breakeven skew iii

57
An Idiot’s Guide to Option Pricing Bruno Dupire Bloomberg LP [email protected] CRFMS, UCSB April 26, 2007

Upload: veeken77

Post on 26-Oct-2014

75 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Breakeven Skew III

An Idiot’s Guide to Option Pricing

Bruno DupireBloomberg LP

[email protected]

CRFMS, UCSBApril 26, 2007

Page 2: Breakeven Skew III

Bruno Dupire 2

Warm-up

%30][

%70][

Black

Red

P

P

Black if$0

Red if100$

Roulette:

A lottery ticket gives:

You can buy it or sell it for $60Is it cheap or expensive?

Page 3: Breakeven Skew III

Bruno Dupire 3

Naïve expectation

Buy6070

Page 4: Breakeven Skew III

Bruno Dupire 4

Replication argument

Sell6050

“as if” priced with other probabilities

instead of

Page 5: Breakeven Skew III

OUTLINE

1. Risk neutral pricing

2. Stochastic calculus

3. Pricing methods

4. Hedging

5. Volatility

6. Volatility modeling

Page 6: Breakeven Skew III

Bruno Dupire 6

Addressing Financial Risks

•volume•underlyings•products•models•users•regions

Over the past 20 years, intense development of Derivatives

in terms of:

Page 7: Breakeven Skew III

Bruno Dupire 7

$

TSK

To buy or not to buy?

• Call Option: Right to buy stock at T for K

$

TSK

$

TSK

TO BUY NOT TO BUY

CALL

Page 8: Breakeven Skew III

Bruno Dupire 8

Vanilla Options

European Call:Gives the right to buy the underlying at a fixed price (the strike) at some future time (the maturity)

TSKPayoffPut

European Put:Gives the right to sell the underlying at a fixed strike at some maturity

0,max)(Payoff Call KSKS TT

Page 9: Breakeven Skew III

Bruno Dupire 9

Option prices for one maturity

Page 10: Breakeven Skew III

Bruno Dupire 10

Risk Management

Client has risk exposure

Buys a product from a bank to limit its risk

Risk

Not Enough Too Costly Perfect Hedge

Vanilla Hedges Exotic Hedge

Client transfers risk to the bank which has the technology to handle it

Product fits the risk

Page 11: Breakeven Skew III

Risk Neutral Pricing

Page 12: Breakeven Skew III

Bruno Dupire 12

Price as discounted expectation

!?

Option gives uncertain payoff in the futurePremium: known price today

Resolve the uncertainty by computing expectation:

Transfer future into present by discounting

?!

Page 13: Breakeven Skew III

Bruno Dupire 13

Application to option pricing

Risk Neutral ProbabilityPhysical Probability

o TTT

rT dSKSSe ))((Price

Page 14: Breakeven Skew III

Bruno Dupire 14

Basic Properties

0)(price0 AA

)(price)(price)(price BABA

Price as a function of payoff is:

- Positive:

- Linear:

Price = discounted expectation of payoff

Page 15: Breakeven Skew III

Bruno Dupire 15

gives 1 in state

Option A gives

Toy Model

nss ,...,1

ix is

1 period, n possible states

in state

iA is

iii

iii

iii

xq

AxAAxA

)(price)(price

If , 0 in all other states,

where price(1)price)(price ii AA is a discount factor

jj

ii A

Aq

)(price

)(price1and0

iii qq is a probability:

Page 16: Breakeven Skew III

Bruno Dupire 16

FTAP

Fundamental Theorem of Asset Pricing

1) NA There exists an equivalent martingale measure

2) NA + complete There exists a unique EMM

Cone of >0 claimsClaims attainable from 0

Separating hyperplanes

Page 17: Breakeven Skew III

Bruno Dupire 17

Risk Neutrality Paradox

• Risk neutrality: carelessness about uncertainty?

