biochip technologies biochip-technologies

41
IMTEK powerpoint template 2008: Version 2 of the first slide Biochip Technologies Biochip-Technologies T. Brandstetter

Upload: letu

Post on 29-Jan-2017

258 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Biochip Technologies Biochip-Technologies

IMTEK powerpoint template 2008:Version 2 of the first slide

Biochip TechnologiesBiochip-Technologies

T. Brandstetter

Page 2: Biochip Technologies Biochip-Technologies

Content

• Materials and surface modifications (26.04.13)

• Manufacturing of Biochips (14.06.13)

• Biochip technologies – Between research and routine diagnostics (state of the art,  21.06.13)

• Nucleic acid based techniques (28.06.13)

• Biochips for protein analytics (05.06.13)

• Other applications (12.07.13)

S (19 07 13)

T.  Brandstetter/ 26.04.2013 / slide 2www.imtek.de/cpi

• Summary (19.07.13)

Page 3: Biochip Technologies Biochip-Technologies

Our profile

R h d t hiResearch and teaching

• 22 faculties

• 300 researchers and technicians• 300 researchers and technicians

• highly interdisciplinary world of microsystem technology

IMTEK and industry

• Many industrial cooperations• Many industrial cooperations

• MSTBw

Core competences of CPI

• Preparation of surfaces with tailor-made propertiesproperties

• Topological and chemical micro structuring of surfaces

T.  Brandstetter/ 26.04.2013 / slide 3www.imtek.de/cpi

• AFM

• Biochip-technologies

Page 4: Biochip Technologies Biochip-Technologies

Biochip‐technologieshttp://portal.uni-freiburg.de/cpi/biochip-group-dr-brandstetter

T.  Brandstetter/ 26.04.2013 / slide 4www.imtek.de/cpi

Page 5: Biochip Technologies Biochip-Technologies

Biochips – what are they?(1)

• devices that can contain anywhere from tens to tens of millions of individualsensor elements (or biosensors)( )

• The sensors are packed together into a package typically the size of ap g p g yp ymicroscope slide. Because so many sensors can be put into such a smallarea, a huge number of distinct tests can be done very rapidly.

• Biochips are often made using the same microfabrication technology usedto make microchips Unlike microchips however biochips are generally notto make microchips. Unlike microchips, however, biochips are generally notelectronic (although they can be).

• The key premise behind biochips is, that they can do chemistry on a smallscale. Each biosensor can be thought of as a "microreactor“, which does

T.  Brandstetter/ 26.04.2013 / slide 5www.imtek.de/cpi

chemistry designed to sense a specific analyte.

Page 6: Biochip Technologies Biochip-Technologies

Biochips – what are they?(2)

• Biosensors can be made to sense a wide variety of analytes, including DNA,protein, antibodies, and small biological molecules.p , , g

• Fluorescence is often used to indicate a sensing event. Automatedgmicroscopy systems can be used to "read" the chip, i.e. determine whichsensors are fluorescing

• Most biochips are 2D arrays of sensors placed carefully in a gridarrangement The position of the sensor on the chip determines its functionarrangement. The position of the sensor on the chip determines its function.

• To place the sensors in precise coordinates sophisticated and expensive• To place the sensors in precise coordinates, sophisticated and expensivemicrodeposition techniques are used. The sensors are essentially placed oneat a time, or serially, on the chip.

T.  Brandstetter/ 26.04.2013 / slide 6www.imtek.de/cpi

Page 7: Biochip Technologies Biochip-Technologies

Biochips – what are they?(3)

HPV_3D_Katrin_N_30s_Cy5 substrat

HPV 6

dot

38

HPV 6

813 microarray

http://en.wikipedia.org/wiki/Biochip#History

T.  Brandstetter/ 26.04.2013 / slide 7www.imtek.de/cpi

Page 8: Biochip Technologies Biochip-Technologies

Manufacturing of biochips – in general(1)

1. Untreated slidemixed analyte solution

2. Microarray printing

3 I bili ti3. Immobilisation

T.  Brandstetter/ 26.04.2013 / slide 8www.imtek.de/cpi

Page 9: Biochip Technologies Biochip-Technologies

Manufacturing of biochips – in general(2)

step1:print polymer mixed with DNA

step 3:hybridisation andreadoutreadout

step 2:step 2:photocrosslinkingvia UV-irradiation

T.  Brandstetter/ 26.04.2013 / slide 9www.imtek.de/cpiC OH

Page 10: Biochip Technologies Biochip-Technologies

Materials and surface modifications

T.  Brandstetter/ 26.04.2013 / slide 10www.imtek.de/cpi

Page 11: Biochip Technologies Biochip-Technologies

Biochip materials (1)

