bwr vent order implementation workshop ii

118
BWR Vent Order Implementation Workshop II April 9 -10, 2014 Baltimore

Upload: bat

Post on 07-Feb-2016

191 views

Category:

Documents


0 download

DESCRIPTION

BWR Vent Order Implementation Workshop II. April 9 -10, 2014 Baltimore. Workshop Purpose and Plan. Phase 1 (wet well) template for Overall Implementation Plans for NRC Order EA-13-109. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: BWR Vent Order Implementation Workshop II

BWR Vent Order Implementation

Workshop II

April 9 -10, 2014Baltimore

Page 2: BWR Vent Order Implementation Workshop II

Workshop Purpose and Plan

• Phase 1 (wet well) template for Overall Implementation Plans for NRC Order EA-13-109.

• Review order requirements and accepted approach to complying with Phase 1 of the Order being developed in conjunction with the NRC.

• Focus on the detailed physical and analytic elements of implementation.

Page 3: BWR Vent Order Implementation Workshop II

BWR Mark I/II Severe Accident Vent Order

Key Dates• Order issued June 6, 2013; two phases

Severe accident wetwell vent by June 30, 2018 Severe accident drywell vent by June 30, 2019

o Option to demonstrate drywell vent not needed

• Guidance NEI 13-02 R.0 and JLD-ISG-2013-02 R.0 Phase 1 (WW) Guidance issued November 2013 Developing template for Overall Integrated Plan for

meeting Order. BWROG developing engineering guidance for vent.

• Phase 2 (DW) Guidance by April 2015

Page 4: BWR Vent Order Implementation Workshop II

Venting and Filtering StrategiesBWR Mark I and II

• Prevent core damage during SBO/ELAP Venting via hardened wetwell vent Water injection via FLEX

• Following core damage during SBO/ELAP, prevent containment failure Venting via hardened wetwell and/or

drywell vent Water injection via “beyond FLEX”

• Filtering releases via containment water injection and pressure control

Page 5: BWR Vent Order Implementation Workshop II

Phase 1 Activities Timeline Post OIP Template

Development• June 2014

• July – Aug 2014

• Oct 2014

• Dec 2014• • Dec 2014

– Phase 1 OIP due

– Develop 6-month status template

– Phase 1 pilot plant ISE issued

– All Phase 1 plant ISE issued

– 1st 6-month status due

Page 6: BWR Vent Order Implementation Workshop II

Estimated Phase 2 Guidance Timeline

Mar 2014 – NEI Working Group define goals and approach for Phase 2 Apr – May 2014 – NEI WG draft 13-02 Phase 2 scope from Industry perspectiveJun – Sep 2014 – NRC/NEI Draft 13-02 Phase 2 scope Oct 2014 – NEI/BWROG Industry Comment and Feedback Nov 2014 – NEI Phase 2 Draft Revision Provided to NRC for reference in

ISG Dec 2014 – NRC publish draft ISG for public comment Feb 2015 – NRC Public comment period closed Mar 2015 – NRC Issues approved ISG Mar 2015 – NEI/NRC Workshop on Phase 2 Apr – May 2015 – NRC/NEI OIP Template structure and content without Pilots May – Jul 2015 – NRC/NEI OIP Template Pilots including Option for No DW

Vent Pilot Aug 2015 – NEI/BWROG Draft OIP To Industry for Comment for Workshop Sep 2015 – NEI/NRC OIP Workshop on Pilots and Template use Oct 2015 – NEI OIP finalized and included in a revision to 13-02 Dec 2015 – Stations OIP due to NRC

Page 7: BWR Vent Order Implementation Workshop II

INDUSTRY DOCUMENT OVERVIEW AND STRUCTURE

Page 8: BWR Vent Order Implementation Workshop II

Industry Documents

• Template timeline

• FAQ & White Paper Process

• Selected Template Elements

Generic Plant Hatch Pilot Nine Mile Point 2 Pilot

Page 9: BWR Vent Order Implementation Workshop II

Template Development Information and Key Dates

• Template Development Pilot plant(s) identified – Hatch as MK I & NMP2 as MK II Draft template by January 20, 2014 – Presented on Jan 15 Final Draft template March 15, 2014 – After Pilots NEI 13-02 Revision for OIP template and FAQs by April 21,

2014• NRC-NEI Joint Template Meetings

January 15, 2014 – Complete (Draft Template & 3 FAQ) January 29, 2014 – (Template Elements & FAQs) February 19, 2014 (Pilot Plant Hatch, FAQs & White Papers) March 5, 2014 (NMP2 Pilot Differences, FAQ & White Paper) March 26, 2014 (NRC Feedback on OIP Pilots/Workshop Prep)

• Industry Template Workshop, April 9-10 in Baltimore

• NRC-NEI Check-up Conference Call Proposed for May 7

Page 10: BWR Vent Order Implementation Workshop II

Frequently Asked Questions

• Clarification items brought to industry NEI 13-02 core team

• NEI 13-02 Core Team to provide consensus response

• Select FAQs presented to the NRC staff in draft version (interpretation FAQs)

• Final FAQ documented on NEI website

• Clarification items larger than FAQ will be resolved via other means of NEI 13-02 revision or white paper endorsement

• Phase 2 revision of NEI 13-02 will incorporate appropriate FAQs or white papers

Page 11: BWR Vent Order Implementation Workshop II

Frequently Asked QuestionsFAQ Number NEI 13-02

SectionSubject

HCVS-01 4.2.2, 4.2.3 HCVS Primary Controls and Alternate Controls and Monitoring Locations

HCVS-02 1.2.6 HCVS Dedicated EquipmentHCVS-03 1.2.5, 1.2.6,

4.2.3HCVS Alternate Control Operating Mechanisms

HCVS-04 4.1.5 HCVS Release PointHCVS-05 4.1.4, 4.1.6,

6.2HCVS Control and ‘Boundary Valves’

HCVS-06 Multiple  FLEX Assumptions/HCVS Generic AssumptionsHCVS-07 4.2.5 Consideration of Release from Spent Fuel Pool

AnomaliesHCVS-08 4.2.2, 4.2.4 HCVS Instrument QualificationsHCVS-09 Multiple Use of Toolbox Actions for Personnel

FAQ HCVS-01, 02, 03, 04, 05, 06, 07 and 08 have been submitted for NRC Concurrence

Page 12: BWR Vent Order Implementation Workshop II

White Paper Topics• HCVS-WP-01: HCVS Dedicated Motive Force

Scope of operator actions for selected HCVS electrical and pneumatic supplies

• HCVS-WP-02: HCVS Cyclic Operations Approach Accident sequence Number of vent cycles Radiological limitations from HCVS operation

• HCVS-WP-03: Hydrogen/CO Control Measures Passive measures Active measures

• HCVS-WP-04: FLEX/HCVS Interactions Portable equipment use under severe accident and BDBEE

conditions

Page 13: BWR Vent Order Implementation Workshop II

OUTLINE OF PHASE 1 TEMPLATE

Page 14: BWR Vent Order Implementation Workshop II

Template ElementsTemplate Goals:

Use Hybrid 050/049 Template with Order and ISG (NEI 13-02) Cross Reference

Directly align to the ISGo Describe the phased approach to implementationo Big picture schedule statemento Wetwell performance objectives 