• 1 A gives either 2 B or .5 B1.25 B• 1 B gives either .5 A or 2 A1.25 A• Cannot be RN wrt 2 numeraires with the same probability

Sun: 1 Apple = 2 Bananas

Rain: 1 Banana = 2 Apples

50%

50%

Page 18: Breakeven Skew III

Stochastic Calculus

Page 19: Breakeven Skew III

Bruno Dupire 19

Modeling Uncertainty

Main ingredients for spot modeling• Many small shocks: Brownian Motion

(continuous prices)

• A few big shocks: Poisson process (jumps)

t

S

t

S

Page 20: Breakeven Skew III

Bruno Dupire 20

Brownian Motion

10

100

1000

• From discrete to continuous

Page 21: Breakeven Skew III

Bruno Dupire 21

Stochastic Differential Equations

tW

),0(~ stNWW st

dWdtdx ba

At the limit:

continuous with independent Gaussian increments

SDE:

drift noise

a

Page 22: Breakeven Skew III

Bruno Dupire 22

Ito’s Dilemma

)(xf

dWdtdx b a

Classical calculus:

expand to the first order

Stochastic calculus:

should we expand further?

dxxfdf )('

Page 23: Breakeven Skew III

Bruno Dupire 23

Ito’s Lemma

dtdW 2)(

dWbdtadx

dtbxfdxxf

dxxfdxxf

xfdxxfdf

2

2

)(''2

1)('

)()(''2

1)('

)()(

At the limit

for f(x),

If

Page 24: Breakeven Skew III

Bruno Dupire 24

Black-Scholes PDE

• Black-Scholes assumption

• Apply Ito’s formula to Call price C(S,t)

• Hedged position is riskless, earns interest rate r

• Black-Scholes PDE

• No drift!

dWdtS

dS

dtCS

CdSCdC SStS )2

(22

dtSCCrdSCdCdtCS

C SSSSt )()2

(22

)(2

22

SCCrCS

C SSSt

SCC S

Page 25: Breakeven Skew III

Bruno Dupire 25

P&L

St t

St

Break-even points

t

t

Option Value

St

CtCt t

S

Delta hedge

P&L of a delta hedged option

Page 26: Breakeven Skew III

Bruno Dupire 26

Black-Scholes Model

If instantaneous volatility is constant :

dWdtS

dS

Then call prices are given by :

)2

1))/(ln(

1(

)2

1))/(ln(

1(

0

00

TrTKST

NKe

TrTKST

NSC

rT

BS

No drift in the formula, only the interest rate r due to the hedging argument.

drift:

noise, SD:

tSt

tSt

Page 27: Breakeven Skew III

Pricing methods

Page 28: Breakeven Skew III

Bruno Dupire 28

Pricing methods

• Analytical formulas

• Trees/PDE finite difference

• Monte Carlo simulations

Page 29: Breakeven Skew III

Bruno Dupire 29

Formula via PDE

• The Black-Scholes PDE is

• Reduces to the Heat Equation

• With Fourier methods, Black-Scholes equation:

)(2

22

SCCrCS

C SSSt

TddT

TrKSd

dNeKdNSC rTBS

12

20

1

210

,)2/()/ln(

)()(

xxUU2

1

Page 30: Breakeven Skew III

Bruno Dupire 30

Formula via discounted expectation

• Risk neutral dynamics

• Ito to ln S:

• Integrating:

• Same formula

dWdtrS

dS

dWdtrSd )

2(ln

2

])[(])[()

2(

0

2

KeSEeKSEepremiumTWTrrT

TrT

TT WTrSS )

2(lnln

2

0

Page 31: Breakeven Skew III

Bruno Dupire 31

Finite difference discretization of PDE

• Black-Scholes PDE

• Partial derivatives discretized as

)(),(

)(2

22

KSTSC

SCCrCS

C

T

SSSt

2)(

),1(),(2),1(),(

2

),1(),1(),(

)1,(),(),(

S

niCniCniCinC

S

niCniCniC

t

niCniCniC

SS

S

t

Page 32: Breakeven Skew III

Bruno Dupire

Option pricing with Monte Carlo methods

• An option price is the discounted expectation of its payoff:

• Sometimes the expectation cannot be computed analytically:– complex product– complex dynamics

• Then the integral has to be computed numerically

P EP f x x dxT0

the option price is its discounted payoffintegrated against the risk neutral density of the spot underlying

Page 33: Breakeven Skew III

Bruno Dupire

Computing expectationsbasic example

•You play with a biased die

•You want to compute the likelihood of getting

•Throw the die 10.000 times

•Estimate p( ) by the number of over 10.000 runs

Page 34: Breakeven Skew III

Bruno Dupire

Option pricing = superdie

Each side of the superdie represents a possible state of the financial market

• N final values

in a multi-underlying model

• One path

in a path dependent model

• Why generating whole paths?