Microscope slide of glass Commercial microscope glass slides

• Silica (SiO2) + vitreous silica

• Sodium carbonate (Na2CO3) + soda-lime-silicate glass• Sodium carbonate (Na2CO3) + soda lime silicate glass

• Limestone (CaCO3) + borosilicate glass-pyrex

• Magnesium Carbonate (MgCO3) + aluminosilicate glass

+ borosilicate glass

Detailled informationFrontiers in biochip technologyby Wan-Li Xing, Jing ChengEdition: illustrated

T.  Brandstetter/ 26.04.2013 / slide 11www.imtek.de/cpi

Edition: illustratedPublished by Birkhäuser, 2006ISBN 0387255680, 9780387255682357 pages

Page 12: Biochip Technologies Biochip-Technologies

Biochip materials (2)

Microscope slide of plastic Commercial plastic slides

• PMMA (polymethymethacrylate) + PMMA

• Polystyrene + Polystyrene• Polystyrene + Polystyrene

• COC (cyclic olefin copolymer) + TOPAS

• Polycarbonate + Polycarbonate

• Polypropyrene + Polypropyrene

T.  Brandstetter/ 26.04.2013 / slide 12www.imtek.de/cpi

Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f

Page 13: Biochip Technologies Biochip-Technologies

Biochip coatings

directly chemically modified surfaces

I it th i l ti t d l b l b dii id• In situ synthesis on glass + activated glass by poly-carbodiimide, aminosilane, aldehyde

Sil i t d b difi d l ft ti l ili ( l )• Silanizated probes on unmodified glass + graft coating polymers on silicon (glass)

• Photocrosslinking on unmodified plastic + plastic-based DNA microarrays using b dii id h i tcarbodiimide chemistry

+ amine-modified PMMA substrates

+ activated polystyrene, polypropyrene, polycarbonate (PC)

• S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251 (1991) 767–773.• M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern. NAR, 2005, Vol. 33, e75.• N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68.• H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J. Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.• M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004) 286–292, 294, 296.• A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98.

T.  Brandstetter/ 26.04.2013 / slide 13www.imtek.de/cpi

, , , g, , , ,• M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470.• De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and Ehrat M.. Anal. Chem. 2005, 77, 5831-5838.• Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911.• N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N. Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46.

Page 14: Biochip Technologies Biochip-Technologies

2D chips using SAMs (self assembled monolayers)

typical DNA-chip design:

sequence of the probepolyT(thymine) tailer

adapted from: E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5

+ reproducibility (why is acceptance of microarrays below expectations in non-research areas?

Weakness:

+ sensitivity

+ surface properties

T.  Brandstetter/ 26.04.2013 / slide 14www.imtek.de/cpi

Page 15: Biochip Technologies Biochip-Technologies

A „skyscraper“‐approach

2D

attachment of li l tid b

2D

oligonucleotide probes3D

polymer brushes

“polymer layer” – approach allows to improve the sensitivity adjust properties of the surface

(hydrophilicity, reactivity)3D

T.  Brandstetter/ 26.04.2013 / slide 15www.imtek.de/cpi

polymer networks

Page 16: Biochip Technologies Biochip-Technologies

Functional polymer monolayers

chemisorption of polymers growth of polymers chemisorption of polymerson surfaces

blockcopolymers

grafting of polymers on plasma modified

surfaces

p yvia macroinitators

T.  Brandstetter/ 26.04.2013 / slide 16www.imtek.de/cpi

photochemical attachment of polymers

surface-attached polymer networks „grafting in between“

Page 17: Biochip Technologies Biochip-Technologies

Photochemistry of benzophenone

triplet formation upon n,* excitation

biradical reacts with C,H bonds

C O C O C

CCH350 nm

O

H265 nm

hydrogenabstraction

= 100 µ s

CCOH

recombinationToomey R., Freidank D. and Rühe J.. Swelling Behavior of Thi S f Att h d

T.  Brandstetter/ 26.04.2013 / slide 17www.imtek.de/cpi

Thin, Surface-Attached Polymer Networks. Macromolecules, Vol. 37, 2004,882-887.

Page 18: Biochip Technologies Biochip-Technologies

Polymer networks attached to polymeric substrates

photocrosslinkableovercoat

Me

O OONMesimultaneous crosslinkingand surface attachment

O

Mepolymeric substrate

(e.g. polyurethane)

and surface attachmentvia pendant benzophenoneunits

O

swelling in water (2h)water (2h)

ca. 20 µm~ 1 mm

T.  Brandstetter/ 26.04.2013 / slide 18www.imtek.de/cpi

µ

Page 19: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, two procedures

I. Contact printing

Print pins PrintheadPrint pins Printhead

T.  Brandstetter/ 26.04.2013 / slide 19www.imtek.de/cpi

http://www.anopoli.com/http://www.anopoli.com/

Page 20: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

Omnigrid from GeneMachine®

Contact printing procedure

65% humidity, RT

Steel or tungsten needle with reservoir

droplet volume 400 – 600 pl

droplet diameter 140 – 200 µm

Process variance > 10%

T.  Brandstetter/ 26.04.2013 / slide 20www.imtek.de/cpi

Page 21: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

Pin heads make the difference.

