biot savart laws

Upload: fatinhalim

Post on 07-Jul-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Biot Savart Laws

    1/42

    EEE1001/PHY1002 1

    Fields, Materials & Devices

    1

    Biot-Savart Law• Jean-Baptiste Biot and Felix Savart also studied

    the forces on wires around the same time asAmpere developed his theories.• To summarise their observations, at a point a

    distance r from the current qu ,

    •   Θ is the angle between the direction of thecurrent and the point at which the magnetic fieldis being obtained.

    B  = µ qu sin θ 

    4π r 2

  • 8/19/2019 Biot Savart Laws

    2/42

    EEE1001/PHY1002 2

    Fields, Materials & Devices

    2

    Biot-Savart Law• There is a simple analogy here between

    electric and magnetic fluxes:

    • We can compare the source of electricfield being the charge with the source ofmagnetic field being a moving charge .

    B  = µ qu sin θ 

    4π r 2

    4πε 0ε r r 2r E =

  • 8/19/2019 Biot Savart Laws

    3/42

    EEE1001/PHY1002 3

    Fields, Materials & Devices

    3

    Biot-Savart Law• The above expression for B is not the

    standard way of viewing the Biot-SavartLaw.

    • Instead we base it upon a current element .

    • The charge passing a point in unit time isthe current, – qu=idl 

    dl  i  q  u 

  • 8/19/2019 Biot Savart Laws

    4/42

    EEE1001/PHY1002 4

    Fields, Materials & Devices

    4

    Biot-Savart Law• So

    becomes

    with dB being a small contribution to the totalmagnetic flux density arising from the small partof the current in the wire element “idl” .

    B  = µ qu sin θ 

    4π r 2

    dB =  µ i sin θ dl 4π r 2

  • 8/19/2019 Biot Savart Laws

    5/42

    EEE1001/PHY1002 5

    Fields, Materials & Devices

    5

    Biot-Savart Law• We can eliminate B in favour of H :

    • The direction of the magneticfield is into the plane of thescreen at r 

     – This can be obtained using the “righthand screw rule”.

    dH =i sin θ dl 

    4π r 2

    +  

    dl 

    θ 

  • 8/19/2019 Biot Savart Laws

    6/42

  • 8/19/2019 Biot Savart Laws

    7/42

    EEE1001/PHY1002 7

    Biot-Savart Law• It would be a mistake to interpret the Biot-Savart

    law as stated as indicating that there is a smallamount of magnetic field coming from each

    element.

    • The law is only complete in the integral form:

    Fields, Materials & Devices

    7

    dH 

    ∫= H = 

    i sin θ dl 

    4π r 2∫

  • 8/19/2019 Biot Savart Laws

    8/42

    EEE1001/PHY1002 8

    Biot-Savart Law

    Fields, Materials & Devices

    8

    H = 

    ∫4π r 3

    i dl x r 

  • 8/19/2019 Biot Savart Laws

    9/42

    EEE1001/PHY1002 9

    Application of the Biot-Savart Law

    • The Biot-Savart law in this form can be used to

    obtain the magnetic field due to some importantsystems.

    • We shall now look at the example of the fieldabout a long straight wire…

    Fields, Materials & Devices

    9

    dH 

    ∫= H = 

    i sin θ dl 

    4π r 2

  • 8/19/2019 Biot Savart Laws

    10/42

    EEE1001/PHY1002 10

    Application of the Biot-Savart Law

    • The application

    requires us toevaluate the integralfor a point relative tothe wire, effectivelysumming over all

    current elementsalong an infinite wire.

