biomaterial scaffolds - nckumyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · biomaterial scaffolds...

25
Biomaterial Scaffolds ¾ Biomaterial Properties ¾ Surface properties ¾ Bulk properties ¾ Biological properties ¾ Types of Biomaterials ¾ Biological materials ¾ Synthetic materials

Upload: others

Post on 16-Sep-2019

50 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Biomaterial Scaffolds

Biomaterial PropertiesSurface propertiesBulk propertiesBiological properties

Types of BiomaterialsBiological materialsSynthetic materials

Page 2: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Surface Properties

The body “reads” the surfacestructure and responds.

Surface superficialor skin‐deep.

Page 3: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Some Possibilities for Surface Structure

Page 4: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Surface Properties

The surface region of a material is known to be uniquely reactiveThe surface of a material is inevitably different from the bulkSurfaces readily contaminateThe surface structure of a material is often mobile.

Page 5: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

How surfaces interact with molecules?

Nonspecific interactionSpecific bindingSurface topology

Page 6: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Nonspecific Interaction

Fundamentally attractive van der Waals force that arises from dipole‐dipole type interactions;Electrostatic forces resulting from charged moleculesHydration or solvation force that results from expulsion of water between the two surfacesHydrophobic effects that non‐polar molecules tend to form intermolecular aggregates in an aqueous mediumRepulsive steric forces that arise due to proteins on both surfaces forming spikes of up to 10 nm.

Page 7: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Surface Topology

Topological features occur at different length scales:Sub‐cellular level (< 10 μm)Cellular level (10‐100 μm)Multi‐cellular level (>100 μm)

Modulate protein adsorptionConstrain receptor binding and related signaling pathways – cell attachment, spreading, migration, and functionPorosity

Page 8: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Surface Characterization

Contact Angle MethodsElectron Spectroscopy for Chemical Analysis (ESCA; a.k.a. X‐ray Photoelectron Spectroscopy (XPS))Secondary Ion Mass Spectrometry (SIMS)Infrared Spectroscopy (IRS) Scanning Electron Microscopy (SEM)Scanning Tunneling Microscopy (STM)Atomic Force Microscopy (AFM)

Page 9: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types
Page 10: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Contact Angle Methods ‐Wettability

Page 11: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

sv sl lv cosγ γ γ θ= +

where          is solid‐vapor surface tensionis solid‐liquid surface tensionis liquid‐vapor surface tension 

svγslγlvγ

Young’s Equation:

Surface tension can be thought of as the energy required to create a unit area of an interface.

Page 12: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Zisman Method

For a particular surface,  liquids with a surface tension                 will wet the surface. Conventionally, a liquid “wets” the surface if the contact angle is less than 10 degree.  

Critical Surface Tension cγ

lv cγ γ≤

Surface Free EnergySurface free energy is proportional to critical surface tension. Therefore, the lower critical surface tension, the lower free energy of the surface.

Page 13: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Concerns in Contact Angle Measurement

The measurement is operator dependentSurface roughness influences the resultsSurface heterogeneity influences the resultsThe liquids used are easily contaminated (typically reducing their surface tension)The liquids used can reorient the surface structureThe liquids used can absorb into the surface, leading to swellingThe liquids used can dissolve the surfaceFew sample geometries can be usedInformation on surface structure must be inferred from the data obtained

Page 14: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Electron Spectroscopy for Chemical Analysis (ESCA)

Based on photoelectric effect. X‐rays are focused upon a specimen. The interaction of the X‐rays with the atoms in the specimen causes the emission of a core level (inner shell) electron. The energy of this electron is measured and its value provides infromation about the nature and environment of the atom from which it came.

Page 15: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Secondary Ion Mass Spectrometry (SIMS)

Instead of a beam of electrons, a beam of “primary” ions is used in SIMS. Emitted “secondary” ions are collected and analyzed. In ESCA, the energy of emitted electrons is measured. SIMS measures the mass of emitted ions.

Page 16: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Infrared Spectroscopy (IRS) or Fourier Transform Infrared (FTIR) Spectroscopy

The infrared spectrum of a sample is collected by passing a beam of infrared light through the sample. Examination of the transmitted light reveals how much energy was absorbed at each wavelength. An absorbance spectrum shows at which IR wavelength the sample absorbs.

Page 17: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Bulk Properties

The electronic and atomic structures, and almost all the physical properties, of solids depend on the nature and strength of the inter‐atomic bonds:

Ionic BondingCovalent BondingMetallic BondingWeak Bonding – van der Waals and hydrogen bonding

Page 18: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Mechanical Properties

Orthopedic applicationsCardiovascular applications

The mechanical properties of the engineered tissues should match that of the host tissue.

Page 19: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Wolff’s law

Bone in a healthy person is capable of adapting loadsthat is placed under. If loading on a particular bone increases, the bone will remodel itself over time to become stronger to resist the loading. Conversely, if the loading on a bone decreases, the bone will become weaker.

Page 20: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Stress ShieldingThe metal alloy implants have a much higher stiffness than the bone. This causes an effect called stress shielding, where all load is transferred through the metal and not the bone, causing the body to resorb the bone.

Page 21: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

“Diminished shield effect” of the femoral shaft component is one of the selling argument of new models of total hip devices. But can one really produce artificial total hips with stiffness values that are almost identical with the stiffness of the skeleton around the total hip device?

With Tissue Engineering, you can!

Page 22: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Another Example

Compliance mismatch of the vascular graft to the host artery could lead to intimal hyperplasia at the joint site, resulting in graft failure 

Neointimal hyperplasia

Page 23: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Characterization of Mechanical Properties

Characterization of mechanical properties of materials is important for matching biomaterial properties to the in vivo microenvironment.

Elasticity – typical reported parameter:Elastic modulus (slope of stress‐strain curve)Yield strength (the stress at which a given amount of plastic deformation occurs)Ultimate tensile strength (the stress at which the material fails)Ductility (the total plastic strain exhibited before fracture)Toughness (area under the stress‐strain curve until failure)

Page 24: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

We will talk about “mechanical properties” in details later when we reach Cell and Tissue Mechanics.

Viscoelasticity – dynamic mechanical testing

In order to match the mechanical properties of the surrounding tissue, it is important to note that the elastic moduli of biological tissues are highly nonlinear. Such nonlinearity is much harder to quantify.

Page 25: Biomaterial Scaffolds - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk7.pdf · Biomaterial Scaffolds ¾Biomaterial Properties ¾Surface properties ¾Bulk properties ¾Biological properties ¾Types

Biological Properties

Factors that influence biocompatibility

Surface finish (smooth, rough, powder, and surface porosity)Implant sizeSurface free energy (hydrophilicity, and charged)Wear debris and degradationImmunogenicity (tendency to stimulate the immune response)Mechanical properties (compliance)