Discuss the section 1.1 objectives of attachment 2 in order

Discuss the requirements in sections 4.1, 4.2 and 6.1 and appendix's F and G of NEI 13-02

o Drywell performance objectiveso Quality standardso Programmatic requirements

Linkage to ISE or SE

Page 15: BWR Vent Order Implementation Workshop II

Template ElementsProposed Template with Order and ISG (NEI 13-02) Cross Reference:

IntroductionPart 1: General Integrated Plan Elements and Assumptions Part 2: Boundary Conditions for WW Vent with specifics about the compliance actions relative to the ISG and NEI 13-02 section 2Part 3: Boundary Conditions for DW Vent with specifics about the compliance actions relative to the ISG and NEI 13-02 section 3 Part 4: Programmatic Controls, Training, Drills and Maintenance Elements Part 5: Milestone table elements Attachment 1: Portable EquipmentAttachment 2: Sequence of Events TimelineAttachment 3: Conceptual Sketches Attachment 4: Failure Evaluation TableAttachment 5: ReferencesAttachment 6: Changes/Updates to this OIPAttachment 7: Open Items in HCVS OIP

Page 16: BWR Vent Order Implementation Workshop II

Template ElementsPart 1: General Integrated Plan Elements and Assumptions

Key Site assumptions to implement NEI 13-02 strategieso Grouping of Assumptions as

FLEX, Generic and Site Specific.o Considering making an FAQ on

FLEX assumptions and one on Generic to use as a reference in the template.

Page 17: BWR Vent Order Implementation Workshop II

Template Elements

Part 2: Boundary Conditions for WW Vent with specifics about the compliance actions relative to the ISG and NEI 13-02 section 2

Severe Accident o First 24o Beyond 24 hours

Support Equipment Functionso BDBEE Ventingo Severe Accident Venting

17

Page 18: BWR Vent Order Implementation Workshop II

Template ElementsPart 4: Programmatic Controls, Training, Drills and Maintenance Elements

Part 5: Milestone table elements

Attachments Attachment 1: Portable Equipment Attachment 2: Sequence of Events Timeline

oOperator action constraints timeline is determined based on the following sequences:

o Sequence 1 is a FLEX run with Venting in a BDBEE without core damage.

o Sequence 2 is based on SECY-12-0157 results for a prolonged SBO (ELAP) with the delayed loss of RCIC

o Sequence 3 is based on SOARCA results for an SBO (ELAP) with failure of RCIC to inject.

04/22/23 18

Page 19: BWR Vent Order Implementation Workshop II

Representative BWR Venting Timelines

SBO

t=0s

RCIC starts

t ≈.5 m t ≈ 5 hrs

No Injection

LegendAdequate core cooling maintainedInjection LostIncreased shine and leakage of radionuclides primarily from WetwellHCVS Post Core Damage Dose Evaluation Required

Level at TAF

t ≈ 23 hrs

Anticipatory Venting

Not to scale

t ≈ 18 hrs

No Injection

t ≈ 24 hrs t ≈ 34 hrs

t ≈ 1 hr t≈ 8 hr

Containment Venting(based on exceeding PCPL)

Containment Venting(anticipatory venting not represented in SECY-12-0157)

Case 1Ref: Plant

Case 2Ref: SECY-12-0157

Case 3Ref: SOARCA

References:Case 1: Reference Plant FLEX Overall Integrated PlanCase 2: SECY-12-0157 – ML12344A030Case 3: SOARCA – ML13150A053

Portable generator providing power to Safety Related 480VAC System

(Ref Plant OIP)

Page 20: BWR Vent Order Implementation Workshop II

REVIEW OF KEY ELEMENTS OF PHASE 1 OVERALL INTEGRATED PLAN TEMPLATE

Page 21: BWR Vent Order Implementation Workshop II

Hatch SA HCVS Pilot Template Elements

Review of Plant Hatch completion of items in revision C3 of the Severe

Accident HCVS OIP Template

Page 22: BWR Vent Order Implementation Workshop II

Nine Mile Point Unit 2SA HCVS Pilot Template

Major Differences

Review of Nine Mile Point Unit 2 Major Differences from Mark I pilot for Severe

Accident HCVS OIP Template

Page 23: BWR Vent Order Implementation Workshop II

Hatch OIP Major Elements • Adding Site Characteristics important

to HCVS Control Building and Rx Building

Layout Main Stack and vent pipe locations

• Time and Environmental Constraint Items Rupture disc HCVS Operation Battery power actions >24 Hour motive force

Page 24: BWR Vent Order Implementation Workshop II

NMP2 OIPSite Characteristics Important to HCVS•The primary location for HCVS operation will be the Main Control Room•The alternate location for HCVS operation will be the Reactor Building track bay, northeast side of Reactor Building, ground elevation•The HCVS release point will be at least 3 feet above the top of the Reactor Building on the northwest side of the Reactor Building

Page 25: BWR Vent Order Implementation Workshop II

t ≈ 11 hrsBegin monitoring at MCR or ROP

HCVS pneumatic and battery status. No replenishment expected to be

required before t = 24 hours

t ≈ 24 hrsReplenishment of HCVS

power and pneumatic supplies

Hatch HCVS Venting Timelinest=0sSBO

t ≈.5 mRCIC starts

t ≈ 7 hrsAnticipatory

VentingNo Injection

LegendAdequate core cooling maintainedInjection LostIncreased shine and leakage of radionuclides primarily from WetwellHCVS Post Core Damage Dose Evaluation Required HCVS Time evaluation required

Level at TAF

t ≈ 23 hrs

Not to scale

t ≈ 18 hrs

No Injection

t ≈ 24 hrs t ≈ 34 hrs

t ≈ 1 hr t≈ 8 hrs

Case 1FLEX SuccessfulRef: HNP FLEX OIP

Case 2RCIC Late FailureRef: SECY-12-0157

Case 3RCIC Early FailureRef: SOARCA

References:Case 1: HNP FLEX Overall Integrated PlanCase 2: SECY-12-0157 – ML12344A030Case 3: SOARCA – ML13150A053

Containment Venting(anticipatory venting not represented in SECY-12-0157)

t ≈ 10 hrsPortable generator in

place for FLEX and HCVS loads.

Containment Venting(based on preventing exceeding PCPL)

Blow rupture disc

t ≈ 12 hrsTransfer to

HCVS Battery

t ≈ 24 hrst ≈ 12 hrs

t ≈ 11 hrs

t = 1 hrELAP

Declared

t ≈ 2 hr

Level at

TAF

Page 26: BWR Vent Order Implementation Workshop II

NMP2 OIP

Page 27: BWR Vent Order Implementation Workshop II

Hatch OIP Major Elements • 7.3 Hours, Initiate use of Hardened Containment

Vent System (HCVS) per site procedures to maintain containment parameters below design limits and within the limits that allow continued use of RCIC for mitigation in a BDBEE - HCVS controls and instruments associated with containment will be DC powered and operated from the MCR or a Remote Operating Station on each unit. Thus initiation of the HCVS from the MCR or the Remote Operating Station within 7.3 hours is acceptable because the actions can be performed any time after declaration of an ELAP (1 hour) until the venting is needed. In the event of Severe Accident HCVS initiation all required actions occur at a time further removed from an ELAP declaration than the BDBEE HCVS timeline as shown in Attachment 2.

