calculul instalatie de ancorare
Embed Size (px)
TRANSCRIPT
-
7/23/2019 Calculul Instalatie de Ancorare
1/23
4.9 Calculation of the mooring system
In the following pages, the calculation of a mooring system for an oil tanker will be
presented. For ship dimensions will be used LS Annes dimensions.
Chapter 1
Primary dimensions determination
1.1 Length of the vessel [m]
L ! "#$.$ m
1.2 Service speed [ms]
%! %&'#.$"(! ).")* m+s "."-
%& ships ser%ice speed/ %&! "0 &d
1.! "roude#s num$er
Fr!v
gL !6.168
9.81105.5 ! #."1"2 ".3-
% ser%ice speed
g gra%itational acceleration 1.*"m+s3-
L length of the %essel
1.4 "inesse $loc% coefficient&
4he block coefficient will be calculated using Logace%s formula for tankers and bulk
carriers.
56! "."#$ 7 ".)* ' Fr ! #.2*3 ".0-
-
7/23/2019 Calculul Instalatie de Ancorare
2/23
1.' Length over $readth fraction&
4here are used the ships dimensions.
L
B !
105.5
16.8 ! ).3* ".(-
6 7 breadth of the ship/ 6!").* m
1.( )raft of the vessel&
Also, taken from ships particulars, 4 ! ).0 m
1.* )isplacement [m!]
8 ! L'6'4'56 ".$-
8 ! "#$.$'").*').0'#.2*3 ! *20".1#$ m0
1.+ ,eight [m]
9 ! 2.( m
1.9 "ree$oard [mm]
F ! 94-'"#0 ".)-
F! 2.().0-'"#0! ""## mm
6ecause the block coefficient is greater than #.)*, the freeboard will be multiplied with m,
where:
m!Cb+0.68
1.36 !".#2$ ".2-
4herefore,
F"! F'm ".*-
F"! ""##'".#2$ ! ""*3.$ mm
-
7/23/2019 Calculul Instalatie de Ancorare
3/23
Also, because the height of the ship is greater thanL
15 !2.#0, the freeboard will be
increased with m , where:
m! 9L15
'L0.48 ".1-
m ! 2.( 7105.5
15 -'105.5
0.48 ! *#.)
4herefore,
F3! F"; m "."#-
F3! ""*3.$;*#.) ! "3)0." mm
1.1- echnical characteristics
Sail area
-
7/23/2019 Calculul Instalatie de Ancorare
4/23
hi! "$m / h!").3m
a
-
7/23/2019 Calculul Instalatie de Ancorare
5/23
Chapter 2
/nchors
4he Bruson anchor is chosen, a con%entional type stockless anchor.
-
7/23/2019 Calculul Instalatie de Ancorare
6/23
Chapter !
/nchor ca$le
It is composed of a cable shackle, common links Coined by Coining links and an end link.Length of a shackle is 32.$ m and the cable has "* shackles.
L6b! 3($ m L4b! 3$# m
L6b7 length of the port side anchor chain
L4b7 length of the starboard side anchor chain
Specific weight:
D! #.#"1*'d3! (1.$ kg+m 0."-
!.1 Stoppers
5able stoppers, usually known as slips, are pro%ided to hold the cable prior to letting go an
anchor, or to act as pre%enters when the ship is riding on the brake of the cable holder, or to hold
the cable temporarily so that the inboard part of the cable can be handled, or to house the anchor
securely in the hawsepipe.
5hoosing the stoppers for our installation, will reDuire finding the %alue of strength test of the
stopper, gi%en by the relation:
-
7/23/2019 Calculul Instalatie de Ancorare
7/23
i!;D'l4b-'a 0.3-
a 7 %alue depending on the running speed of the cable, which will be considered "# m+min, and
the cable caliber
a! v2/d ! "##+$# ! 3
i!0#)#;(1.$'3$#-'3 ! 0#*2# E&
And for the port side:
i! ;D'l6b-'a 0.0-
i! 0#)#;(1.$'3($-'3 ! 0#02$ E&
!.2 he anchor ha0se
According to the ?omanian &a%al ?egister, the thickness of wall of the anchor hawse must
respect the condition:
s 0.4d therefore,
s! 3# mm
4he thickness of the inferior part of the hawse will be:
sinf!3$ mm
4he diameter of the hawse, according to the ?.&.?, is:
n!003
Q ! (21." mm 0.(-
! 0#)# E&
Ge calculate a larger diameter:
na! n; 3#.1 ! $## mm 0.$-
-
7/23/2019 Calculul Instalatie de Ancorare
8/23
!.! he chain 0ell
4here will be two circular wells, ha%ing the diameter:
p! E'd ! 0#'$# ! "$## mm 0.)-
k 7 structural coefficient : 0#H01
4he %olume of the chain well is gi%en by the relation:
4b!l4b'ku'd3'"#) 0.2-
ku7 filling coefficient/ ku! *.$
4b!3$#'*.$'3$##'"#)! $.0 m0
4he height of taluJare Jone:
93!Dp
2 ' tg K 0.*-
where, K!($
93!1500
21=750mm
4he %olume of taluJare Jone:
V2=
1
3Dp
2H2
4 0.1-
3!
