autougm03 acoustics

48
Acoustics Modeling: Sandeep Sovani AUTO UGM 2003 Confidential Acoustics Modeling with FLUENT Sandeep Sovani, Ph.D. Technical Support Engineer, Automotive Team June 5th, 2003

Upload: nd1977

Post on 21-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Fluent Accoustics User guide tutorial

TRANSCRIPT

Page 1: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Acoustics Modeling with FLUENT

Sandeep Sovani, Ph.D.Technical Support Engineer, Automotive Team

June 5th, 2003

Page 2: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Outline• Aeroacoustics Background

– Basics– Simulation Approaches

• Simulation Guide– Computational Aeroacoustics (CAA)– Ffowcs-Williams Hawkins Model– Fluent – Sysnoise Coupling

• Examples• Future Work• Summary

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 3: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: BasicsOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 4: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: BasicsOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

SoundFlow

Acoustic Medium Receiver

Source

Page 5: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: BasicsThree types of acoustic sources:

Flow

m = m(t)

Flow

psurface = psurface(t) Turbulent Stresses

Monopole Dipole Quadrapole

Acoustic ~ Vel4Power

Acoustic ~ Vel6Power

Acoustic ~ Vel8Power

Flow

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 6: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: BasicsOutputs Desired from Experimentation/Analysis:

• Source Strengths– Source Ranking

• Frequency Spectrum– At observer

• Directivity• Propagation

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 7: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: Simulation Approaches• Source characteristics are governed by

Navier–Stokes equations– Time varying mass-flowrate (monopole)– Surface pressure fluctuations (dipole)– Turbulent stresses (quadrapole)

• Sound propagation is governed by wave equation

Source

Receiver

p’(t)

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 8: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: Simulation Approaches• Wave equation is a special case of Navier-

Stokes equations

• CFD solves the Navier-Stokes equations • In theory, sound generation as well as

propagation can be simulated simply by – a transient CFD simulation

• Domain spanning from sources to receivers– monitor pressure at the receiver locations as function

of time• However, there are several practical problems

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 9: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Practical problems in using CAA (Direct CFD)• 1] Frequency range (20 Hz ~ 20,000 Hz)

– Acoustic timescales are often orders of magnitude greater than turbulence timescales

– Simulation needs to be run for long real time with a small timesteps, i.e. for large no. of timesteps

• 2] Radiation to Far Field– Domain needs to extend from source to receiver– Large mesh sizes for far-field sound problems

e.g. aircraft noise heard on the ground

Aeroacoustics: Simulation ApproachesOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 10: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• 3] Acoustic Pressure Magnitude– Magnitude of the acoustic pressure is much less than

the hydrodynamic pressure– Necessitates use of very high order discretization

schemes (5th – 6th order)

Aeroacoustics: Simulation Approaches

0

20

40

60

80

100

120

140

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02Pressure (Pascal)

SPL

(dB

)

patm ~ 1E+5 Pa

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 11: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Option 1 – Comprehensive Transient CFD Analysis– Computational Aeroacoustics (CAA)

• Option 2 – Couple CFD with Wave Equation Solver/ BEM code

– Simulate region around the source with CFD– Provide CFD pressure, velocity data as

boundary conditions to a wave equation solver/BEM code• Option 3 – Acoustic Modeling

– Simulate region around the source with CFD– Propagate sound to receiver with Analytical Models

• Option 4 – Acoustics Estimation from Local Turbulence Scales

– Use correlations that relate local source strength to local turbulence scales

Decreasing computational effort

Decreasingaccuracy

Aeroacoustics: Simulation ApproachesOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 12: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Aeroacoustics: Simulation Approaches

LimitedGoodGoodGoodAccuracy

Steady State

TransientTransientTransientSolution Scheme

NoNoNoYesCan account for effect of sound on flow

NoNoYesNoCan propagate sound through shells

NoNoYesYesCan account for reflection

LeastModerateModerateMostExpensive computations

Option 4Turbulence Correlation

Option 3Acoustic Modeling

Option 2Coupled

CFD/BEM

Option 1CAA

Features & Limitations

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 13: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: CAA

D. Hendriana, S. Sovani, and M. Schiemann, “On Simulating Passenger Car Side Window Buffeting,” SAE 2003-01-1316, 2003.

• CAA (Computational Aeroacoustics)– Currently usable only for

• Near field acoustics• Low frequencies

– Useful where “hydrodynamicnoise” dominates

• Implementation:– mesh edge length =

length scale of turbulent eddieswhose timescale is 1/(max frequency)