Page 28: BWR Vent Order Implementation Workshop II

NMP2 OIP DifferencesTime and Environment Constraint Items•2 Hours, Initiate use of Hardened Containment Vent System (HCVS) per site procedures to maintain containment parameters within the limits that allow continued use of RCIC. Initiation of the HCVS can be completed with manipulation of only 4 switches located within the MCR. The reliable operation of HCVS will be met because HCVS meets the seismic requirements identified in NEI 13-02 and will be powered by dedicated HCVS batteries with motive force supplied to HCVS valves from installed nitrogen storage bottles. HCVS controls and HCVS instrumentation will be provided from a dedicated panel in the MCR. Other containment parameter instrumentation associated with operation of the HCVS is available in the MCR. Operation of the system will be available from either the MCR or a ROS. Dedicated HCVS batteries will provide power for greater than 24 hours. Therefore, initiation of the HCVS from the MCR or the ROS within 2 hours is acceptable because of the simplicity and limited number of operator actions. Placing the HCVS in operation to maintain containment parameters within design limits for either BDBEE or SA venting would occur at a time further removed from ELAP declaration as shown on the sequence of events timeline on the previous slide

Page 29: BWR Vent Order Implementation Workshop II

Hatch OIP Major Elements • At >24 Hours, portable diesel generators will be

installed and connected to the pigtail of the battery chargers to supply power to HCVS components/instruments; time critical at a time greater than 25 hours. Current battery durations are calculated to last greater than 26 hours. The connections, location of the DG and access for refueling will be located in an area that is accessible to operators in the Control Building or in the yard area because the HCVS vent pipe is underground once it leaves the Reactor Building.

[OPEN ITEM 3: Evaluate location of Portable DG for accessibility under Severe Accident HCVS use]

Page 30: BWR Vent Order Implementation Workshop II

NMP2 OIP DifferencesTime and Environment Constraint Items (Cont’d)•24 Hours, Replace/install additional nitrogen bottles or install compressor. The nitrogen station will have extra connections so that new bottles can be added or an air compressor can be connected while existing bottles supply the HCVS. This can be performed at any time prior to 24 hours to ensure adequate capacity is maintained so this time constraint is not limiting

Page 31: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Time and Environment Constraint Items (Cont’d)•24 Hours, connect back-up power to HCVS battery charger. The HCVS batteries are calculated to last a minimum of 24 hours. The HCVS battery charger will be able to be re-powered either from the 600 VAC bus that will be re-powered from a portable diesel generator (DG) put in place for FLEX or locally (Reactor Building Track Bay) from a small portable generator•The DG will be staged and placed in service within 8 hours (Reference FLEX OIP) and therefore will be available prior to being required. In the event that the DG is not available, a local connection will allow a small portable generator to be connected to the UPS to provide power

Page 32: BWR Vent Order Implementation Workshop II

Hatch OIP Major Elements • Vent characteristics

Boundary valve use and cross flow

Remote operating station use FLEX type actions Electric power details

• Milestone schedule

Page 33: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Page 34: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Page 35: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Drywell piping and valve configuration shown for completeness, not for Phase 1 compliance

Page 36: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Equipment Usage•NMP2 will utilize a mixed system, sharing the following components

Containment penetrations Inboard and Outboard PCIVs Piping to HCVS vent tee

•Boundary with interfacing systems limited to

20” AOV to Standby Gas Treatment System (GTS)

2” SOV bypass around 20” AOV to GTS

Page 37: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

GDC-56 Exemption•The inboard primary containment isolation valves (PCIV) to be shared with the HCVS system are located inside the primary containment•Most plants implemented a GDC-56 exemption as part of the plant design basis for an alternate configuration•The inboard PCIV will be located outside the containment and thereby significantly improve the reliability of the HCVS system

Page 38: BWR Vent Order Implementation Workshop II

NMP2 OIP DifferencesDischarge Point•NMP2 will utilize a release point above the Reactor Building roof independent of the metrological stack•Follows criteria per FAQ HCVS-04

Page 39: BWR Vent Order Implementation Workshop II

NMP2 OIP DifferencesPower Supply•NMP2 HCVS system will be powered by the Divisional Class 1E 600 volt power through a transformer and 125 volt battery charger during normal operation•On loss of AC power, a battery capable of supplying HCVS loads for at least 24 hours will supply HCVS loads without Operator action•A FLEX portable diesel will be connected to repower the 600 volt power within 8 hours to repower the HCVS battery charger•A small portable 120/240 volt generator provides a backup to the FLEX diesel generator that will provide HCVS loads and battery charger through a manual transfer switch•Station batteries will not be utilized for HCVS loads

Page 40: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Page 41: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Containment Protection Features•Inadvertent actuation protection is provided by keylock switches used to power up the HCVS panel•Additional keylock switches will be utilized for control of the shared HCVS/Primary Containment Isolation Valves (PCIVs)•The HCVS valve double solenoid valve arrangement eliminates the need for defeating containment isolation signals using electrical jumpers or lifted leads•There are no rupture discs in the NMP2 HCVS design

Page 42: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Remote Manual Mechanisms•Manual valves in the pneumatic supply lines will provide alternate means for HCVS valve operation•Electrical power is not required for this method•A manual override for HCVS valve solenoids is being considered•A handwheel for the PCV is being considered, but will not be credited due to environmental concerns in proximity to the valve

Page 43: BWR Vent Order Implementation Workshop II

Hatch OIP Major Elements

• Portable equipment use Without core damage With core damage

• Example Drawings Electrical Mechanical Plant Layout

Page 44: BWR Vent Order Implementation Workshop II

NMP2 OIP Differences

Drywell piping and valve configuration shown for completeness, not for Phase 1 compliance

Page 45: BWR Vent Order Implementation Workshop II

NMP2 OIP DifferencesTable 4A: Wetwell HCVS Failure Evaluation Table

Functional Failure Mode

Failure Cause Alternate Action Failure with Alternate Action Prevents

Containment Venting? Fail to Vent (Open)

on Demand Valves fail to open/close due to loss of normal

AC power/DC batteries None required – system SOVs utilize

dedicated 24-hour power supply No

Valves fail to open/close due to depletion of dedicated power supply

Recharge system with FLEX provided portable generators

No

Valves fail to open/close due to complete loss of power supplies

Manually operate backup pneumatic supply/vent lines at remote panel

No

Valves fail to open/close due to loss of normal pneumatic supply

No action needed. Valves are provided with dedicated motive force capable of 24 hour

operation

No

Valves fail to open/close due to loss of alternate pneumatic supply (long term)

Replace bottles as needed and/or recharge with portable air compressors

No

Valve fails to open/close due to SOV failure Manually operate backup pneumatic supply/vent lines at remote panel

No

Fail to stop venting (Close) on demand

Not credible as there is not a common mode failure that would prevent the closure of at least 1 of the 3 valves needed for venting.

N/A No

Spurious Opening Not credible as key-locked switches prevent mispositioning of the HCVS CIVs and PCV.