Split pinp p•Spot diameters : 75µm to 215 µm

•Uptake volumes : 0.25µl to 0.64 µl

li.co

m/

http

://w

ww

.ano

pol

Solid pin

•Spot diameters : 75µm to 450 µm

T.  Brandstetter/ 26.04.2013 / slide 21www.imtek.de/cpi

Page 22: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

Printing with different, not aqueous, solutions is possible.

PDMAA(Polydimethylmetacrylate) PS (Polystyrene)

200 µm µ

T.  Brandstetter/ 26.04.2013 / slide 22www.imtek.de/cpi

printing medium: ethanol printing medium: toluene

Page 23: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

Spot diameter is not really controllable.

Split pin

Solid pin

Printing of 0.25 µm Cy5-labelled oligo-DNA in 400mM Napi and 1mg/ml PDMAA-co-5%MABP-co-2,5%VPA

T.  Brandstetter/ 26.04.2013 / slide 23www.imtek.de/cpi

Page 24: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

l li i scale lining PDMAA layer

PMMA (5 mg/ml) lining( g ) g

Printing medium toluene

exposure after photocrosslinkagephotocrosslinkage

T.  Brandstetter/ 26.04.2013 / slide 24www.imtek.de/cpi

Page 25: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

1. copolymers 2. buffer 3. PT-6000 tungstenPDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi

plastic/PMMA glass/Epoxy

PDMAA co 5%MABP co 2,5%VPA (a) 400 mM Napi(b) 200 mM Napi/3xSSC/0.75 M betaine

a a bb

2D

a. a. b.b.

2D_16_04_07_P2Dsp.2a 2D_16_04_07_N2Dsp.4b

a. a. b.2D_04_04_07_N2Ds.4a2D_04_04_07_P2Ds.1a

b.

3D3D

T.  Brandstetter/ 26.04.2013 / slide 25www.imtek.de/cpi

3D_12_04_07_P3Dsp.11a 3D_12_04_07_N3Dsp.2a 3D_03_04_07_N3Ds.4a3D_03_04_07_P3Ds.11

Page 26: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contact printing

1. copolymers 2. buffer 3. PT-6000 tungstenPDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi

plastic/PMMA glass/Epoxy

(b) 200 mM Napi/3xSSC/0,75 M betaine

a a bb

2D

a. a. b.b.

2D2D

2D_16_04_07_P2Dsp.2a

a. a. b.2D_xx_04_07_N2Ds.x2D_xx_04_07_P2Ds.x

b.2D_16_04_07_N2Dsp.4b

3D3D

T.  Brandstetter/ 26.04.2013 / slide 26www.imtek.de/cpi

3D_12_04_07_P3Dsp.11a 3D_12_04_07_N3Dsp.2a 3D_xx_04_07_N3Ds.x3D_xx_04_07_P3Ds.x

Page 27: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

II. Contactless printing/Piezo Electric Dispenser

http://www.scienion.de

T.  Brandstetter/ 26.04.2013 / slide 27www.imtek.de/cpi

Page 28: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

II. Piezo Electric dispenserPiezo Electric dispenser(Scienion AG®)

Contactless printing procedure

65% h idit RT 65% humidity, RT

droplet volume 410 pl,

droplet diameter 175 µm droplet diameter 175 µm

droplet volume and diameter is adjustable

Process variance < 10%

T.  Brandstetter/ 26.04.2013 / slide 28www.imtek.de/cpi

Page 29: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

Photos after print

2D 3D

3D2D = printing with PBS without polymer

3D = printing with PBS 1 mg/ml PDMAA-co-5%MABP-co-2,5%VPA

T.  Brandstetter/ 26.04.2013 / slide 29www.imtek.de/cpi

Page 30: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

D l t t ki Droplet stacking

1mg/ml polymer in distilled water

PSS = Polystyrenesulfanit PSS Polystyrenesulfanit

PMMA = Polymethylmetacrylate

Small droplet with 10x p

Large droplets with 20x

Photo after print

T.  Brandstetter/ 26.04.2013 / slide 30www.imtek.de/cpi

PSS PMMA

Page 31: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

“don t” str ct ring “donut”-structuring

1mg/ml PDMAA-co-5%MABP-co-2,5%VPA in

PBS

Exposure after wash with PBS and 0.1% (v/v) Tween)( ) )

T.  Brandstetter/ 26.04.2013 / slide 31www.imtek.de/cpi

Page 32: Biochip Technologies Biochip-Technologies

Dot morphology, how to analyze?

