az őszi búza szárazságtűrésre történő nemesítésének

29
Breeding wheat for tolerance to drought at the Cereal Research Non-Profit Company László Cseuz Cereal Research Non-Profit Co. H-6701 Szeged, POB 391 Hungary [email protected]

Upload: others

Post on 13-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Breeding wheat for tolerance to drought at the Cereal Research Non-Profit Company

László Cseuz Cereal Research Non-Profit Co.

H-6701 Szeged, POB 391 Hungary [email protected]

World map of wheat

World map of drought

0

100

200

300

400

500

600

700

800

900

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Yea

rly p

reci

pita

tion

(mm

)

YEARS

Yearly precipitation and its distribution Szeged, 1988-2012

harvest-31.12.

01.04.-harvest

01.01-01.04

Understanding drought tolerance

• What is drought stress?

• What is „drought tolerance”?

• By what ways plants struggle against drought stress?

• Which are the most succesful strategies?

• How we can select for these components of drought

tolerance?

What is drought (water) stress?

• „Drought stress developes in the plant when the

water demand is higher than the water supply of

the ambient environment.” (Blum, 1988)

• Drought stress is a highly complex

phenomenon. Its strength, length, timing, or co-

occurence with other abiotic stresses (heat

stress, salt stress, etc.) is altering year after year

under our conditions.

What is drought tolerance (DT) ?

• The plant’s ability to adapt to water shortages.

• Surviving or economic yielding?

• In high-input agriculture (=practical DT) DT can be characterized by the ratio between grain yield under optimal and stressed conditions. By other words: DT is practically equal to yield stability under drought stress.

Different strategies of plants, or Levitt’s (1980) categories:

- Escape mechanism (earliness)

- Dehydration avoidance (water savers (succulent plants) and water users (effective root system))

- Dehydration tolerance (adaptation to drought on cellular level)

How (by which traits) a breeder can select for

drought tolerance?

Morphological characters visual selection

Phenologycal characters visual selection

Physiological traits field & lab tests

Cytology traits lab tests

Molecular traits lab tests

How to select?

Visual selection (in the nursery) Morphological traits

Early root size (lab tests) dehydration avoidance

Leaves (angle, size, waxyness, hairiness)

Sturdy leaves (slow senescence)

Awned spikes

Long lasting awns

Grain (plumpness, stability of grain size)

Phenological traits

Slow development after emergence (rooting type)

Fast early growth in spring

Earliness in booting

Earliness in heading

Fast ripening (staying green)

Resistance to biotic stresses

Visual evaluation of stress symptoms

Leaf coloration (purple, dark green, yellowish)

Leaf firing (tip necrosis)

Velocity of lower leaves’ senescence

Leaf rolling (adaptation!)

Depression of chlorophyll content (turning yellow)

Grain plumpness

Stability of plant height

Stability of grain size

Water retention ability (WRA) of excised

flag leaves

Water retention ability (WRA) of excised flag leaves Materials and methods:

1. Collecting flag leaves and determination of their fresh weight (FW1)

2. 24 hrs incubation and determination of turgid weight (TW)

3. 8 hrs desiccation under controlled conditions and determination of desiccated weight (FW2)

4. After a complete drying determination of dry weight (DW)

5. Determination of relative water content of flag leaves with a fresh weight (RWC1) and dessiccated weight (RWC2).

6. Evaluation of reduction in RWC due to the 8 hrs dessiccation (WRA).

RWC1 = (FW1-DW)/(TW-DW)*100 %

RWC2= (FW2-DW)/(TW-DW)*100%

Water retention ability:

RWC2/RWC1*100%

0

10

20

30

40

50

60víz

tart

ó k

ép

esség

(R

WC

2/R

WC

1)*

100 %

)

64

03

SW

ST

D5

/ S

WS

TD

1T

err

ad

ur

Kra

ss

óP

lain

sm

an

Za

laT

tj /

81

.F.3

79

Sz

iv /

Ma

gM

ajo

r4

4-8

7 /

B-1

46

2 0

3F

D-5

*GK

T-5

Él

/ M

érő

Sz

öré

ny

Álm

os

CY

-45

Fa

v C

31

/ C

ST

23

Hu

ny

ad

(E3

4*7

61

/14

2)*

(ZG

50

07

*GK

02

0/8

4)

