bottom up versus top down thermalization - tu wien · beamer-tu-logo bottom up versus top down...

18
beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen, arXiv:1209.0291 (accepted in PRL) R. Baier, SS, O. Tanilla, A. Vuorinen,, Phys. Rev. D 86, 081901(R) (2012) R. Baier, SS, O. Tanilla, A. Vuorinen, JHEP 1207 (2012) 094 Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Upload: others

Post on 12-Sep-2019

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

Bottom up versus top downthermalization

Stefan Stricker

TU Vienna

Schladming, 2013

D. Steineder, SS, A. Vuorinen, arXiv:1209.0291 (accepted in PRL)R. Baier, SS, O. Tanilla, A. Vuorinen,, Phys. Rev. D 86, 081901(R) (2012)

R. Baier, SS, O. Tanilla, A. Vuorinen, JHEP 1207 (2012) 094

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 2: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Outline

Introduction

Holographic thermalization

Results

Conclusion

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 3: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Motivation

quark gluon plasma

I produced in heavy ion collisions at RHIC and LHC

I behaves as a strongly coupled liquid

I hydrodynamic simulations work surprisingly well

I apparent puzzle: fast thermalization : τ < 1fm/c

goal

I gain insight into thermalization process

I which modes thermalize first ?

I production rates of weakly interacting particles

strategy

I use photons/dileptons as probes of the QGP

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 4: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Thermalization scenerios

bottom up scenario

I at weak couplingI scattering processes:

I in the early stages many soft gluons are emitted which thenthermalize the system (Baier et al)

I driven by instabilities

I instabilities isotropize the momentum distribution more rapidlythan scattering processes (Kurkela, Moore)

top down scenario

I at strong coupling

I UV modes thermalize first

I In AdS calculations at infinte coupling, follows naturally fromcausality

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 5: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Photon emission in heavy ion collisions

photons emitted at all stages of a heavy ion collision

I direct photons from initial hard scattering and thermalizingplasma

I additional (uninteresting) emissions from charged hadron decays

I virtual photons → Dilepton pairs

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 6: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Probing the plasma

probing the plasma

I once produced photons and dileptons stream through the plasmaalmost unaltered

I provide observational window in thermalization process of theplasma

quantity of interest

I number of photons emitted with given momentum

I differential production rate per unit volume

dΓγdk0

=αEM

πk0nB(k0)χµµ =

−2αEM

πk0nB(k0)Im(Πret)µµ(k0)

problem

I very hard to study out of equilibrium in strongly coupled regime

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 7: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Our approach

use SYM theory where strongly coupled regime is accessible

gauge gravity duality

I strongly coupled large Nc, N = 4 SYM at finite T ⇔ classicalgravity in AdS5 black hole background

I temperature of the black hole can be identified with field theorytemperature

similarities to QCD at finite T

I deconfinement

I Debye screening

I SUSY and conformal symmetry broken

I finite spatial screening length

advantage: can calculate observables at week and strong coupling

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 8: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Photon emission in equilibrium SYM plasma

Caron-Huot et al. (2006) & Hassanain et al. (2011):

I Effect of increasing coupling in perturbative result: Slope atk = 0 decreases, hydro peak broadens and moves right

I Effect of decreasing coupling from λ =∞: Peak sharpens andmoves left

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 9: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Out of equilibrium

I equilibrium picture in SYM fairly complete

I how does photon/dilepton emission rate get modified out ofthermal equilibrium ?

I can one access thermalization at finite coupling ?