Dot morphology, depending on

surface properties

print solution contact angle

analyte concentration

Dot morphology analyzed by Dot morphology, analyzed by

AFM

Fluorescence microscope Fluorescence microscope

Raster electron microscope

T.  Brandstetter/ 26.04.2013 / slide 32www.imtek.de/cpi

Page 33: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

Printing ith additi es a oiding Printing with additives, avoiding “donut”-morphology

1mg/ml PDMAA-co-5%MABP-co-2,5%VPA in PBS

Additive Glycerol

Photo after print Photo after print

0 2.5 5 10 25%(v/v)

T.  Brandstetter/ 26.04.2013 / slide 33www.imtek.de/cpi

Page 34: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies, contactless printing

P i ti ith/ ith tT h l Printing with/withoutTrehalose

1mg/ml PDMAA-co-5%MABP -co-2,5%VPA in PBS

-T+T

125 mg/ml Trehalose (T) in PBS

“Donut”-structure without Trehalose +TTrehalose

Homogeneity in the dot morphology, using Trehalose

-T+T

α-D-glucopyranosyl α-D-

http://en.wikipedia.org/wiki/Trehalose

T.  Brandstetter/ 26.04.2013 / slide 34www.imtek.de/cpi

α-D-glucopyranosyl α-D-glucopyranoside(α,α‐Trehalose) Exposure with a fluorescence microscope

Page 35: Biochip Technologies Biochip-Technologies

Printing on microstructured surfaces

500 µm

T.  Brandstetter/ 26.04.2013 / slide 35www.imtek.de/cpi

Page 36: Biochip Technologies Biochip-Technologies

MicrostructuringMicrostructuring in in biochipbiochip technologiestechnologies

MicronasMicronas BiochipBiochip technlogytechnlogy

Piezo Electric dispenser(Scienion AG®)

Contactless printing procedure

80% humidity, RT

droplet volume 390 pl,

photodiode diameter 180 µm

i ti t t d f printing on structured surfaces

Process variance < 10%

T.  Brandstetter/ 26.04.2013 / slide 36www.imtek.de/cpi

Page 37: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies

Micronas Biochip technlogy

Piezo Electric dispenser(Scienion AG®)

printing directly on a photodiode

180 µm

T.  Brandstetter/ 26.04.2013 / slide 37www.imtek.de/cpi

Page 38: Biochip Technologies Biochip-Technologies

Microstructuring in biochip technologies

Micronas Biochip technlogy

Piezo Electric dispenser(Scienion AG®)

printing directly on a photodiode

pattern matching using a software

ted

not p

rint

dpr

inte

T.  Brandstetter/ 26.04.2013 / slide 38www.imtek.de/cpi

Page 39: Biochip Technologies Biochip-Technologies

MicrostructuringMicrostructuring in biochip technologies, summaryin biochip technologies, summary

Piezo Electric dispenser (Scienion AG®) Contactless printing procedure Contactless printing procedure Droplet volume control Droplet diameter tunable (>100µm)

P i i l i h l i Printing only with aqueous solutions 1mg/ml polymer Process variance < 10%

Omnigrid from GeneMachine®

Contact printing procedure Contact printing procedure Steel or tungsten needle with reservoir droplet volume 400 – 600 pl droplet diameter approx 200 µm droplet diameter approx. 200 µm Printing of different solutions > 1mg/ml polymer possible

T.  Brandstetter/ 26.04.2013 / slide 39www.imtek.de/cpi

Process variance > 10%

Page 40: Biochip Technologies Biochip-Technologies

Thank you for your attention!

http://www.bilder-welten.net/de/produkt_detail.php?id=23019&catid=1623

T.  Brandstetter/ 26.04.2013 / slide 40www.imtek.de/cpi

Page 41: Biochip Technologies Biochip-Technologies

Literature

• E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5• Frontiers in biochip technology, by Wan-Li Xing, Jing Cheng, Edition: illustrated, published by

Birkhäuser, 2006, ISBN 0387255680, 9780387255682, 357 pages• Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f• S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251

(1991) 767–773.M J Moorcroft W R Meuleman S G Latham T J Nicholls R D Egeland and E M Southern• M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern.NAR, 2005, Vol. 33, e75.

• N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68.• H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J.H. Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J.

Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.• M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004)

286–292, 294, 296.• A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98.• M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470.• De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and

Ehrat M Anal Chem 2005 77 5831 5838Ehrat M.. Anal. Chem. 2005, 77, 5831-5838.• Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911.• N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N.

Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46.

T.  Brandstetter/ 26.04.2013 / slide 41www.imtek.de/cpi

, , ,• Toomey R., Freidank D. and Rühe J.. Swelling Behavior of Thin, Surface-Attached Polymer

Networks. Macromolecules, Vol. 37, 2004, 882-887.