Fk

-12

/ G

//

Cty

/ K

gy

l /

Ka

lK

al

/ G

aly

Me

me

nto

Bo

//

Öth

/ Z

oR

st

/2/

MM

/ N

BS

ám

án

Zu

/ F

av

Mu

ra /

Ga

lyK

al

/ G

aly

Ág

as

JQ

/ F

t //

Sz

inF

D9

11

43

/ F

av

FD

-5*G

KT

-5F

D-5

*GK

T-5

Öth

/ F

av

Ka

l /

CS

T2

2M

/ K

28

Ho

ld1

08

6 /

th /

Jb

jF

D9

11

43

/ F

av

Urá

nu

sz

Be

/ S

K 4

8.2

1H

am

rD

12

/ I

n /

/ K

al

Ka

l /

Rig

(k

ora

i)H

ub

aN

ap

Ttj

/ R

C1

03

//

Mv

16

/ É

lK

d /

Él

FD

-5*G

KT

-5N

ka

/ M

v1

6 /

/ Z

u /

3/

l //

Olt

Öth

/ J

bj

Ttj

/ Ö

thT

as

Ft

/ M

ag

Ju

pit

er

Mv

15

/ Z

oD

vd

/ H

aK

al

/ A

tiF

D-5

*GK

T-5

ny

Zo

/ S

o2

95

//

Ttj

sM

ag

/3

/ K

ő /

In

//

/ 2

*MM

Kh

arc

hia

Hu

sz

ár

/ T

tjC

sil

lag

Ka

l /

CS

T1

9B

íbic

Re

na

nV

é /

Ttj

Öth

Ne

ptu

nu

sz

Ka

taM

v2

2-K

al[

sz

(Mv

42

/Jk

m-R

na

2x

Grn

-D1

)MM

]M

v1

5 /

BL

FA

8*2

Jb

j /

Zu

Üs

tök

ös

Mv

22

/ K

al

// Z

uB

án

GK

44

.02

/ T

tjP

k /

3/

/ In

//

/ 2

*MM

Mv

15

/ Z

oD

vd

/5

/ 2

*Mv

4 /

3/

Jk

m /

Rn

a2

//

Grn

/ D

1 /

4/

MM

Ka

l /

Ati

Ka

ta /

rőN

rJ

bj

/ Z

l //

Cty

/ K

gy

aR

p /

Ke

Ca

pe

lle

MV

8 /

Op

2*I

n

/ G

ó5

42

/ A

U

a vizsgált genotípusok (100)

Búza zászlóslevelek víztartó-képessége

(kontroll %), Szeged, 2004

Water loss: 40-80 %)

Field trial for drought tolerance 100 genotypes, 3 treatments, 3 repetitions

irrigated

control

desiccated

Evaluation of translocation capacity of stem reserves

Materials and methods:

1.Registration of anthesis

2. Spraying with desiccant

(2% solution of Na ClO3) 14

days later

3. Harvesting grain yield at

full ripening of control plots

4. Degree of tolerance can

be estimated by the

reduction in thousand kernel

mass

50

55

60

65

70

75

80c

on

tro

l %

of

TK

M

CY

-45

Ma

hd

avi

Tis

za Ati

Xia

ng

an

Ka

ta

Ve

reck

e

Pla

insm

an

Hu

nya

d

Re

na

n

Ho

lló

Ko

bo

mu

gi

kés

Pe

tur

Zu

go

ly

Sza

la

Csi

llag

Em

ese

Ga

rab

oly

Ka

lász

Éle

t

Ca

pe

lle

Öth

alo

m

Ka

po

s

genotypes

The effect of dessiccation on TKM of wheat genotypes

Szeged, 2007

Depression of TKM: 23-47%

Automatic rain shade 60m x 12m area

rain sensors, convertible plastic tunnel

automatic closing-opening mechanism

automatic meteorological measurements

isolated from the side-wetting by drain ditches and

water pump

Water

withdrawal in

the field

Air temperature, soil temperature, wind speed and sun

irradiation between sowing time and harvest Changing the air temperature in the drought tolerance trial

kísérletben Szeged, 2007/2008

-7

-2

3

8

13

18

23

28

októ

ber

nove

m

dece

m

janu

ár

febr

uár

már

ciu

ápril

is

máj

us

júni

us

time(pentades)

ce

lsiu

s o

control

stressed

Soil temperature between the sowing and harvest in both treatments

Szeged-Kecskés 2007/2008

-5

0

5

10

15

20

25

30

okt

nov

dec

jan

feb

mar

apr

maj jun jul

time (pentades)

o c

els

ius

control

stressed

Daily average solar radiation

0

50

100

150

200

250

300

2009

.03.

03

2009

.03.

08

2009

.03.

13

2009

.03.

18

2009

.03.

23

2009

.03.

28

2009

.04.

02

2009

.04.

07

2009

.04.

12

2009

.04.

17

2009

.04.

22

2009

.04.

27

2009

.05.