N/A

No

Spurious Closure

Valves fail to remain open due to depletion of dedicated power supply

Recharge system with FLEX provided portable generators

No

Valves fail to remain open due to complete loss of power supplies

Manually operate backup pneumatic supply/vent lines at remote panel

No

Valves fail to remain open due to loss of alternate pneumatic supply (long term)

Replace bottles as needed and/or recharge with portable air compressors

No

Page 46: BWR Vent Order Implementation Workshop II

BWROG Companion Guideline for NEI 13-02

Progress between Workshops

Pat Fallon - DTEDennis Henneke - GEH

BWR Vent Order Implementation Workshop II4/9/14 • Baltimore, MD

Page 47: BWR Vent Order Implementation Workshop II

Introduction

• The BWROG Implementation Guidelines supporting NEI 13-02 (referred to as the Companion Document) is developed to:- Provide guidance on “how to” meet the “what”

requirements in NEI 13-02 and NRC Order EA-13-109.

- Include discussion previously removed from 13-02, due to level of detail (e.g. Hydrogen Overpressure).

Page 48: BWR Vent Order Implementation Workshop II

BWROG Companion Document• Beginnings:

- Started as discussion point during formulation of NEI-13-02• NEI-13-02 was created to work with EA-13-109 to fully define

acceptable equipment and man-machine interface to make a successful Severe Accident Capable Hardened Vent.

• NEI-13-02 did NOT contain any “how to” elements for implementation.

• NEI-13-02 was endorsed (largely) by the NRC due to multiple interface sessions with a small industry team and NEI.

• NEI-13-02 needed to have additional industry input to create a workable method for HCVS implementation that would allow use of work conducted for EA-12-050 and still meet the intents of NEI-13-02.

Page 49: BWR Vent Order Implementation Workshop II

BWROG Companion Document

• Thanks to the Authors:- Pat Fallon - DTE- Shayne Tenace - Exelon- Bob Cowen - GEH- David Burch - Entergy- Deep Ghosh - SNC- Bob Ginsberg – Duke Energy- Frank Loscalzo - TVA

- Dennis Henneke - GEH- Scott Wood - Energy NW- Harold Trenka - Exelon- Phil Amway - Exelon- Keith Ward – Duke Energy- Glen Seeman – GEH- Rich Centenaro - PPL

Also THANKS to the large group of reviewers and commenters.

Page 50: BWR Vent Order Implementation Workshop II

BWROG Companion Document

• First Pass- Introduced the concept at first HCVS Workshop in

Baltimore 11-13-2013.- Slides showed more of a wish list than any concrete

method of creation of “how to” elements.• A few Items were not developed (Appendix J on Reliable

Operator Actions)• A few new items were added (e.g. interface with FLEX)

- Example slide on Section 5.0 follows.

Page 51: BWR Vent Order Implementation Workshop II

BWROG Companion Document Outline(11-13-13 Version)

5.0 PROGRAMMATIC CONTROLS 5.1 Environmental conditions &

Methods to Confirm for Each Site

TBD

5.2 Seismic and External Hazard Conditions & Relation to Seismic/Flood Reanalysis

TBD

5.3 Quality Requirements & Interface with other Standards

TBD

5.4 Maintenance Requirements & Interface with Maintenance Rule/INPO Standards

TBD

Page 52: BWR Vent Order Implementation Workshop II

BWROG Companion Document Outline(4/6/14 version)

5.0 PROGRAMMATIC CONTROLS 5.1 Environmental conditions &

Methods to Confirm for Each Site

Keith Ward Scott Wood Guidance added on environmental conditions and HCVS-FAQ-04

5.2 Seismic and External Hazard Conditions & Relation to Seismic/Flood Reanalysis

Keith Ward Scott Wood, Jesse Lucas

Guidance added on Seismic, wind loading and other items

5.3 Quality Requirements & Interface with other Standards

Pat/Phil Amway

Frank Loscalzo Guidance added on instrument quality and HCVS-FAQ-08/OIP Template

5.4 Maintenance Requirements & Interface with Maintenance Rule/INPO Standards

Pat/Phil Amway

Frank Loscalzo Guidance added on programmatic requirement and interface with OIP Template

Page 53: BWR Vent Order Implementation Workshop II

BWROG Companion Document• Any “How-To” or additional guidance that was identified during the

writing of the companion document that potentially required NRC review was separated out into either an FAQ or White Paper:- Much of the wording in the companion document was removed,

and the FAQ/WP is now referenced in the Companion Document. - Some of the developed wording was placed back in the companion

document if NRC review was not needed:• For example, methods not recommended for H2 control (Flame

Arrestors). - Interface with the FAQs/WPs has added additional effort to ensure

the companion document matches the current version of the FAQs/WPs.

Page 54: BWR Vent Order Implementation Workshop II

BWROG Companion Document• Evolution:

- February, 2014:• Document Pages: from 96 to 127• Sections with guidance: 69• New Appendices: 4• Contributors: 18

- March, 2014• Document pages: from 127 to 138• Sections with guidance: 77• New Appendices: 5• Contributors: 16• Interfaces with 9 HCVS-FAQs, 3 HCVS-WPs, and OIP Template

(alignment)

Page 55: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)• Section 4.1

- Vent Capacity determination methods and criteria to allow < 1% Steam discharge

- Multi-purpose penetrations (HCVS-FAQ-02, -05) to discuss requirements for use and testing of PCIVs

- Routing of piping (Rad and thermal impacts) method and design impacts captured in this section and Appendix G (HCVS-WP-03).

- Multi-unit interfaces (FAQ not yet written on Hydrogen/cross flow)

- Release point (See HCVS-FAQ-04)• Also discusses releases when lowering containment

pressure for FLEX injection.

Page 56: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)

• Section 4.1 (Continued):- Leakage criteria (See HCVS-FAQ-05)- Flammable Gas protection (See HCVS-FAQ-05)- Design for Hydrogen/combustible gas- Combined WW/DW piping- Fault/Failure evaluations

• Evaluation should include any systems or operations used for Hydrogen Control.

Page 57: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)

• Section 4.2- Inadvertent actuation prevention- Primary/Alternate Controls areas (See HCVS-FAQ-

01, -02)- Vent Monitoring (See HCVS-FAQ-02, -08)- Operational Hazards (See HCVS-FAQ-01, -02, -03)- Design to Minimize Operator actions (See HCVS-

FAQ-02)

Page 58: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)

• Section 5- Environmental conditions- Seismic and external conditions- Quality (See HCVS-FAQ-08)- Maintenance (Tie to Template Part 4)

Page 59: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)• Sections 6 (Operational Considerations), 7 (Reporting Requirements) and

Appendix B (Roadmap) include discussion on the OIP template, including a summary of where the template interfaces with the Companion document.

• Section 6- Accessibility and feasibility- Procedures (Tie to Template Part 4)- Training (Tie to Template Part 4)

• Appendices- Roadmap (shows FAQ Ties)- Source Term and Dose method defined- Combustible and Flammable gases methods- Pipe sizing methodologies (NEW)- Load combination methodologies (NEW)- Use of MAAP for timing, Dose Estimate, or estimating number of cycles

(NEW).