- when the payoff is path dependent

- when the dynamics are complexrunning a Monte Carlo path simulation

Page 35: Breakeven Skew III

Bruno Dupire

Expectation = Integral

Unit hypercube Gaussian coordinates trajectory

Gaussian transform techniques discretisation schemes

A point in the hypercube maps to a spot trajectorytherefore

EP f x S S dx g y dy

Ng x

T t tdd d

ixi

d

.Pr ,...,,1

,1

10

0

1

Page 36: Breakeven Skew III

Bruno Dupire 36

Generating Scenarios

Page 37: Breakeven Skew III

Bruno Dupire 37

Low Discrepancy Sequences

dimensions1 & 2

Halton Faure Sobol

dimensions20 & 25

dimensions51 & 52

Page 38: Breakeven Skew III

Hedging

Page 39: Breakeven Skew III

Bruno Dupire 39

To Hedge or Not To Hedge

Daily Position

Daily P&L

Full P&L

Big directional risk HedgeDelta Small daily amplitude risk

S

P&L

Unhedged

0Hedged

Page 40: Breakeven Skew III

Bruno Dupire 40

The Geometry of Hedging

• Risk measured as • Target X, hedge H

• Risk is an L2 norm, with general properties of orthogonal projections

• Optimal Hedge:

TPLSD

ttt HXPL

HXHXRisk TTvar

H

HXHXH

infˆ

Page 41: Breakeven Skew III

Bruno Dupire 41

The Geometry of Hedging

Page 42: Breakeven Skew III

Bruno Dupire 42

Super-replication

•Property:

Let us call:

Which implies:

E XY E X E Y 2 2

yx

yx

xy

PP

YPXPXY

YPXPYX

2

:Portfolio by the dominated is XY so

,0 , and allFor

22

2

P X

P Yx

y

:

:

price today of

price today of

2

2

price XYP P P P

P PP P

y x x y

x yx y

2

Page 43: Breakeven Skew III

Bruno Dupire 43

A sight of Cauchy-Schwarz

Page 44: Breakeven Skew III

Volatility

Page 45: Breakeven Skew III

Bruno Dupire 45

Volatility : some definitions

Historical volatility :

annualized standard deviation of the logreturns; measure of uncertainty/activity

Implied volatility :

measure of the option price given by the market

Page 46: Breakeven Skew III

Bruno Dupire 46

Historical Volatility

• Measure of realized moves• annualized SD of logreturns

t

tt S

Sx 1ln

2

1

2

1

252ii t

n

it xx

n

Page 47: Breakeven Skew III

Bruno Dupire 47

Historical volatility

Page 48: Breakeven Skew III

Bruno Dupire 48

Implied volatility

Input of the Black-Scholes formula which makes it fit the market price :

Page 49: Breakeven Skew III

Bruno Dupire 49

Market Skews

Dominating fact since 1987 crash: strong negative skew on Equity Markets

Not a general phenomenon

Gold: FX:

We focus on Equity Markets

K

impl

K

impl

K

impl

Page 50: Breakeven Skew III

A Brief History of Volatility

Page 51: Breakeven Skew III

Bruno Dupire 51

Evolution theory of modeling

constant deterministic stochastic nD

Page 52: Breakeven Skew III

Bruno Dupire 52

A Brief History of Volatility

– : Bachelier 1900

– : Black-Scholes 1973

– : Merton 1973

– : Merton 1976

Qtt

t

t dWtdtrS

dS )(

Qtt dWdS

Qt

t

t dWdtrS

dS

dqdWdtkrS

dS Qt

t

t )(

Page 53: Breakeven Skew III

Bruno Dupire 53

Local Volatility Model

Dupire 1993, minimal model to fit current volatility surface

2

,2

2

2 2,

),(

K

CK

KC

rKTC

TK

dWtSdtrS

dS

TK

Qt

t

t

Page 54: Breakeven Skew III

Bruno Dupire 54

sought diffusion(obtained by integrating twice

Fokker-Planck equation)

1D Diffusion

s

Risk Neutral

Processes

Compatible with Smile

The Risk-Neutral Solution

But if drift imposed (by risk-neutrality), uniqueness of the solution

Page 55: Breakeven Skew III

Bruno Dupire 55

European prices

Localvolatilities

Localvolatilities

Exotic prices

From simple to complex

Page 56: Breakeven Skew III

Bruno Dupire 56

Stochastic Volatility Models

Heston 1993, semi-analytical formulae.

tttt

ttt

t

dZdtbd

dWdtrS

dS

)(

222

Page 57: Breakeven Skew III

The End