02

2009

.05.

07

2009

.05.

12

2009

.05.

17

2009

.05.

22

2009

.05.

27

2009

.06.

01

2009

.06.

06

2009

.06.

11

2009

.06.

16

2009

.06.

21

2009

.06.

26

2009

.07.

01

2009

.07.

06

time (five days)

avera

ge d

ail

y r

ad

W/m

2

control

stressed

Wind speed in both treatments

0

1

2

3

4

5

6

7

2009

.03.

03

2009

.03.

08

2009

.03.

13

2009

.03.

18

2009

.03.

23

2009

.03.

28

2009

.04.

02

2009

.04.

07

2009

.04.

12

2009

.04.

17

2009

.04.

22

2009

.04.

27

2009

.05.

02

2009

.05.

07

2009

.05.

12

2009

.05.

17

2009

.05.

22

2009

.05.

27

2009

.06.

01

2009

.06.

06

2009

.06.

11

2009

.06.

16

2009

.06.

21

2009

.06.

26

2009

.07.

01

2009

.07.

06

time (5 dys)

win

d s

peed

(km

/h)

control

stressed

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

soil

moi

stur

e m

Pa

okt

no

v

de

c

jan

feb

ma

r

ap

r

ma

j

jun

jul

stressed

control

time (pentád)

Changes of soil moisture content in both treatments between

sowing and harvest

Szeged, 2007/2008

stressed

control

Determining the temperature of canopy surface during severe

drought stress

1. Surface temperature is significantly lower in

control treatment

2. Difference decreasing with ripening

Measurements: 06.12. 2012.

Average temp. of control plots: 25,2 C

Average temp. of stressed plots : 30,4 C

Air temperature: 36,0 C

Grain yield depression: 3 – 62%

TKM depression: 0 – 25%

30,5 % depression on the average

10,8 % depression on the average

Depression of plant height: 0 – 24%

Treatments Plant height Heading time TKM Grain yieldCanopy

temperature

cm days g g oC

Control treatment 77,7 136,1 41,5 396,0 25,2

Stress treatment 66,8 133,2 37,0 273,0 30,4

Difference 10,9 2,9 4,5 123,0 -5,2

LSD.% 5,3 1,5 4,2 26,9 27,9

Control % 86,0 97,9 89,1 68,9 120,6

Correlations between some measured

traits (TKM, grain yield, plant height, canopy

temperature)

Plant height Temp. I. Temp. II. TKM Grain Yield

Plant height 1

Temp. I. 0,358584*** 1

Temp. II. 0,227767* 0,292961** 1

TKM 0,228046* 0,008088 0,278769** 1

Grain Yield 0,5873849*** 0,317272** 0,143481 0,260127** 1

Dalmand

Kisújszállás

Kiszombor

Kocs

Lippó

Mezőhegyes

Prügy

Szeged-Kecskés

Táplánszentkereszt

47°11’N

16°41’E

47°36’É

18°20’K

45°51’N

18°34’E

47°09’N

20°27’E

46°19’É

20°49’ K

46°14’N

20°05’E

46°10’N

20°22’E

48°04’49’’É

21°14’K

Multi-location (9) trials of advanced lines

Xing partners

Exotic materials

High yielding lines

Segregating populations

F2 – F4 head rows

Visual selection

Advanced lines F6-

Multi-location

performance tests

Visual selection

Simple lab tests

Rain shelter tests

B & C lines

F4-F6 plots

Visual selection

Yield performance tests

from one (or two) location

Complex stress-diagnostic system 3 dimensional imaging

system (green pixels)

Automatic photography

from 11 directions

Automatic irrigation with

specific water dosage and

Plant moving automatic

Infra red gas analyser

CO2 discrimination,

photosynthesis,

chlorophyll fluorescence

special software for

computing the results

20% of water capacity „drought” 60% of water c., „control”

Varieties and variety candidates with higher

level of drought tolerance: 1999: GK Verecke drought tolerant variety

2001: GK Csongrád drought tolerant variety

2005: GK Békés, GK Csillag, highly adaptable cultivars, GK Hunyad, drought-stress

tolerant genotype

2010: GK Berény drought tolerant varieties

2011: GK Futár highly adaptable variety

2012: GK 26.12 drought tolerant candidate

Results…

Thank you for your attention!

ACKNOWLEDGEMENTS

We acknowledge that present work was supported by the following projects:

"BIOCEREAL" HUSRB /1002/ 214/ 045 IPA Hungarian – Serbian Cross-border

Co-operation Program.

Project on Preservation of Genetic Cereal Resources (MVH, 263/0601/3/14/2011)

2011-2015