    Fields, Materials & Devices

    10

    Current, i 

    B , H 

    +  

    B , H 

  • 8/19/2019 Biot Savart Laws

    11/42

    EEE1001/PHY1002 11

    Application of the Biot-Savart Law

    • The sum is over

    elements of thistype, so that

    Fields, Materials & Devices

    11

    +  

    dl l 

    α 

    θ 

    r  a  H =  i sin θ dl 4π r 2∫

    -∞

    H = i cos α dl 

    4π r 2∫∞

    -∞

  • 8/19/2019 Biot Savart Laws

    12/42

    EEE1001/PHY1002 12

    Application of the Biot-Savart Law

    • To evaluate the

    integral, we needeliminate theinterdependence ofterms such as rand α.

    • We can express l and r in terms of α.

    Fields, Materials & Devices

    12

    +  

    dl l 

    α 

    θ 

    r  a 

  • 8/19/2019 Biot Savart Laws

    13/42

    EEE1001/PHY1002 13

    Application of the Biot-Savart Law

    1. a tan α = l 

    2. r cos θ = a 

    • Differentiating 1

    gives –  dl = a sec2α d α 

    Fields, Materials & Devices

    13

    +  

    dl l 

    α 

    θ 

    r  a 

    H =  i cos α a d α 4π r 2cos2α ∫

    π  /2

    - π  /2

    Note, when l=- ∞, α =- π  /2,

    and when l= ∞, α = π  /2

  • 8/19/2019 Biot Savart Laws

    14/42

    EEE1001/PHY1002 14

    Application of the Biot-Savart Law

    1. a tan α = l 

    2. r cos θ = a 

    • Substituting 2

    gives

    Fields, Materials & Devices

    14

    +  

    dl l 

    α 

    θ 

    r  a 

    H =  i cos α a d α 4π a 2∫

    π  /2

    -π  /2

  • 8/19/2019 Biot Savart Laws

    15/42

    EEE1001/PHY1002 15

    Application of the Biot-Savart Law

    can be integratedreadily, yielding:

    Fields, Materials & Devices

    15

    +  

    dl l 

    α 

    θ 

    r  a 

    H = i cos α a d α 

    4π a 2∫π  /2

    -π  /2

    H =i  /2π a 

  • 8/19/2019 Biot Savart Laws

    16/42

    EEE1001/PHY1002 16

    The infinite, straight, uniform wire

    Fields, Materials & Devices

    16

    B , H 

    i  a 

    H = i 

    2π a 

    B =   µ i 

    2π a 

    Geometrically, the magnetic

    field strength, H , is equal tothe current divided by theloop length, 2π a .

  • 8/19/2019 Biot Savart Laws

    17/42

    EEE1001/PHY1002 17

    The field for a finite wire…• What happens at the ends of a wire?

     – Hint: consider a semi-infinite wire.

    Fields, Materials & Devices

    17

  • 8/19/2019 Biot Savart Laws

    18/42

    EEE1001/PHY1002 18

    Ampere’s Law• We can consider the generality of the

    observed geometrical interpretation of theresult for the infinite wire.

    • We integrate the magnetic field around a

    closed loop enclosing the current…

    Fields, Materials & Devices

    18

    H =  i 2π a 

    ∮H.dl

  • 8/19/2019 Biot Savart Laws

    19/42

    EEE1001/PHY1002 19

    Ampere’s Law• Since H and dl are always parallel, the

    scalar product is simply the product of themagnitudes:

    Fields, Materials & Devices

    19

    ∮H.dl =  i dl 

    2π a ∫0

    2π a 

    = i 

    B , H 

    i  a 

  • 8/19/2019 Biot Savart Laws

    20/42

    EEE1001/PHY1002 20

    Ampere’s Law• Ampere showed that this is generally true,

    so that

    • This is Ampere Ampere ’ ’ s Law s Law .

    • In words, the law states that “The lineintegral of H around any closed path isequal to the current enclosed”.

