bruce mayer, pe licensed electrical & mechanical engineer bmayer@chabotcollege

34
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §7.7 Complex §7.7 Complex Numbers Numbers

Upload: lydia-serrano

Post on 31-Dec-2015

12 views

Category:

Documents


0 download

DESCRIPTION

Chabot Mathematics. §7.7 Complex Numbers. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected]. MTH 55. 7.6. Review §. Any QUESTIONS About §7.6 → Radical Equations Any QUESTIONS About HomeWork §7.6 → HW-29. Imaginary & Complex Numbers. - PowerPoint PPT Presentation

TRANSCRIPT

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§7.7 Complex§7.7 ComplexNumbersNumbers

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt2

Bruce Mayer, PE Chabot College Mathematics

Review §Review §

Any QUESTIONS About• §7.6 → Radical Equations

Any QUESTIONS About HomeWork• §7.6 → HW-29

7.6 MTH 55

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt3

Bruce Mayer, PE Chabot College Mathematics

Imaginary & Complex NumbersImaginary & Complex Numbers Negative numbers do not have square

roots in the real-number system. A larger number system that contains the

real-number system is designed so that negative numbers do have square roots. That system is called the complex-number system.

The complex-number system makes use of i, a number that with the property (i)2 = −1

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt4

Bruce Mayer, PE Chabot College Mathematics

The “Number” The “Number” ii

i is the unique number for which i2 = −1 and so 1i

Thus for any positive number p we can now define the square root of a negative number using the product-rule as follows .

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt5

Bruce Mayer, PE Chabot College Mathematics

Imaginary NumbersImaginary Numbers

An imaginary number is a number that can be written in the form bi, where b is a real number that is not equal to zero

Some Examples

5 2973

37

ii

i

i is called the “imaginary unit”

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt6

Bruce Mayer, PE Chabot College Mathematics

Example Example Imaginary Imaginary NumbersNumbers Write each imaginary number as a

product of a real number and ia) b) c)16 21 32

SOLUTIONa) b) c)16

1 16

1 16 4i

21

1 21

1 21 21i

32

1 32

1 32 16 2i

4 2i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt7

Bruce Mayer, PE Chabot College Mathematics

ReWriting Imaginary NumbersReWriting Imaginary Numbers

To write an imaginary number in terms of the imaginary unit i:

n

1. Separate the radical into two factors 1 .n

2. Replace with i

3. Simplify

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt8

Bruce Mayer, PE Chabot College Mathematics

Example Example Imaginary Imaginary NumbersNumbers Express in terms of i:

a) b)

SOLUTIONa)

b)

1 9 3, or 3 .i i

1 16 3 4 3 4 3i i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt9

Bruce Mayer, PE Chabot College Mathematics

Complex NumbersComplex Numbers

The union of the set of all imaginary numbers and the set of all real numbers is the set of all complex numbers

A complex number is any number that can be written in the form a + bi, where a and b are real numbers. • Note that a and b both can be 0

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt10

Bruce Mayer, PE Chabot College Mathematics

Complex Number ExamplesComplex Number Examples

The following are examples of Complex numbers

7 2

12

3

11

i

i

i

Here a = 7, b =2.

Here 2, 1/3.a b

Here 0, 11.a b

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt11

Bruce Mayer, PE Chabot College Mathematics

The complex numbers:

a = bi

Complex numbers thatare real numbers:

a + bi, b = 0

Rational numbers:

Complex numbers thatare not real numbers:

a + bi, b ≠ 0

Irrational numbers:

Complex numbers (Imaginary)

2

3

, 0, 0 :

3 , , 17 ,...

a bi a b

i i i

32, , 7,...

2

, 7, 18, 8.7...3

Complex numbers

2 73 5

, 0, 0:

2 2 ,5 4 ,

a bi a b

i i i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt12

Bruce Mayer, PE Chabot College Mathematics

Add/Subtract Complex No.sAdd/Subtract Complex No.s

Complex numbers obey the commutative, associative, and distributive laws.

Thus we can add and subtract them as we do binomials; i.e.,• Add Reals-to-Reals

• Add Imaginaries-to-Imaginaries

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt13

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Add & Sub Complex Add & Sub

Add or subtract and simplify a+bi

(−3 + 4i) − (4 − 12i)

SOLUTION: We subtract complex numbers just like we subtract polynomials. That is, add/sub LIKE Terms → Add Reals & Imag’s Separately• (−3 + 4i) − (4 − 12i) = (−3 + 4i) + (−4 + 12i)

• = −7 + 16i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt14

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Add & Sub Complex Add & Sub

Add or subtract and simplify to a+bia) b)

SOLUTIONa)

b)

