m3 Fw! "*2.10 E&

    *.4 6erifying the mooring line

    4here are 3 possibilities to moor. U is chosen 3$

    .

    a- mooring on both lines, where:

    "N=Fa+Fv+F&2cos5 2."0-

    "N=20.415+1.935+29.03

    2cos25 =28.34KN

    b- mooring on a single line, taking into account the condition#*"N

    1 /

    for1=

    2 /

    #2=Fa

    2+(Fv 2

    +F&2

    )22Fa(Fv

    2

    +F& 2

    )cos(1802 ) 2."(-

  • 7/23/2019 Calculul Instalatie de Ancorare

    23/23

    #2=20.4152+(12.15+185.63 )2220.415(12.15+185.63 )0.87862=180.106KN

    4he condition# *"N( is not fulfilled so mooring on two mooring lines will be choosen.