atomic structure rutherford model of atom : ~largely empty space : nucleus & electrons electron...

58
Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K - condition for a dynamically stable electron orbit - total energy of atom must be negative E=-e 2 /8πε o r - atomic spectra & discrete energy level : each orbit corresponds to a different electron energy : is characterized by quantum number n Bohr’s atom - condition for orbit stability Periodic table

Upload: clara-berney

Post on 16-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Atomic Structure

• Rutherford model of atom : ~largely empty space : nucleus & electrons• Electron orbits - distance of closest approach : r=Ze2/4πεoK

- condition for a dynamically stable electron orbit - total energy of atom must be negative E=-e2/8πεor

- atomic spectra & discrete energy level : each orbit corresponds to a different electron

energy : is characterized by quantum number n• Bohr’s atom - condition for orbit stability• Periodic table

Page 2: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Excitation & ionization phenomena

• Excitation by collision Electric field → electron + atom atom : absorbing kinetic energy & oscillating : excited to energy level above ground state : return to ground state in around 10-8sec : emitting one or more photons E2-E1=hγ

ex.) luminous discharge, neon signs, mercury-vapor lamps

• Excitation or Ionization by absorption of radiation ex.) lasers

Page 3: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Some important terms

• Electric Charge - electron, positive ion, negative ion• Quantity of electricity• Coulomb’s Force & Electric Field Intensity• Potential & Energy• Polarization & permittivity(dielectric constant) - vacuum & air : r=1, plastic r=2~3,

- glass : r=5~10, BaTiO3 r =1200, mica r =6

• Transverse Electromagnetic wave• Excitation & Ionization phenomena• Work function

Page 4: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Bond types

• Ionic bonds : electrostatic energy, ionic crystal NaCl• Metallic bonds : electrostatic energy : difference in positions of charges with ionic bonds : electrons are highly mobile• Covalent bonds : more than two protons are kept together by two electrons : to appeal to the atom’s desire to have fill its shell• Van der Waals bond : attractions between two atoms : average attractive force with two different directions of dipole moment

• Hydrogen bonds : difference in the attracting power between H2

& other atoms

Page 5: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

The essentials of electron

• Electron as a wave - time independent Schrodinger’s equation - wave length λ - frequency γ• Electron as a particle - mass of 9.1x10-31[kg] - electric charge of -1.602x10-19[C]

Page 6: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Collision cross section & Mean free path(1)

• Thermal velocity of particle 1 & 2 : vT1, vT2

• Relative velocity • Collision frequency of particle 1 with particle 2 : radius and velocity of particle 1 → r1+r2, v12

: radius of particle 2 → 0

= number of particle 2 per unit volume

• Collision cross section Q12=π(r1+r2)2

• Collision frequency f12=Q12v12n2

• Moving distance of particle 1 during unit second : vT1

22

2112 TT vvv

222

21

221

1

21212

1

12

112

1

)( nvvrr

v

nvQ

v

f

v

TT

TTT

Page 7: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Collision cross section & Mean free path(2)

22212

112

212222121212

22

22112

122

2112

1

)(

nrf

v

nvrnvQf

rrrQ

vvvv TTT

If, r1≪r2, v1≫v2

2424

242424

24

2

,4

12

1121

1

11

111

112

2211

21212111111

111

2111

nvr

v

f

v

vv

fnrv

nvrnvQf

vv

rQ

T

TT

T

if, the same gases & velocity

Page 8: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Elastic Collision(1)• Law of conservation of energy

• Law of conservation of momentum

• From above two equations

• If the energy of particle 1 before collision E1, the energy of particle 2 after collision can be expressed as follows.

Page 9: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Elastic Collision(2)

• Velocity of particle 1 after collision

• Energy transfer rate : increases with increase in m1

: role of ion at sputtering

m1>m2 Particle 1, 2 : same direction & different direction

m1<m2 Particle 1, 2 : different direction : sharing of kinetic energy & mometum

m1≪m2 V1 ≒ -v1, V2 ≒ 0

m1=m2 V1 = 0, V2 = v1

Page 10: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Inelastic Collision(1)

• The kinetic energy can not be conserved before and after collision.

• If the increment of internal energy : u • equations to the energy and momentum before and after

collision are

• the velocity of particle 2 after collision

• Substituting this equation into the equation for momentum

• maximum value of U is

Page 11: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Inelastic Collision(2)

V1 satisfying this equation equals 0

and then,

Maximum of U

changes by the factor of m2/m1+m2 to the energy of particle 1 before collision

Elastic collision Um<Minimum internal energy of particle 2Ex.) sputter : elastic collision of ion to atom : maximum transfer rate of energy

m1≪m2 : electron vs. atom

Kinetic energy → internal energy of molecule → excitation & ionization

Ionization Realization of Um of atom

Page 12: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

0

-2

-4

-6

-8

-10

-12

E∞E4

E3

E2

E1 : ground state

Paschen (infrared)

Balmer series (visible)

Ryman series (ultraviolat) Absorbed energy u > E2 – E1 : E1 → E2 u > E3 – E1 : E1 → E3 u > E∞ – E1 : ionization