Page 60: BWR Vent Order Implementation Workshop II

BWROG Companion Document• Where to from here?• DRAFT Document is Complete, other than

possible edits and changes to the FAQs, White Papers and OIP Template. - Continue to modify BWROG Companion Document

based on OIP Template Workshop Comments, BWROG Fukushima Committee Comments.

- Continue to capture the “how to” elements from the HCVS-FAQs, HCVS-WPs, and OIP Template items.

- Begin to formulate similar role with HCVS-Phase 2 creation.

Page 61: BWR Vent Order Implementation Workshop II

BWROG Companion Document Content (April 2014)

• A Few Final Notes:- Additional Guidance is developed to help drive

consistency between plants. • Should try to start with the approaches listed, if possible.• Provide comments or enhancements if you find a better

approach, in order to have other plants use a similar approach.

- Document is not intended to be referenced in your submittals; Rather the methodology should be used, with the references provided referred to directly in your submittals.

Page 62: BWR Vent Order Implementation Workshop II

FREQUENTLY ASKED QUESTIONSandWHITE PAPERS

Page 63: BWR Vent Order Implementation Workshop II

FAQ 01• HCVS-FAQ-01: Primary and Alternate Controls and Monitoring locations

Q: What conditions have to be considered in the design and location of the Primary and Alternate Controls locations?

o Order Element 1.2.4 states, “operations from a control panel located in the main control room or a remote but readily accessible location.”

o Order Element 1.2.5 states, “The HCVS shall, in addition to meeting the requirements of 1.2.4, be capable of manual operation”

Primary and/or Alternate Control locations located in the main control room are readily accessible locations with no further evaluation required (conform to GDC 19/Alternate Source Term (AST))Primary and/or Alternate Control locations located outside the main control room must be determined to be readily accessible locations by performing an evaluation that includes:

o Accessibilityo Habitabilityo Staffing sufficiencyo Communication capability with vent use decision makers

Page 64: BWR Vent Order Implementation Workshop II

FAQ 02• HCVS-FAQ-02: Dedicated Equipment

Q: What is the meaning of “Dedicated” in order element 1.2.6, “Order Reference: 1.2.6 – The HCVS shall be capable of operating with dedicated and permanently installed equipment for at least 24 hours following the loss of normal power or loss of normal pneumatic supplies to air operated components during an extended loss of AC power.”?The typical definition of “dedicated” is “used only for one particular purpose [function]”.

o Using this literal interpretation, the words of Order element 1.2.6 means that all equipment associated with the HCVS should be permanently installed and only serve the HCVS function.

o This is inconsistent with other Order elements that permit shared component functions.

The interpretation of the word “dedicated” in the context of the HCVS order is essential for the proper implementation of the order.

o The intent of “dedicated” as it is used in Order EA-13-109 is to ensure that the HCVS system will have the necessary installed electrical and pneumatic power sources to be functional, independent of these sources that will be lost during an ELAP.

Page 65: BWR Vent Order Implementation Workshop II

FAQ 02• HCVS-FAQ-02 Dedicated Equipment (Cont’d)

HCVS components may serve multiple functions described in the plant Current License Basis (CLB). Examples include:o Piping and valves for both Drywell and Wetwell may be used for Drywell/Wetwell

vent and purge prior to or following refueling outages or for pressure control during normal plant operation.

o Containment Isolation valves in the HCVS system may provide a containment isolation function independent of the HCVS function.

o Containment Isolation valve position indication for valves in the HCVS may be used for post-accident indications.

o Instrumentation may support HCVS and non HCVS functions. The following components are examples of what does not have to be dedicated to the

HCVS function at all times and may be shared with other systems and support functions:o Containment penetrationso Containment isolation valveso System boundary valveso Pipingo Instrumentationo Wiring, conduit and connection points used to service non-dedicated componentso DC battery systems

The above components need not be dedicated, but they support the HCVS functionality when containment venting using the HCVS system is required. Compliance with NEI 13-02 guidance will ensure that this condition is met.

Page 66: BWR Vent Order Implementation Workshop II

FAQ 03• HCVS-FAQ-03: Alternate Control Operating Mechanisms

Q: What means of alternate manual operation is allowable for use in the HCVS system related to Order Element 1.2.5.The examples of alternate operating mechanisms provided in Order element 1.2.5 (e.g., reach-rod with hand wheel or manual operation of pneumatic supply valves from a shielded location) are only intended to be examples. Other means of alternate manual operation are acceptable including but not limited to:

o Separate electrical components with diverse and flexible power supplies (such as the normal valve operators with FLEX power)*

o Solenoid valves with manual overrides that may be used to manually operate vent valves without electrical power

o Manual valves in pneumatic supply and vent lines that may be used to manually operate vent valves independent of solenoid valves or electrical power

o Hydraulic operators

* NEI 13-02 Section 6.1 – “…At least one method of operation of the HCVS should be capable of operating with permanently installed equipment for at least 24 hours during the extended loss of AC power. The system should be designed to function in this mode with permanently installed equipment providing electrical power (e.g., DC power batteries or electrical or pneumatic operation) valve motive force (e.g., N2/air cylinders)” The primary or alternate method of HCVS operation may use an alternative method to that described by this requirement.

Page 67: BWR Vent Order Implementation Workshop II

FAQ 04• HCVS-FAQ-04: HCVS Release Point

Q: What is the meaning of “release point above main plant structures” in order element 1.2. ?

Order Reference: 1.2.2 – The HCVS shall discharge the effluent to a release point above main plant structures.”

oBuildings outside of the site’s main power block should not be considered relative to the above. Administrative buildings, warehouses, and other support buildings would typically not be staffed during a BDBE unless they house an accident mitigation type emergency facility (in which case the aforementioned information should be used as stated). oCooling towers, by nature of their location requirements, are situated well away from the power block such that they are not able to detrimentally affect HCVS effluent flow. oThe Plant Stack provides an acceptable release pointoSites may take exception to this guidance with reasonable basis

Guidance addresses plants that have a single independent release pipe/vent per unit. (typically mounted onto (or emanating from) the Reactor Building, the Turbine Building, or other adjacent building convenient for the HCVS routing)

Page 68: BWR Vent Order Implementation Workshop II

FAQ 05• HCVS-FAQ-05: HCVS Functional Boundary Valves

Q: Which valves are considered as control valves and which are boundary valves, and why?Q: What are the testing criteria for the various valves cited?

HCVS Functional Boundary Valve– Any valve which serves to isolate the HCVS from another system. Depending on the application these valves may be safety related or (potentially in limited cases) non-safety related. This category also applies to valves which isolate the vent system of one plant from that of another.

oThe most typical instance of a boundary valve such as this would be to isolate the Standby Gas Treatment System (SGTS) from the HCVS vent path (in which case such valves would be safety related).

HCVS Functional Control Valve– Any valve used to open the containment to the HCVS vent path such that venting may commence. This valve will also have the function of closing thereby effectively halting the venting process.

