automated iris recognition technology & iris biometric system

42
Automated Iris Recognition Technology & Iris Biometric System CS 790Q Biometrics Instructor: Dr G. Bebis Presented by Chang Jia Dec 9th, 2005

Upload: octavio-sanchez-huerta

Post on 11-Feb-2017

198 views

Category:

Science


1 download

TRANSCRIPT

Page 1: Automated Iris Recognition Technology & Iris Biometric System

Automated Iris Recognition Technology &

Iris Biometric System

CS 790Q Biometrics

Instructor: Dr G. BebisPresented by Chang Jia

Dec 9th, 2005

Page 2: Automated Iris Recognition Technology & Iris Biometric System

2

Overview

The Iris as a Biometrics: The iris is an overt body that is available for remote assessment with the aid of a machine vision system to do automated iris recognition.

Iris recognition technology combines computer vision, pattern recognition, statistical inference, and optics.

The spatial patterns that are apparent in the human iris are highly distinctive to an individual. Clinical observations Developmental biology

Page 3: Automated Iris Recognition Technology & Iris Biometric System

3

The structure of the human eyeThe structure of the iris seen in a transverse section

The structure of the iris seen in a frontal section

Overview

Page 4: Automated Iris Recognition Technology & Iris Biometric System

4

Its suitability as an exceptionally accurate biometric derives from its extremely data-rich physical structure genetic independence — no two eyes are the same patterns apparently stable throughout life physical protection by a transparent window (the

cornea), highly protected by internal organ of the eye externally visible, so noninvasive — patterns imaged

from a distance

Overview

Page 5: Automated Iris Recognition Technology & Iris Biometric System

5

The disadvantages to use iris as a biometric measurement are Small target (1 cm) to acquire from a distance (about 1

m) Moving target Located behind a curved, wet, reflecting surface Obscured by eyelashes, lenses, reflections Partially occluded by eyelids, often drooping Deforms non-elastically as pupil changes size Illumination should not be visible or bright

Overview

Page 6: Automated Iris Recognition Technology & Iris Biometric System

PART I:Iris Recognition: An Emerging Biometric Technology

R. Wildes, "Iris Recognition: An Emerging Biometric Technology", Proceedings of the IEEE, vol 85, no. 9, pp. 1348-1363, 1997.

CS 790Q Biometrics

Page 7: Automated Iris Recognition Technology & Iris Biometric System

7

Outline

Technical Issues ** Image Acquisition Iris Localization Pattern Matching

Systems and Performance

** (Throughout the discussion in this paper, the iris-recognition systems of Daugman and Wildes et al. will be used to provide illustrations.)

Page 8: Automated Iris Recognition Technology & Iris Biometric System

8

Technical Issues

Schematic diagram of iris recognition

Page 9: Automated Iris Recognition Technology & Iris Biometric System

9

I. Image Acquisition

Why important?

One of the major challenges of automated iris recognition is to capture a high-quality image of the iris while remaining noninvasive to the human operator.

Concerns on the image acquisition rigs Obtained images with sufficient resolution and sharpness Good contrast in the interior iris pattern with proper

illumination Well centered without unduly constraining the operator Artifacts eliminated as much as possible

Page 10: Automated Iris Recognition Technology & Iris Biometric System

10

The Daugman image-acquisition rig

I. Image Acquisition - Rigs

Page 11: Automated Iris Recognition Technology & Iris Biometric System

11

The Wildes et al. image-acquisition rig

I. Image Acquisition - Rigs

Page 12: Automated Iris Recognition Technology & Iris Biometric System

12

Result Image from Wildes et al. rig -- capture the iris as part of a larger image that also contains data derived from the immediately surrounding eye region

I. Image Acquisition - Results

Page 13: Automated Iris Recognition Technology & Iris Biometric System

13

In common: Easy for a human operator to master Use video rate capture

Difference: Illumination

The Daugman’s system makes use of an LED-based point light source in conjunction with a standard video camera.

The Wildes et al. system makes use of a diffuse source and polarization in conjunction with a low-light level camera.

Operator self-position The Daugman’s system provides the operator with live video feed

back The Wildes et al. system provides a reticle to aid the operator in p

ositioning

Discussion

Page 14: Automated Iris Recognition Technology & Iris Biometric System

14

Purpose: to localize that portion of the acquired image that corresponds to an iris

In particular, it is necessary to localize that portion of the image derived from inside the limbus (the border between the sclera and the iris) and outside the pupil.