    Fields, Materials & Devices

    20

    ∮H.dl = i 

  • 8/19/2019 Biot Savart Laws

    21/42

    EEE1001/PHY1002 21

    Gauss’ Law• The circulation of magnetic

    field lines leads to an importantresult. – This is in stark contrast to

    electrostatics where electricalcharge is a source of divergingor converging field lines

    • The fact that magnetic fluxcirculates means that for anyclosed surface, as much fluxmust enter as leave

     – This is a conservation orcontinuity law

    • There are no isolated magneticflux sources or sinks

    Fields, Materials & Devices

    21

    Electric dipole

    Flux continuity

  • 8/19/2019 Biot Savart Laws

    22/42

    EEE1001/PHY1002 22

    Gauss’ Law

    • This is Gauss’ Law of magnetic fields.

     – Do not confuse this with Gauss’ law forelectrostatics

    • There is no divergence of B 

     – This refers to a derivative form of the law.

    Fields, Materials & Devices

    22

    ∮B.ds = 0s 

  • 8/19/2019 Biot Savart Laws

    23/42

    EEE1001/PHY1002 23

    Faraday’s Law – the beginnings of

    electromagnetic machines• In 1831, Michael Faraday

    established the principles whichlay the foundations of mostmodern electrical machines. – Up to this time, all electricity came

    from chemical cells (batteries).• He inverted the idea

     – If an electrical current can produce amagnetic field, then the oppositeshould also be true: a magnetic fieldshould be able to generate a currentin a wire.

    Fields, Materials & Devices

    23

    F   ar   a d   a  y 

  • 8/19/2019 Biot Savart Laws

    24/42

    EEE1001/PHY1002 24

    Faraday’s Law – the beginnings of

    electromagnetic machines• He spend a long time trying to

    show this idea in practice, placingmagnets in the vicinity of wiresand looking for in induced current

    or voltage – there was none.• However, eventually it was found

    that a moving magnet next to a

    wire did induce an e.m.f.

    Fields, Materials & Devices

    24

    F   ar   a d   a  y 

    EEE /PHY

  • 8/19/2019 Biot Savart Laws

    25/42

    EEE1001/PHY1002 25

    Faraday’s Law – the beginnings of

    electromagnetic machines• This is a simple arrangement

    that demonstrates the effect.

    • Some of the magnet flux, ψ,from the permanent magnet linksthe coil.

    • As the magnet moves theamount of flux linking the coilchanges.

    • The voltage induced in the coil is

    Fields, Materials & Devices

    25

    V

    V = d ψ dt 

    EEE1001/PHY1002

  • 8/19/2019 Biot Savart Laws

    26/42

    EEE1001/PHY1002 26

    Question

    • What wouldhappen if we

    added a secondturn to the coil?

    Fields, Materials & Devices

    26

    V

    EEE1001/PHY1002 27

  • 8/19/2019 Biot Savart Laws

    27/42

    EEE1001/PHY1002 27

    Application of Faraday’s Law

    EEE1001/PHY1002 28

  • 8/19/2019 Biot Savart Laws

    28/42

    EEE1001/PHY1002 28

    Motional EMF• Another view of the

    same effect can beobtained by viewing

    the impact upon a

    moving metal rodpassing through a

    magnetic field of flux

    density, B .

    x y 

    z E 

    F           

    EEE1001/PHY1002 29

  • 8/19/2019 Biot Savart Laws

    29/42

    EEE1001/PHY1002 29

    Motional EMF• For movement in the

    x -direction, and B inthe y-direction, the

    right-hand-rule for

    the cross-productdirects the force in the

    positive z -direction.

    • The force acts on theelectrons with charge

    -e .

    x y 

    z E 

    F z    

    EEE1001/PHY1002 30

  • 8/19/2019 Biot Savart Laws

    30/42

    EEE1001/PHY1002 30

    Motional EMF• The force on the

    electrons move the

    electrons in the negativez -direction.