04/22/23 68

Page 69: BWR Vent Order Implementation Workshop II

FAQ 05• HCVS-FAQ-05: HCVS Functional Boundary Valves

(Cont’d) The valves should be purchased or modified such that they are or

can be qualified to operate and/or remain closed (depending on their function, either control or purely isolation) at HCVS design temperature and pressure. o  It is understood that this may require evaluation and possible

modification of existing site systems besides the HCVS itself (including Boundary Valves associated with those systems). System modifications such as flanged connections (for temporary blind flange installation) or maintenance valves may be required to facilitate leak testing.

PCIVs – Testing criteria for PCIVs will not change. o Appendix J testing requirements are based on a site-specific

calculation for La (or Allowable Leakage) based on a number of site specific factors which include leakage of the other PCIVs associated with the containment atmosphere.

Isolation Valves and Control Valves (which are not listed as PCIVs) identified as HCVS Functional Boundary Valves – Testing criteria for these valves will be based on the individual site’s Appendix J test criteria for PCIVs associated with the HCVS.

Page 70: BWR Vent Order Implementation Workshop II

FAQ 06• HCVS-FAQ-06: HCVS Assumptions

Document the FLEX related and Generic EA-109 assumptions in a standard location and reference so that they can be reviewed once by the NRC and will not require extensive preparer or reviewer time for each submittal.

Refer to the OIP template for assumptions

Page 71: BWR Vent Order Implementation Workshop II

FAQ 07• HCVS-FAQ-07: Source Term From SFP

Q: What impact of the SFP source term is required in the environmental sensitive actions for HCVS operation?

SFP Level is maintained above EA-12-051 Level 2 with either on-site or off-site resources such that no contribution to analyzed source term need be considered

Page 72: BWR Vent Order Implementation Workshop II

FAQ 07• HCVS-FAQ-07: Spent Fuel Pool

NRC comment: Item requires further information and clarification. o Staff believes that if any HCVS equipment is located in an

area that could be impacted by source term from either SFP or reactor severe accident, the governing source term should be the higher of the two.

There is no assumption or criteria in the EA-13-109 Order that relates to a “SFP accident”. The Order only mentions core damage and protection of Mk I & II containments, i.e., “reactor severe accident”. There is no mention of source term in the order.

Actions under Order EA-12-049 provides multiple mitigation actions to protect SFP cooling and Order EA-12-051 provides redundant instrumentation to plant decision makers to allow correct prioritization of any action needed for the SFP. Every site has to be in compliance with these Orders.

If action is required for HCVS in the SFP area then the environment in the vicinity and ingress/egress must be evaluated as identified in FAQ HCVS-01.

Page 73: BWR Vent Order Implementation Workshop II

FAQ 08• HCVS-FAQ-08: HCVS Instrument QualificationsQ: What conditions have to be considered in the design and siting of

HCVS Controls and monitoring equipment?o Order Element 1.2.4 states, “The HCVS shall be designed to

be manually operated during sustained operations from a control panel located in the main control room or a remote but readily accessible location.”

o Order Element 1.2.5 states, “The HCVS shall, in addition to meeting the requirements of 1.2.4, be capable of manual operation (e.g., reach-rod with hand wheel or manual operation of pneumatic supply valves from a shielded location), which is accessible to plant operators during sustained operations.”

o Order Element 1.2.6 states, “The HCVS shall be capable of operating with dedicated and permanently installed equipment for at least 24 hours following the loss of normal power or loss of normal pneumatic supplies to air operated components during an extended loss of AC power.”

Page 74: BWR Vent Order Implementation Workshop II

FAQ 08• HCVS-FAQ-08: HCVS Instrument Qualifications - Thermal

Considerations (Cont’d) Primary or Alternate Control location (if other than MCR

temperature and heat load that exist for operation of the HCVS system.o If this location is NOT in the Reactor Building or other buildings

where HCVS piping is located then the heat load impact is similar to the MCR when the location is in a separate air space.

o Temperature and heat load that exist due to proximity to the undercooled containment.

o Temperature and heat load that exists due to the ELAP condition (loss of ventilation).

If this location is NOT in the Reactor Building or next to the HCVS piping then the heat load impact is similar to the Control Room since it would be located in a separate air space

HCVS controls and instrumentation located outside the MCR will be similar to other instrumentation and controls found in plant locations outside the MCR. o Unless the licensee uses controls and instrumentation in the HCVS

system that are known to be susceptible to failure from elevated temperatures but within habitability limits, no evaluation of temperature effects needs to be performed for HCVS components located outside of the Reactor Building or other buildings where HCVS piping is located.

Page 75: BWR Vent Order Implementation Workshop II

FAQ 09• HCVS-FAQ-09: HCVS Toolbox Use

Document the use of Toolbox approach for collateral actions that will be symptom based but are within the skill of the craft or general personnel knowledge.

Examples:oOpening doors when room temperatures become

elevatedoUsing flashlights to supplement pathway useoExchange of personnel, use of ice vests, etc. when

action is in an uncomfortable environment, not life threatening

oUtilizing small fans for air movement, possibly powered from small portable generators and extension cords

Page 76: BWR Vent Order Implementation Workshop II

BWR Vent Order Implementation

Workshop II

April 9 -10, 2014Baltimore

Page 77: BWR Vent Order Implementation Workshop II

White Paper 01• HCVS-WP-01: HCVS Dedicated Motive Force

Scope of operator actions for selected HCVS electrical and pneumatic supplies

Some components in the HCVS system are powered electrically or pneumatically by non-dedicated sources as described in the plant CLB documents. Examples include:o Inverters that supply AC power to solenoids for Primary

Containment Isolation valves may be the same power source used for HCVS solenoids,

o Station batteries that supply DC power to HCVS solenoids may also supply other containment isolation valves,

o Station batteries that supply DC power to instrumentation in the main control room may also be used to indicate the need for HCVS operation and the status of the HCVS,

o Plant safety-related air or nitrogen systems used to operate isolation valves or safety-relief valves may be the same pneumatic supply used to operate HCVS valves.

Page 78: BWR Vent Order Implementation Workshop II

White Paper 01• HCVS-WP-01: HCVS Dedicated Motive Force

Conclusion:o The use of some plant components to supply

HCVS electrical and pneumatic power is acceptable provided these components can supply this power for 24 hours with simple and easily accomplished operator action.

o After 24 hours, the use of portable equipment to replenish these electrical and pneumatic power supplies per the NRC Order is acceptable provided the planned actions are evaluated under the plant conditions that could be reasonable to expect at the time and in the location the action will take place.

Page 79: BWR Vent Order Implementation Workshop II

White Paper 02

Page 80: BWR Vent Order Implementation Workshop II

White Paper 02

Page 81: BWR Vent Order Implementation Workshop II

White Paper 02

Page 82: BWR Vent Order Implementation Workshop II

White Paper 02

HCVS-WP-02: Generic Radiological Analysis•MAAP runs to calculate fission product distribution

Test case assumed 4 hour operation of RCIC Core damage at approximately 6 hours Vessel breach at 15 hours

•RADTRAD results using NUREG-1465 with limited pool scrubbing and deposition•NUREG-1465 releases

Plot shifted by 6 hours to account for 4 hours of RCIC operation

As expected, NUREG-1465 appears to be bounding

Page 83: BWR Vent Order Implementation Workshop II

White Paper 03• HCVS-WP-03: Hydrogen/CO Control Measures

Option Description Advantages Disadvantages

1 Design the entire vent piping beyond the primary containment isolation valves to withstand flammable gas detonation.

Completely passive• Allows venting start/stop

with any valve 

1.May require valve(s) to be upgraded due to loading

2.May require upgraded piping3.May require upgraded pipe supports4.Requires more rigorous stress and support

analysis2 Install a purge system to

prevent flammable gas detonation. 