Desired characteristics of iris localization: Sensitive to a wide range of edge contrast Robust to irregular borders Capable of dealing with variable occlusions

II. Iris Localization

Page 15: Automated Iris Recognition Technology & Iris Biometric System

15

The Daugman system fits the circular contours via gradient ascent on the parameters so as to maximize

Where is a radial Gaussian, and circular contours (for the limbic and pupillary boundaries) be parameterized by center location (xc,yc), and radius r (active contour fitting method)

II. Iris Localization

Page 16: Automated Iris Recognition Technology & Iris Biometric System

16

The Wildes et al. system performs its contour fitting in two steps. (histogram-based approach) First, the image intensity information is converted into a binary e

dge-map

where

and Second, the edge points vote to instantiate particular contour par

ameter values.

II. Iris Localization

Page 17: Automated Iris Recognition Technology & Iris Biometric System

17

The voting procedure of the Wildes et al. system is realized via Hough transforms on parametric definitions of the iris boundary contours.

II. Iris Localization

Page 18: Automated Iris Recognition Technology & Iris Biometric System

18

Illustrative Results of Iris Localization

Obtained by using the Wildes et al. system

only that portion of the image below the upper eyelid and above the lower eyelid should be included

Page 19: Automated Iris Recognition Technology & Iris Biometric System

19

Both approaches are likely to encounter difficulties if required to deal with images that contain broader regions of the surrounding face than the immediate eye region

Difference: the active contour approach avoids the inevitable thres

holding involved in generating a binary edge-map the histogram-based approach to model fitting should a

void problems with local minima that the active contour model’s gradient descent procedure might experience

Discussion

Page 20: Automated Iris Recognition Technology & Iris Biometric System

20

Four steps:

1) bringing the newly acquired iris pattern into spatial alignment with a candidate data base entry;

2) choosing a representation of the aligned iris patterns that makes their distinctive patterns apparent;

3) evaluating the goodness of match between the newly acquired and data base representations;

4) deciding if the newly acquired data and the data base entry were derived from the same iris based on the goodness of match.

III. Pattern Matching

Page 21: Automated Iris Recognition Technology & Iris Biometric System

21

Purpose: to establish a precise correspondence between characteristic structures across the two images.

Both of the systems under discussion compensate for image shift, scaling, and rotation.

For both systems, iris localization is charged with isolating an iris in a larger acquired image and thereby accomplishes alignment for image shift.

III. Pattern Matching -Alignment

Page 22: Automated Iris Recognition Technology & Iris Biometric System

22

The Daugman’s system uses radial scaling to compensate for overall size as well as a simple model of pupil variation based on linear stretching.

III. Pattern Matching -Alignment

while being constrained to capture a similarity transformation of image coordinates (x, y) to (x’, y’)

Map Cartesian image coordinates (x, y) to dimensionless polar (r, ө)image coordinates according to

The Wildes et al. system uses an image-registration technique to compensate for both scaling and rotation. The mapping function (u,v) is to minimize

Page 23: Automated Iris Recognition Technology & Iris Biometric System

23

The two methods for establishing correspondences between acquired and data base iris images seem to be adequate for controlled assessment scenarios

Improvements: more sophisticated methods may prove to be

necessary in more relaxed scenarios more complicated global geometric compensations

will be necessary if full perspective distortions (e.g., foreshortening) become significant

III. Pattern Matching -Alignment

Page 24: Automated Iris Recognition Technology & Iris Biometric System

24

The Daugman’s system uses demodulation with complex-valued 2D Gabor wavelets to encode the phase sequence of the iris pattern to an “IrisCode”.

III. Pattern Matching - Representation

Page 25: Automated Iris Recognition Technology & Iris Biometric System

25

In implementation, the Gabor filtering is performed via a relaxation algorithm, with quantization of the recovered phase information yielding the final representation.

III. Pattern Matching - Representation

Pictorial Examples of one IrisCode

Page 26: Automated Iris Recognition Technology & Iris Biometric System

26

The Wildes et al. system makes us of an isotropic bandpass decomposition derived from application of Laplacian of Gaussian filters to the image data.

In practice, the filtered image is realized as a Laplacian pyramid. This representation is defined procedurally in terms of a cascade of small Gaussian-like filters.