1
31.520.75
4! #.(( m0
5omplete filling %olume:
-
7/23/2019 Calculul Instalatie de Ancorare
9/23
"!3! (.*) m0 0."#-
9eight of the complete filling Jone:
H1=
4V1
Dp2 0.""-
H1=
44.86
1.52=2.75m
Free Jone height
4his Jone is designed for maintenance and obser%ation of the cable
H3
15d/
So, 90! 2$# mm
6ut, 9!9";93;90 0."3-
must be an integer, therefore, 90! ".$ m
9!3.2$;#.2$;".$ ! $ m
4he %olume of this Jone is gi%en by the relation:
V3=H3Dp
2
4! 3.)$ m0 0."0-
4he %olume of the chain well will be:
t!;0! $.0;3.)$ ! 2.1$ m0 0."(-
-
7/23/2019 Calculul Instalatie de Ancorare
10/23
Chapter 4
ooring euipment
3indlasses
4he force of the cable holder must be at least:
P1=9.8a d2=9.84.25502=104.125KN (."-
4hrust force on a cable holder:
Ft=1.5P1=156.2KN (.3-
4.1 Calculation of the gipsy 0heel
-
7/23/2019 Calculul Instalatie de Ancorare
11/23
Mitch of the cable is:
p!*d / p!(## mm
iameter of the cable holder:
Dcb= 8dsin36
=680.5mm (.0-
4.2 he nominal P of the gipsy 0heel, measured in ?ot+min, is:
nb= v
40d103 (.(-
nb= 10
4050103=5m /min
% 7 speed of lifting the cable/ %!"# m+min
4.! omentum of the gipsy 0heel
Mb=P
1DCb2 (.$-
Mb=104.125680.5
2=35428Nm
4.4 Po0er of gipsy 0heel
Pb=Mbnb
30 (.)-
-
7/23/2019 Calculul Instalatie de Ancorare
12/23
Pb=354285
30=18550W
Chapter '
Calculation of anchoring depth
4he relation is:
hmax=(Ks
max
Q
q +2 !)+(Ks
max
Q
q +2 !)2
+ 02
$."-
where: ksmaN7 break out coefficient of the anchor/ EsmaN!0
D 7 specific mass of the cable
7 total mass of the anchor
f 7 friction coefficient of the cable/ f!#.#3$
l37 shackle length/ l3!32.$ m
l#7 length of the free cable
0="b22 $.3-
0=250227.5=195m
-
7/23/2019 Calculul Instalatie de Ancorare
13/23
hmax=( 3306049.5 +27.50.025)+(3306049.5
+27.50.025)2
+1952=83.438m
'.1 "i5ation limits:
#max=0.87qg( 0
2hmax2 )
2hmax $.0-
#max=0.8749.59.81(195283.4382)
283.438=73364N
'.2 "riction $et0een ca$le and ground coefficient:
!$=
q02qhmax
2 2hmaxKsmaxQ
2hmaxq2 $.(-
! $=49.5195249.583.4382283.43833060
283.43849.527.5 =0.0251
5ondition:
|!$!|
-
7/23/2019 Calculul Instalatie de Ancorare
14/23
)etermination of the tension variation in the gipsy 0heel 0hen heaving the
anchor at depth h
4his determination consists in going through ( steps:
a- Mulling the ship on the anchoring line in the same time with hea%ing the shackles:
4ension at the hawse pipe will be:
"=0.87g (KsmaxQ+q2 !+qh )+qg h )."-
where,
h 7 anchorage depth will be 0# meters/
4he tension at the gipsy wheel is calculated with:
"b1="N1
%ha&s' ).3-
where, Ohawse #.1*
4hese tensions will be calculated for l3!32.$ and l3!# meters.
For l3!32.$ :
"N(
(1)=0.879.81(33060+49.527.50.025+49.530)+49.59.8130
4&I"-! "#$**# &
"b((1)=
105880
0.98=108041N
-
7/23/2019 Calculul Instalatie de Ancorare
15/23
For l3!#:
4&I3-! "#$$1# & and 4bI
3-! "#22(( &
b- Mulling the ship in anchoring line, while dumping the shank of the anchor, respecting
the neNt conditions:
4&IIP"Q!4&I
3-!"#$$1# &/
4&II3-!4&III/
4bII"-!4bI
3-!"#22(( &/
4bII3-!4bIII/
c- 6reaking ground, using the neNt conditions:
"N(((=0.87g ( )sminQ+qh )+0.87)dg (Q+qh) ).0-
"b(((= "N(((%h a&s'
).(-
where: kd dynamic coefficient/ kd!3
ksmin minimum breaking coefficient/ ksmin!"