10 (2 8) 10 10i i

Combining real and imaginary parts

1 3i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt15

Bruce Mayer, PE Chabot College Mathematics

Complex MultiplicationComplex Multiplication

To multiply square roots of negative real numbers, we first express them in terms of i. For example,

6 5 1 6 1 5

6 5i i 2 30i

1 30 30.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt16

Bruce Mayer, PE Chabot College Mathematics

Caveat Complex-MultiplicationCaveat Complex-Multiplication

CAUTIONCAUTION With complex numbers, simply

multiplying radicands is incorrect when both radicands are negative:

3 5 15. The Correct Multiplicative Operation

151515315311

51315131532

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt17

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTIONa)

2 10i i 2 20 1 2 5 2 5i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt18

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTION: Perform Distributionb)

210 6i i

10 6 6 10i i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt19

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTION : Use F.O.I.L.c)

8 2 3i

11 2i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt20

Bruce Mayer, PE Chabot College Mathematics

Complex Number CONJUGATEComplex Number CONJUGATE

The CONJUGATE of a complex number a + bi is a – bi, and the conjugate of a – bi is a + bi

Some Examples

231 Conjugate231

13 Conjugate13

ii

ii

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt21

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Conjugate Complex Conjugate

Find the conjugate of each number a) 4 + 3i b) −6 − 9i c) i

SOLUTION:a) The conjugate is 4 − 3i

b) The conjugate is −6 + 9i

c) The conjugate is −i (think: 0 + i)

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt22

Bruce Mayer, PE Chabot College Mathematics

Conjugates and DivisionConjugates and Division

Conjugates are used when dividing complex numbers. The procedure is much like that used to rationalize denominators.

Note the Standard Form for Complex Numbers does NOT permit i to appear in the DENOMINATOR• To put a complex division into Std Form,

Multiply the Numerator and Denominator by the Conjugate of the DENOMINATOR

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt23

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Eliminate i from DeNom by multiplying the Numer & DeNom by the Conjugate of i

i

i

1

312232

2

i

i

ii

i32

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt24

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Eliminate i from DeNom by multiplying the Numer & DeNom by the Conjugate of 2−3i

NEXT SLIDE for Reduction

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt25

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

SOLN2 3

2 3

i

i

2

2(4 )(2 3 ) 8 12 2 3

(2 3 )(2 3 ) 4 9

i i i i i

i i i

8 14 3 5 14

4 9 13

i i

5 14

13 13i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt26

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Rationalize DeNom by Conjugate of 5−i

3 5

5

i

i

3 5

5

i

i

53

5

5

5

i

i

i

i

2

2

15 3 25 5

25

i i i

i

15 3 25 5( 1)

25 ( 1)

i i

15 3 25 5

25 1

i i

10 28

26

i

10 28

26 26

i

5 14

13 13

i

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt27

Bruce Mayer, PE Chabot College Mathematics

Powers of Powers of ii → → iinn

Simplifying powers of i can be done by using the fact that i2 = −1 and expressing the given power of i in terms of i2.

The First 12 Powers of i

i 1

i2 1

i3 i2 • i 1 1

i4 i2 • i2 1• 11

i5 1

i6 1

i7 1 1

i8 1

i9 1

i10 1

i11 1 1

i12 1

• Note that (i4)n = +1 for any integer n

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt28

Bruce Mayer, PE Chabot College Mathematics

Example Example Powers of Powers of ii

Simplify using Powers of i a) b)

SOLUTION : Use (i4)n = 1a)

b)

= 1 Write i40 as (i4)10.

84 = i i

= 1 i = i

Write i32 as (i4)8.

Replace i4 with 1.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt29

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard WorkWhiteBoard Work

Problems From §7.7 Exercise Set• 32, 50, 62, 78, 100, 116

Ohm’s Law of Electrical Resistance in the Frequency Domain uses Complex Numbers (See ENGR43) ZIV

Law sOhm' AC

Law sOhm' DC

r iv

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt30

Bruce Mayer, PE Chabot College Mathematics

All Done for TodayAll Done for Today

ElectricalEngrs Use j instead

of i

jj

j

i

23or 17 :Examples

DefEngr 1

DefMath 1

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt31

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

AppendiAppendixx

srsrsr 22

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt32

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt33

Bruce Mayer, PE Chabot College Mathematics

Graph Graph yy = | = |xx||

Make T-tablex y = |x |

-6 6-5 5-4 4-3 3-2 2-1 10 01 12 23 34 45 56 6

x

y

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

file =XY_Plot_0211.xls

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt34

Bruce Mayer, PE Chabot College Mathematics

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4 5

M55_§JBerland_Graphs_0806.xls -5

-4

-3

-2

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10

M55_§JBerland_Graphs_0806.xls

x

y