– Time step = 1/(max frequency)/10– Run simulation for

total real time = (1/(min frequency))*10• Monitor static pressure at microphone

5

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 14: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins

• Based on a two step approach– Simulate transient flow field accurately only

around sources– Propagate noise from source to receiver via

analytical solution of wave equation • developed by Ffowcs-Williams and Hawkins, 1969

Source Region

Navier-Stokes Equation

Acoustic Receiver

Wave EquationF-W H

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 15: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• Advantages

– Need CFD solution only around source– Less expense/improved accuracy

• Disadvantages– Can’t account for reflection– Can’t account for backward effect of sound on flow

• Potential Automotive Applications– Wind Noise

• Side view mirror, Wipers,Rain gutter, Cavity noise

– HVAC Duct Noise– Muffler Noise propagation

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 16: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• Usage

– 1] Setup mesh/turbulence-models/solver-settingsfor an accurate CFD solution around sources

• Same restriction for spatial and temporal resolution as for CAA

• mesh edge length = length scale of turbulent eddieswhose timescale is 1/(max frequency)

• Time step = 1/(max frequency)/105

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 17: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• Usage

– 2] Select acoustic source surfaces• Source surfaces can be impermeable (walls)

or permeable (e.g. interiors)

Receiver

Wall Source Surface

Interior Source Surface

Receiver

Duct

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 18: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• Usage

– 3] Select whether soundcalculation should bedone “on the fly”

• Extract AcousticsSignals Simultaneously

– If Write Source DataFiles is selectedp, u, v, w, ρ data willbe written out to filesafter every few timesteps

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 19: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams HawkinsTransient

calculations(URANS, LES, DES)

ρ, u,v,w,p onemission surfaces

Read & Compute

sound pressureSPLPSD

On-the-fly Sound Calculation

Save source data

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 20: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• Usage

– 4] Specify receiver points• Before running transient simulation for “on the fly” option• Before or after running transient simulation for

“save source data files” option• Receivers can be inside or outside the CFD mesh

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 21: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams HawkinsUsage

– 5] Run transient simulation• For total real time = (1/(min frequency))*10

– 6] If using “write source data files” option

• Execute “Read andCompute Sound”

• p, u, v, w, ρ data is read from stored files

• Ffowcs-Williams Hawkins integral is performed

• Sound pressure vs. time data is written out for each receiverin a separate output file

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 22: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins7] Perform FFT of receiver sound pressure signal

to obtain PSD or SPL spectrum

FFT Utility• FFT utility is available for general analysis of unsteady data• Features

– Plot and pruning utility• Enables users to inspect and select signal

– Multiple choices of window functions • Hamming• Hanning• Barlett• Blackman

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 23: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

FFT Utility: Usage1. Read in plot file containing

data2. Apply “pruning” to remove

unwanted portions of the data set

3. Select Window option and x-y axes functions

4. Plot the FFT (Can optionally write FFT data to file)

Simulation Guide: Ffowcs-Williams HawkinsOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 24: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Original Data Pruned Data

Simulation Guide: Ffowcs-Williams Hawkins

Page 25: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams HawkinsOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 26: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Ffowcs-Williams Hawkins• More information:

– Usage: Fluent 6.1 Manual– Implementation of F-W H model:

Kim S,-E., Dai Y., Koutsavdis E.K., Sovani S.D., KadamN.A., Ravuri M.R., “A Versatile Implementation of Acoustic Analogy Based Noise Prediction Method in a General Purpose CFD Code,” AIAA-2003-3202 (2003)

– Theory:Ffowcs Williams J.E. and Hawkins D.L., “Sound Generation by Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions of the Royal Society, A264 (A1151) pp. 321-342 (1969)

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 27: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Simulation Guide: Fluent-Sysnoise Coupling• Available in Fluent6.1 and Sysnoise5.6• Beneficial over F-W H when sound reflection is

important• Usage:

– 1] Setup mesh/turbulence-models/solver-settingssame as F-W H

– 2] Select source surfaces and select “write source datato files” option. Fluent will create:

• One .index file• Multiple .asd files

– 3] Create a model for the acoustic domain in Sysnoise– 4] Fluent created .index and .asd files can be directly

imported into Sysnoise

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 28: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Vorticity Magnitude Contours

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 29: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Well documented and studied• Experimental results from Revell et. al.