"N(((=0.879.81(13060+49.530 )+0.8729.81(3060+49.530)
N(((=" "")02# &
-
7/23/2019 Calculul Instalatie de Ancorare
16/23
"b(((= ""*2($ &
4he neNt condition must be respected:
M" R 4bi"-R! "#("3$ & R "#*#(" &
Ft R 4bIII"-R! "$)"*2 & R ""*2($ &
4he second condition is not fulfilled, so @band Mbfrom the gipsy wheel calculation will be
modified:
Mb=
P1Dcb2
Mb=1125410.68
2=38263Nm
4herefore, we recalculate the power on the gipsy wheel:
Pb=Mbnb
30 ).$-
Pb=382635
30=20035W
d- 9ousing the anchor by respecting these conditions:
"N(V=0.87g(Q+qh$)
).)-
where # *h $*h
"b(V="N(V
%ha&s' ).2-
-
7/23/2019 Calculul Instalatie de Ancorare
17/23
For h!h!0# m
"N(V
(1)=0.879.81(3060+49.530)=38790N
"b(V(1)=
38790
0.98=39582N
For h!#
"N(V(2)
!3)"") & and "b(V(2)
!3))(1 &
Chapter *
)etermination of e5ternal forces that act upon the ship and verification of the
heaving line
*.1 3ater forceis composed of the friction force Faf- and the waste force Far-
Fa!Faf;Far 2."-
4he friction force is defined by:
-
7/23/2019 Calculul Instalatie de Ancorare
18/23
Fa!=1
2+a( c !+,c!)-.va
2
-
7/23/2019 Calculul Instalatie de Ancorare
19/23
%a7 speed of water/ 3 m+s
,c!7 correction term for the hull co%ered with clamshells/
,c!=1.9103
/
So,
Fa!=1
21.026(1.92103+1.9103 )25164=19.7KN
?esidual force is gi%en by the relation:
Fa/=1
2+ac/(LB")
2/3v a2 [KN]
2.)-
where, cr7 usual residual coefficient/ cf! #.2'"#0
cr 7 coefficient depending on the breadth, the draft of the ship and the residual
coefficient
c/$=c/+0.16(B"2.5)103 2.2-
c/$=0.7103+0.16( 16.86.3 2.5)103=7.266104
4herefore,
Fa/=1
21.0260.7103(105.516.86.3)2 /34=0.717KN
4he friction force is added to the residual force so that the water force will be found.
-
7/23/2019 Calculul Instalatie de Ancorare
20/23
Fa=19.7+0.717=20.415KN
*.2 he 0ind force
Fv=0.001pv0 v[KN] 2.*-
where, A%7 reef surface/
p%7 wind pressure/ p%! $2 &+m3
4he reef surface will be calculated with the following relation:
0v=1.6103F
2L(sin1+BLc2s1)[m2] 2.1-
4he calculations of F%and A%will be made for >!#/
2 and arctgL
B .
For >!#,
0v=1.61031263.1105.5( 16.8105.51)=33.95m2
Fv=0.0015733.95=1.935KN
For >!
2 ,
A%! 3"0.3" m3 F%! "3."$ E&
-
7/23/2019 Calculul Instalatie de Ancorare
21/23
For1=a/ctg
L
B ,
A%! 3"$.*1 m3 F%! "3.0 E&
*.! 3ave forces
F&=p&0 i
-
7/23/2019 Calculul Instalatie de Ancorare
22/23
F&=0.39972.765=29.03KN
For 1=
2 ,
Ai! ()$.3$$ m3 Fw! "*$.)0 E&
For 1=82.1 ,
Ai! (2".#33 m3 Fw! "*2.10 E&
*.4 6erifying the mooring line
4here are 3 possibilities to moor. U is chosen 3$
.
a- mooring on both lines, where:
"N=Fa+Fv+F&2cos5 2."0-
"N=20.415+1.935+29.03
2cos25 =28.34KN
b- mooring on a single line, taking into account the condition#*"N
1 /
for1=
2 /
#2=Fa
2+(Fv 2
+F&2
)22Fa(Fv
2
+F& 2
)cos(1802 ) 2."(-
-
7/23/2019 Calculul Instalatie de Ancorare
23/23
#2=20.4152+(12.15+185.63 )2220.415(12.15+185.63 )0.87862=180.106KN
4he condition# *"N( is not fulfilled so mooring on two mooring lines will be choosen.