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 10: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

AdS/CFT duality: Thermalizing system

I Simplest way to take system out of equilibrium: Begin with a thinmassive shell at r = rs > rh and let it collapse towards rs = rh(Danielsson, Keski-Vakkuri, Kruczenski (1999))

center horizon shell boundary

r = 0 r = rh r = rs r =∞

I 2-point functions ‘see’ the location of the shell through modifiedboundary conditions ⇒ Out-of-equilibrium effects

I quasistatic approximation: static shell; ω 1/τs; energyscale of interest characteristic time scale of shells motion

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 11: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Photon and dilepton spectral density

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.1

0.2

0.3

0.4

0.5

Ω`

Χ

Ω` HNc TL2

0 1 2 3 40

1

2

3

4

5

6

Ω`

ΧΜ

Μ HΩ, qL

Ω`

Nc2 T2

left: photon sepctral densityχγ(ω = k = 2πT ω, rs/rh) for

rs/rh = 1.001, 1.01, 1.1. right: dilepton spectral density for q = 0, 1, 2.

I out of equilibrium effect: oscillations around thermal value

I as the shell approaches the horizon, equilibrium is reached

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 12: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Thermalization at infinite coupling: photons

I relative deviation fromthermal equilibrium

R(ω) =χ(ω)− χth(ω)

χth(ω)

20 40 60 80 100 120-0.10

-0.05

0.00

0.05

0.10

ΩT

R

Relative deviation Rγ for rs/rh = 1.01, 1.1 and λ = ∞.

I top down thermalization: highly energetic modes are closer totheir equilibrium value

χ(ω) ≈ ω 23

(1 +

f1(us)

ω

)Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 13: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Thermalization depending on the virtuality

I virtuality

v =ω2 − q2

ω2

I parametrize

q = c ω 20 40 60 80 100-0.10

-0.05

0.00

0.05

0.10

ΩT

R

Relative deviation Rγ for rs/rh = 1.1 and c = 1, 0.7, 0.

I thermalization depends on the virtuality

I photons are last to thermalize

I same conclusion was reached in other models of holographicthermalizationArnold et al., Chesler and Teaney

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 14: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Photon production rate

0 1 2 3 4 5 6 70.0

0.5

1.0

1.5

ΩT

100dG dk0

Α HΠ NcL2 T3

left:Photon production rate for rs/rh = 1.001, 1.01, 1.1. right: Photon production

rate in equilibrium for λ = ∞, 75, 50.

I enhancement of production rate

I hydro peak broadens and moves right

I Can one combine the two calculations to study thermalization atfinite coupling?

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 15: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Photon emission spectrum with γ corrections

0 1 2 3 4 5 6 70.00

0.05

0.10

0.15

0.20

0.25

ΩT

dG dk0

Α Nc2 T3

photon emission rate for rs/rh = 1.01 and λ = ∞, 150, 75, 50.

I behavior very similar to thermal limit.

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 16: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Thermalization at finite coupling

I relative deviation from thermal equilibrium

40 60 80 100 120 140

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

ΩT

R

Relative deviation Rγ for rs/rh = 1.01 and λ = ∞, 500, 300, .

I behavior of relative deviation changes at large frequencies

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 17: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Thermalization at finite coupling

I relative deviation from thermal equilibrium

10 20 30 40 50 60 70 80

-0.05

0.00

0.05

ΩT

R

Relative deviation Rγ for rs/rh = 1.01 and λ = 150, 100, 75.

χ(ω) ≈ ω23

(1 +

f1(us)

ω+f2(us)ω

λ32

)I might indicate a change of the thermalization pattern from

top-down towards bottom up.

Stefan Stricker, TU Vienna Bottom up versus top down thermalization

Page 18: Bottom up versus top down thermalization - TU Wien · beamer-tu-logo Bottom up versus top down thermalization Stefan Stricker TU Vienna Schladming, 2013 D. Steineder, SS, A. Vuorinen,

beamer-tu-logo

IntroductionHolographic thermalization

ResultsConclusion

Conclusions

thermalization at infinite coupling

I enhancement of production rate

I observe top down thermalization

thermalization at finite coupling

I thermalization scenario depends on the coupling

I bottom up thermalization also possible at strong coupling ?

future directions

I go beyond the quasistatic approximation

I look at plasma constituents itself (components of the stressenergy tensor)

Stefan Stricker, TU Vienna Bottom up versus top down thermalization