Lockheed Report 28074• Cylinder diameter of 0.019 m• Free stream velocity of 69.2 m/s• Reynolds number ~ 90,000• 2-D LES, ∆t = 2E-6 sec• Cylinder surface used for F-WH integration

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 30: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

VorticityContours

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 31: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

FFT of soundpressurelevel at the observer’sposition

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 32: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

1.321.47

0.187 0.19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Experiment FLUENT

Comparison of LES results from FLUENT with experiment

CdStrouhal Number

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 33: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

100

117

102114

0

20

40

60

80

100

120

140

128D 35D

SPL

(dB)

Comparison of LES results from FLUENT with experiment for SPL

ExperimentFLUENT

Observer Location

Examples: (1) 2D CylinderOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 34: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Examples: (2) Generic Side View Mirror– Generic Side-View Mirror shape

• Half cylinder (0.2 m dia. and height)• Topped by quarter sphere• Mounted on a flat plate

Reference:Lokhande B.S., Sovani S.D., Xu J., “Computational aeroacoustic analysis of a generic side view mirror”SAE Paper 2003-01-1698, SAE NVH Conference

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 35: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Aim:– Test all three acoustics modeling strategies with CFD:

• CAA• Ffowcs-Williams Hawkins Method• Fluent-Sysnoise coupling

– Predict with each strategy: • Transient pressure fluctuation on acoustic source

surfaces (base plate and mirror body)• Sound pressure level at microphone locations away

from the mirror

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 36: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Computational Domain:• Modeled hemispherical region around mirror and base-plate• Hexahedral elements. Total 1.39 million

Inlet MirrorInlet Mirror

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 37: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Side View

Top View

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 38: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Velocity Inlet

Pressure Far-Field

Symmetry

Walls

• Boundary Conditions:• Inlet velocity = 200 km/hr• Re = 7 × 105

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 39: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Solution Settings:– CFD code: Fluent 6.1– Solver: Segregated Implicit– Turbulence Model: LES

• Smagorinsky-Lilly sub-grid scale model– Discretization schemes:

• Time: 2nd order implicit• Momentum: 2nd order upwind• Pressure-Velocity Coupling: SIMPLE

• Transient Solution:– Timestep size: 60 microsecond– Total timesteps: 2100– Run time: 4.75 days– Hardware: 2 processors, Intel P4,

2.2 GHz, RedHat Linux

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 40: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

• Flow Structure: Instantaneous Vorticity Iso-Surface

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 41: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Flow Structure: Transient Flow Pressure & Velocity

Page 42: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Microphone Locations

Side View Top View

Pt. 101

Pt. 102

B. Lokhande, S. Sovani, Fluent Inc., J. Xu, ICEM-CFD

Pt. 102

Pt. 101

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 43: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

SPL Spectrum

• Excessive fluctuations seen since data is presented from a single sample

Reference for Experimental Data: Hold et al. (AIAA-99-1896) and Seigert et al. (AIAA-99-1895)

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 44: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

10

30

50

70

90

110

0 500 1000 1500 2000Frequency (Hz)

SPL

(dB)

ExperimentalCFD - CAACFD - AA

Point 101

Reference for Experimental Data: Hold et al. (AIAA-99-1896) and Seigert et al. (AIAA-99-1895)

SPL Spectrum

• Excessive fluctuations seen since data is presented from a single sample

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 45: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Reference for Experimental Data: Hold et al. (AIAA-99-1896) and Seigert et al. (AIAA-99-1895)

SPL Spectrum

• Excessive fluctuations seen since data is presented from a single sample

Examples: (2) Generic Side View MirrorOutline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 46: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Examples: (2) Generic Side View MirrorFluent-SysnoiseCoupling

At 54 Hz

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 47: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Future Work• Fan Noise

– F-W H approach is capable of handlingrotating source surfaces

– Work in progress • allow export of acoustic source

data from moving surfaces• couple Fluent and Sysnoise for

moving/rotating acoustic sources• Acoustics Estimation from Turbulence

– Work in progress to include• Lilley source term• Boundary Layer noise• Linearized Euler equation

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47

Page 48: AutoUGM03 Acoustics

Acoustics Modeling: Sandeep SovaniAUTO UGM 2003 Confidential

Summary

• Acoustics modeling approaches with Fluent 6.1– Direct CAA (Computational Aeroacoustics)– F-W H Model (Ffowcs-Williams Hawkins)– Fluent-Sysnoise Coupling

• New FFT Tool for acoustics and general transient signals

• Bottom line:Accuracy of acoustic predictions is directly determined by accuracy of underlying transient CFD solution

Outline 1AeroacousticsBasics2 3 4 5SimulationApproaches6 7 8 9 10 11

Simulation GuideCAA 12F-W H 13 14 1516 17 18 19 2021 22 23 24 25Sysnoise 26

Examples27 28 29 30 3132 33 34 35 3637 38 39 40 4142 43 44 45Future Work 46Summary 47