1.Requires minimal modification to existing or as designed system

2.Eliminates detonation concern

1.Active feature2.Manpower requirement3.Additional maintenance 4.Additional failure mode

3 Design the system downstream of the secondary containment isolation valve (or flow control valve) to withstand flammable gas detonation. Once CIVs are opened, subsequent vent start/stop cycles are controlled by the single downstream valve

1.Minimizes piping potentially affected by detonation

2.Overall system failure modes are reduced because of the reduced valve cycles within the system (PCIVs will remain open when vent is lined up)

 

Downstream portion of piping still subject to disadvantages listed for Option 1•Adds additional valve to the system•Additional maintenance and testing of the added valve•Additional failure mode (potential failure of the additional valve)

Page 84: BWR Vent Order Implementation Workshop II

White Paper 03• HCVS-WP-03: Hydrogen/CO Control Measures

Option Description Advantages Disadvantages4 Install a check valve at the

exhaust end of the vent stack to eliminate the ingress of air to the vent pipe when venting stops and the steam condenses. 

1.No operator action required

2.Eliminates detonation concern

1.Additional maintenance2.Additional failure modes (inability of check

valve to open or to close once opened)

5 Install the secondary containment isolation valve (or flow control valve) at the exhaust end of the vent stack to eliminate the ingress of air to the vent pipe when venting stops and the steam condenses. 

1.Eliminates detonation concern

1.Active feature2.Manpower requirement3.Additional maintenance and testing4.Additional failure mode5.Adds challenges to support and maintain a

large mass with an offset actuator at the end of the vent.

6 Design and install expansion chambers/mufflers in the exhaust pipe to reduce the detonation load. 

1.Completely passive2.Minimizes

detonation concern

1.Potentially requires valve(s) to be upgraded due to loading

2.Potentially requires upgraded piping3.Potentially requires upgraded pipe

supports4.Potentially requires more rigorous stress

and support analysis5.May impose excessive flow restriction6.May not reduce loading sufficiently

Page 85: BWR Vent Order Implementation Workshop II

White Paper 04• HCVS-WP-04: FLEX/HCVS Interactions

The purpose of this paper is to define the relationships between Order EA-12-049, Mitigation Strategies (aka FLEX) and Order EA-13-109, Severe Accident Hardened Containment Vent System (aka SA HCVS). o The evaluation is to limit the unintended complications and

potential impacts on the success of the FLEX mitigating strategies when applying the severe accidents conditions from the SA HCVS order.

The relationship between FLEX and SA HCVS is clearly defined that FLEX is to mitigate core damage while the SA HCVS is to protect the primary containment for a Beyond Design Basis External Event and a postulated ex-vessel core melt. o Thus the SA HCVS is required to be functional for FLEX

mitigation actions, but applying any ex-vessel core melt criteria onto FLEX modifications and strategies is not a requirement.

o Where necessary, interpretations of these relationships are based on the order language and the corresponding NEI guidance documents (NEI 12-06 and 13-02).

Page 86: BWR Vent Order Implementation Workshop II

HCVS-WP-03 - Hydrogen/Carbon Monoxide Control Measures

Bob Cowen, PESenior Engineer – GEH

BWR Vent Order Implementation Workshop IIApril 9 – 10, 2014 • Baltimore, MD

Page 87: BWR Vent Order Implementation Workshop II

EA-13-109 Basics

The HCVS…•1.2.10 – Shall be designed to withstand and remain functional during severe accident conditions, including containment pressure, temperature, and radiation while venting steam, hydrogen and other non-condensable gases and aerosols.•1.2.11 – Shall be designed and operated to ensure the flammability limits of gases passing through the system are not reached; otherwise, the system shall be designed to withstand dynamic loading resulting from hydrogen deflagration and detonation.

Page 88: BWR Vent Order Implementation Workshop II

Here’s the scenario…1. Station is in a severe accident with fuel damage

2. Containment has been vented several times

3. Once the most recent venting is complete, vent is isolated

4. Remaining steam begins to condense in vent line

5. Reduction of gas volume in vent causes air to be drawn in

6. Mixing has the potential to cause deflagrable/detonable mixture to be created in the vent pipe

7. There must be enough mixture to support DDT (L/D may be as low as 10)

8. There are catalyst particles or another ignition source available

Page 89: BWR Vent Order Implementation Workshop II

Hydrogen Generation Post-Accident

• Metal-Water Reaction – Most significant contributor of post-accident hydrogen. Oxidation of zirconium in cladding with any available water. Reaction is exothermic and self-supporting once 1500⁰F is reached so long as water/steam is available.

Page 90: BWR Vent Order Implementation Workshop II

Carbon Monoxide Generation Post-Accident

Primarily due to Core Concrete Interaction (CCI)•Similar Chapman-Jouguet Pressure (Pcj) to hydrogen (therefore similar pressure spike to that of hydrogen)•Based on NASA’s CEARUN program sensitivity studies, carbon monoxide detonation pressure can be considered as enveloped by that of hydrogen.

Page 91: BWR Vent Order Implementation Workshop II

Fundamental Conclusions Relative to Combustible Gas Mixtures• It is accepted that a detonation can be

achieved based on the amounts of combustible gases produced during the course of a severe accident.

• Based on those gases produced, the hydrogen detonation peak pressure values are considered as bounding (relative to carbon monoxide).

Page 92: BWR Vent Order Implementation Workshop II

To Reiterate – Basic Hydrogen Vent Design Philosophies

Either -1.Design your vent system such that it can accommodate a detonation and continue to effectively operate, …or2.Design your vent system such that a flammable mixture cannot be achieved (such that a deflagration cannot occur – deflagration proof).

Page 93: BWR Vent Order Implementation Workshop II

HCVS Design Options for Combustible Gas

Option

Description Category

1 Design for Detonation Accommodate Detonation

2 Install Purge System for Entire HCVS Deflagration Proof

3 Install Downstream Control Valve (or FCV)-Extend Containment/Partial Detonation Proof

Hybrid

4 Install Check Valve at Release Point (Extend Containment)

Deflagration Proof

5 Install Control Valve (or FCV) at Release Point (Extend Containment)

Deflagration Proof

6 Utilize Expansion Chambers/Mufflers to Reduce Detonation Load

Accommodate Detonation

Page 94: BWR Vent Order Implementation Workshop II

Option 1 – Design Entire System for Detonation

Advantages Disadvantages

1.Completely passive 1.Requires valve(s) to be upgraded due to loading

2.Potentially requires upgraded piping

3.Requires upgraded pipe supports

4.Requires more rigorous stress and support analysis

Page 95: BWR Vent Order Implementation Workshop II

Option 1 – PipingPipe Size -> 12” 14” 16” 18”

Grade A Schedule 40 Schedule 40 Schedule 40 Schedule 60

Grade B Standard Schedule 40 Schedule 40 Schedule 40

Grade C Standard Standard Standard Schedule 40

Notes: •Schedule 40 pipe use for Grade A 16” and schedule 40 use for Grade B 18” are considered marginal•Color for effect only, indicates departure from Std. schedule•It is understood that such static loading will mainly manifest in pipe hoop stress•Corrosion Allowance of 0.020” is Considered•All Piping SA-106 - Service Level C Allowables

Page 96: BWR Vent Order Implementation Workshop II

Option 1 – Valving

• Existing vent system valves are typically Air- Operated Standard Class 150 butterfly valves.