III. Pattern Matching - Representation

with σ the standard deviation of the Gaussian and ρ the radial distance of a point from the filter’s center

Page 27: Automated Iris Recognition Technology & Iris Biometric System

27

Result: Multiscale representation for iris pattern matching. Distinctive features of the iris are manifest across a range of spatial scales.

III. Pattern Matching - Representation

Obtained by using the Wildes et al. system

Page 28: Automated Iris Recognition Technology & Iris Biometric System

28

The Daugman system computes the normalized Hamming distance as

The result of this computation is then used as the goodness of match, with smaller values indicating better matches.

IV. Pattern Matching – Goodness of Match

Page 29: Automated Iris Recognition Technology & Iris Biometric System

29

The Wildes et al. system employs normalized correlation between the acquired and data base representations.

IV. Pattern Matching - Decision

Page 30: Automated Iris Recognition Technology & Iris Biometric System

30

IV. Pattern Matching - Decision For the Daugman system, this amounts to choosing a

separation point in the space of (normalized) Hamming distances between iris representations.

In order to calculate the cross-over point, sample populations of imposters and authentics were each fit with parametrically defined distributions.

Page 31: Automated Iris Recognition Technology & Iris Biometric System

31

For the Wildes et al. system, the decision-making process must combine the four goodness-of-match measurements that are calculated by the previous stage of processing (i.e., one for each pass band in the Laplacian pyramid representation) into a single accept/reject judgment.

IV. Pattern Matching - Decision

Page 32: Automated Iris Recognition Technology & Iris Biometric System

32

Both the enrollment and verification modes take under 1s to complete.

Empirical test 1: 592 irises from 323 persons the system exhibited no false accepts and no false rejects

Empirical test 2: Phase1: 199 irises from 122 persons, 878 attempts in

identification mode over 8 days no false accepts and 89 false rejects (47 retry with still 16 rejected)

Phase2: 96 irises (among 199) with 403 entries for identification no false accepts and no false rejects

Systems and Performance - The Daugman iris-recognition system

Page 33: Automated Iris Recognition Technology & Iris Biometric System

33

Both the enrollment and verification modes require approximately 10s to complete.

Only one empirical test: 60 different irises with 10 images each (5 at the beginning and 5 about one month later) from 40 persons no false accepts and no false rejects.

Systems and Performance - The Wildes et al. iris-recognition system

Page 34: Automated Iris Recognition Technology & Iris Biometric System

34

Questions?

Page 35: Automated Iris Recognition Technology & Iris Biometric System

PART II:An Iris Biometric System for Public and Personal Use

M. Negin et al., "An Iris Biometric System for Public and Personal Use", IEEE Computer, pp. 70-75, February 2000.

CS 790Q Biometrics

Page 36: Automated Iris Recognition Technology & Iris Biometric System

36

Iris identification process The system captures a digital image of one eye, enco

des its iris pattern, then matches that file against the file stored in the database for that individual.

Page 37: Automated Iris Recognition Technology & Iris Biometric System

37

The public-use system The public-use multiple-camera system for correctly p

ositioning and imaging a subject’s iris.

Note: wide-field-of-view (WFOV) & narrow-field-of-view (NFOV) camera

Page 38: Automated Iris Recognition Technology & Iris Biometric System

38

The public-use optical platform

(a) left and right illuminator pods, gaze director, and optical filter

(b) a solid model of the platform’s internal components.

Page 39: Automated Iris Recognition Technology & Iris Biometric System

39

The user manually positions the camera three to four inches in front of the eye.

Make sure that the device’s LED centers within the aperture that superimposes the user’s line of sight and the camera’s optical axis.

The personal-use system

Page 40: Automated Iris Recognition Technology & Iris Biometric System

40

Identification Performance Verification distributions of authentic results (in brow

n) and imposter results (in green).

Page 41: Automated Iris Recognition Technology & Iris Biometric System

41

Field Trial Experience

The first pilot program—with the Nationwide Building Society in Swindon, England—ran for six months and included more than 1,000 participants, before going into regular service during the fourth quarter of 1998.

The field trial experience has been very positive: • 91 percent prefer iris identification to a PIN (personal identification nu

mber) or signature,• 94 percent would recommend iris identification to friends and family, • 94 percent were comfortable or very comfortable using the system.

The survey also found nearly 100 percent approval on three areas of crucial importance to consumers: reliability, security, and acceptability.

Page 42: Automated Iris Recognition Technology & Iris Biometric System

42

Thank You.

Questions?