    • This creates a spacecharge, and hence anelectric field, E , and aforce given by –  F=qE=-eE 

     – E directed in the negativez- direction, so F is in thepositive z- direction

    • C.f. Lenz’s Law

    x y 

    z E 

    F z    

    EEE1001/PHY1002 31

  • 8/19/2019 Biot Savart Laws

    31/42

    EEE1001/PHY1002 31

    Motional EMF• In equilibrium , the

    forces balance. – E=uB 

    • In terms of the vector

    quantities, – E=B x u 

    x y 

    z E 

    e E  

    EEE1001/PHY1002 32

  • 8/19/2019 Biot Savart Laws

    32/42

    32

    Motional EMF• If the rod is of length L,

    and moves in a directionperpendicular to themagnetic field, then theinduced voltage is given

    by the integral of theelectric field along thelength of the rod.

    • This is the same effect asthe Faraday Law we sawearlier.

    x y 

    z E 

     =  E dl = B L u ∫0

    L

    EEE1001/PHY1002 33

  • 8/19/2019 Biot Savart Laws

    33/42

    33

    Comparison of induced voltages• Faraday’s Law • Lorentz force

    V =  d ψ dt     =  E dl = B L u ∫0L

    EEE1001/PHY1002 34

  • 8/19/2019 Biot Savart Laws

    34/42

    Application of Ampere’s Law

    Field in a solenoid• We imagine an ideal

    toroidal solenoid to beuniform turn density,where all turns areperpendicular to the

    axis of the ring andthe radius of the ringlarge enough for

    variations in the fieldwith radius to benegligible.

    Fields, Materials & Devices

    34

    Iron core, N turns.

    EEE1001/PHY1002 35

  • 8/19/2019 Biot Savart Laws

    35/42

    Application of Ampere’s Law

    Field in a solenoid• The current enters

    and leaves the circuitat (approximately) the

    same place.

    • We draw a circuit forAmpere’s law through

    the axis of the ring.

    Fields, Materials & Devices

    35

    dl 

    EEE1001/PHY1002 36

  • 8/19/2019 Biot Savart Laws

    36/42

    Application of Ampere’s Law

    Field in a solenoid• We have to integrage

    B.ds over the circle ofradius r .

    • By symmetry H andB are constant in

    magnitude on thiscircle.

    • B and H are

    tangential to thecircle.

    Fields, Materials & Devices

    dl 

    EEE1001/PHY1002 37

  • 8/19/2019 Biot Savart Laws

    37/42

    Application of Ampere’s Law

    Field in a solenoid• We now apply

    Ampere’s law:

    • Since H and dl are

    parallel, the scalar

    product H.dl is justHdl.

    Fields, Materials & Devices

    dl 

    ∮H.dl = i 

    EEE1001/PHY1002 38

  • 8/19/2019 Biot Savart Laws

    38/42

    Application of Ampere’s Law

    Field in a solenoid• The path length is

    2π r .• Since the path

    threads N loops

    carrying current i , theright hand side is Ni :

    Fields, Materials & Devices

    dl 

    ∮dl = H2 π r = Ni 

    EEE1001/PHY1002

    f39

  • 8/19/2019 Biot Savart Laws

    39/42

    Application of Ampere’s Law

    Field in a solenoid• We can note the MMF

    is equal to theintegral, so is Ni .

    • The magnetc flux

    density can beobtained from B=  µ H .

    Fields, Materials & Devices

    dl 

    ∮dl = H2 π r = Ni 

    EEE1001/PHY1002

    A li ti f A ’ L40

  • 8/19/2019 Biot Savart Laws

    40/42

    Application of Ampere’s Law

    Field in a solenoid• What is the field outside the coil?

    • Is the answer to this subject to anyassumptions and/or approximations in thederivation?

    Fields, Materials & Devices

  • 8/19/2019 Biot Savart Laws

    41/42

    EEE1001/PHY1002 42

  • 8/19/2019 Biot Savart Laws

    42/42

    Example1. If we now apply an a.c. current of 50Hz

    and peak amplitude 2.0A, calculate thevoltage at the coil terminals

    2. Can you work out the coil inductance?