• As per ASME B16.34 – 2009, a like valve to account for detonation must be Class 900 or above.- This roughly doubles the weight of the

valve (depending on manufacturer).

Page 97: BWR Vent Order Implementation Workshop II

Valve Changeout

Changeout of a Torus Vent CIV •A 900# Valve and actuator will be significantly heavier than the existing CIV•Consideration must be given to “Torus Attached Piping”•NUREG-0661 (for Mark I), Section 4.1, Subsection 3 cites affected appurtenances •NUREG-0487 (and Supplements) is the applicable document for Mark IIs•If there are interfaces with other systems (e.g., SGTS), the isolation valve(s) for that system will be affected

Page 98: BWR Vent Order Implementation Workshop II

Option 2 – Install a Purge System

Advantages Disadvantages

1.Requires minimal modification to existing or as designed system

2.Eliminates detonation concern

1.Active feature2.Manpower requirement3.Additional maintenance 4.Additional failure modes5.Potentially difficult to operate

manually at the remote panel. May need to be automatic from both locations

Page 99: BWR Vent Order Implementation Workshop II

Option 2 Configuration – Purge

Page 100: BWR Vent Order Implementation Workshop II

Option 2

• Consider active or passive design• Tie purge gas supply close to Control Valve• Use Argon gas due to relatively high

molecular weight and plentiful supply• Site to perform volumetric calc and assure

that vent is filled at completion of purging• Assure that ample Argon pre-staged or

available for maximum venting cycles

Page 101: BWR Vent Order Implementation Workshop II

Option 2 – Design Considerations

• Maximum Steam Condensation Rate Calc- Worst case (coldest) ambient temperature

(outside) must be considered- Worst case building temperature (adjacent

to pipe) must be considered- Insulation must be considered

Page 102: BWR Vent Order Implementation Workshop II

Option 3 – Install Downstream Control Valve

Advantages Disadvantages1.Minimizes piping

potentially affected by detonation

1.Downstream portion of piping still subject to disadvantages listed for Option 1

2.Adds additional valve to the system3.Additional maintenance and testing

of the added valve4.Additional failure mode (potential

failure of the additional valve)

Page 103: BWR Vent Order Implementation Workshop II

Option 3 Configuration – Interim Control Valve

Page 104: BWR Vent Order Implementation Workshop II

Option 3

• Extends containment such that upstream piping is inerted (steam, nitrogen) during ‘standby’ periods

• Design of downstream piping has option to consider –- Designing shorter section for detonation- Installing minimal capacity purge system

Page 105: BWR Vent Order Implementation Workshop II

Option 3 – Design Considerations

• If Designing for Detonation- If possible, place control valve at convenient

location prior to last vertical leg of pipe to minimize complexity of stress analysis

- Design for convenient support/anchor opportunity for control valve (maybe near pier, substantial concrete column or structural steel) to isolate the final run from inerted upstream piping

Page 106: BWR Vent Order Implementation Workshop II

Option 3 – Design Considerations (cont.)

• If Designing Using Purge- Consider opportunity for easy tie-in to argon tank

array- Potentially consider manual system based on

placement of valving and argon tanks (keeping in mind the reduced purge time for shorter runs)

Note – Reference HCVS-FAQ-05 for valve and valve testing requirements

Page 107: BWR Vent Order Implementation Workshop II

Option 4 – Check Valve at (or near) Release PointAdvantages Disadvantages1.Eliminates detonation

concern2.No operator action

required

1.Additional maintenance2.Additional failure modes

(inability of check valve to open or to close once opened)

3.Adds challenges to support and maintain a large mass at the end of the vent.

Page 108: BWR Vent Order Implementation Workshop II

Option 4 Configuration – Downstream Check Valve

Page 109: BWR Vent Order Implementation Workshop II

Option 4

• Install minimal leakage check valve at or near the outlet to the vent

• At completion of venting, closed check valve will seal (with very minimal leakage) the contained volume of steam, H₂ and N₂

• With minimal oxygen constituent leaking in coupled with lack of mixing forces, deflagrable mixture is extremely unlikely

Page 110: BWR Vent Order Implementation Workshop II

Option 4 – Design Considerations

• Place check valve just above roof level or adjacent to parapet (if mounted on building exterior wall) to facilitate support, maintenance and testing.

• Consider placing low dP rupture disc or PVC cap over valve for protection

• Consider nitrogen blanketing of system for corrosion prevention

• Consider installing permanent work platform for maintenance and testing

Page 111: BWR Vent Order Implementation Workshop II

Option 5 –Control Valve (or FCV) at (or near) Release Point

Advantages Disadvantages1.Eliminates

detonation concern

1.Active feature2.Manpower requirement3.Additional maintenance and testing4.Additional failure mode5.Adds challenges to support and

maintain a large mass with an offset actuator at the end of the vent.

Page 112: BWR Vent Order Implementation Workshop II

Option 5 Configuration – Downstream Control Valve

Page 113: BWR Vent Order Implementation Workshop II

Option 5

• Similar to Option 4 as containment is extended (once venting system has begun to be used) to the release point

• Based on higher pressure inside vent pipe volume, this eliminates leakage into that contained volume

Page 114: BWR Vent Order Implementation Workshop II

Option 5 – Design Considerations

• As with Option 4, place control valve (or FCV) just above roof level or adjacent to parapet (if mounted on building exterior wall) to facilitate support, maintenance and testing.

• Consider placing low dP rupture disc or PVC cap over valve for protection

• Consider nitrogen blanketing of system for corrosion prevention

• Consider installing permanent work platform for maintenance and testing

• Reference HCVS-FAQ-05 for valve and valve testing requirements

Page 115: BWR Vent Order Implementation Workshop II

Option 6 – Design Using Expansion Chambers/Mufflers to Reduce Detonation Load

• Detonation shock wave loads can be mitigated by rapid expansion and contractions in the exhaust pipe

• Proper acoustic design using such devices works to counteract the axial forces from a detonation

Page 116: BWR Vent Order Implementation Workshop II

Option 6 – Design Considerations

• Must consider additional flow resistance • Must take into account complexity associated

with design and constructability of system using these devices

• Will still be some residual loading associated with minimized shock waves (due to detonation) which will need to be considered in design

Page 117: BWR Vent Order Implementation Workshop II

Options Not Considered Feasible

• Incorporation of Detonation/Flame Arrestors

• Consideration of a Recombination Device or

Devices

• Consideration of a Venturi Mixing Device

• Consideration of Heating Downstream Piping

Page 118: BWR Vent Order Implementation Workshop II

Questions ??