Page 13: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

• atom in excited state → ground state : Ryman, Balmer, Paschen ∙∙∙

: lost energy △ w =hν → a single photon of light ν : frequency

• resonance voltage/ or. radiation voltage : minimum value of gas molecule or atom which can absorbe by internal energy

• metastable atom

Page 14: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Free electron theory of metals

• Generation mechanisms of electrons - Ionization by electron collision with neutral atoms and

ions - Ionization by ion collision with neutral atoms - Collision ionization of photon irradiation

- Ionization of metastable atom

• Electron Emission Processes - Thermionic emission : Rechardson-Dushmann Equation J=AT2exp(-eΦ/kT) - Photoelectric effect - Secondary Electron Emission - Schottky effect(by strong electric field) : reduction in the effective value of the work function - Cold cathode emission → tunnel effect

Page 15: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Basic phenomena of gas discharge(1)

Page 16: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Basic phenomena of gas discharge(2)

Page 17: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Various Discharges

• Gas discharge

• Non-self-sustaining discharge : dark current

• Self-sustaining discharge

- partial discharge(corona discharge)

- electrical spark : a transition from non-self-sustaining discharge

to self-sustaining discharge

: produces a sudden high conductivity

: electronic, atomic, ionic collision processes

: two types of Townsend & streamer mechanisms

- flashover : glow & arc discharges

Page 18: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Electrical spark

• Townsend : relatively small gap distance & low pressure

              : α, β, γ, θ, ή-actions

• Streamer : relatively large gap distance & high gas pressure

                  - time lag : 10-7[sec] : ion immovable

                  - zig-zag discharge path

                  - independent on cathode material

             : generation and propagation of first avalanche

→ formation of photo-electron by excitation of electron : photo-electron → formation of a new avalanche

             : Electric field by space charge = external electric field

→ combination of electron avalanche

→ formation of plasma path

Page 19: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Townsend- relatively low gas pressure - short gap distance- negligible effect of space charge

I

VVB

0

a b

c

d

Saturationcurrent

• In a gas : very small number of electrons and positive or negative ions

• 0 ~ a (low voltage range) : V↑→ drift velocity↑ : recombination by attachment or diffusion↓ : increase in current (dark current)

Page 20: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

• a ~ b : constant ratio of ionization : constant number of electron & ion per unit second : saturation current by generation ratio of carriers

• b ~ c (high voltage range) : sudden increase of discharge current with several mechanisms of electron multiplication : non-self sustaining discharge : transition region

• d ~ (breakdown region) : self sustaining discharge without any initial electron : breakdown voltage(VB), electric breakdown strength(EB) → gas pressure, voltage polarity, gap distance, applied voltage waveforms, geometry of electrode degree of impurity of insulating material degree of non-uniformity of electric field

Page 21: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Townsend’s Discharge Theory

- uniform electric field- no action of electron diffusion effect- negligible effect of space charge

• α & γ - actions α : coefficient of ionization by electron collision : constant in a gap due to uniform field only α – action (electron avalanche)

no

ne

ne+ αnedχ

1m2

cathod anode

χ=0

χ χ+dχ

d

• electron number arriving at anode per unit second : ne = noeαd ∴ Ie = ne ∙e = noeeαd = I0eαd , I0 = noe

xe

e

xe

ee

e

enn

nCnnx

Cen

dxndndxxx

nnxxnnx

0

00

0

:0

:~

::0

Page 22: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

• generation of positive ion : electron number at anode = electron number at the x surface per unit second + positive ion number n+ n+ + noeαχ = noeαd n+ = no (eαd - eαχ) : x=0 (ion number at cathode) n+ = no (eαd – 1) γ – action : electron emission by ion collision with cathode

γ : electron number emitting from the cathode by ion collision

• n+ of positive ion collides with cathode → electron number emitting from the cathode

• repeating γ-action by γMn0eαd

1

,)1( 00

d

d

eM

Mnen

Page 23: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

nonoe

αd

no (eαd –

1) = noM

γMno

γMnoeα

d

γno (eαd –

1) = γMno(γM)2

no

(γM)2no

eαd

t

electron flowIon flow

• electron number arriving at anode n = noeαd + γMnoeαd +(γM)2no e

αd + ∙∙∙ when γM < 1 ; = ion number at cathode + no = ion number at x + electron number

∴ I = ne = , , noe = I0

Page 24: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Breakdown criterion : Shumann’s criterion

• α, γ – actions :

: number of secondary electrons from cathode by positive ion : secondary electron number = 1 : discharge can be self-sustained without initial electron

)1(1

)1(1

d

d

do

e

e

eII

Page 25: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Paschen’s Law(1)

• Electron energy under electric field W = eEλ• ionization energy Z= eVi, where ionization voltage is Vi• From Boltzmann distribution, number of electrons n having energy more than eVi, n = N exp(-Vi/Eλ) • 1/λ : number of collisions per centimeter of drift • α : mean number of ionizing collisions by one electron per unit length• α = (total numbers of collisions per unit sec) × (ionizing probability at collision)

• → α is function of E/P, that is

))/(exp())/(exp(P

EAVA

AP

EVA

pii

)exp(1

E

Vi

AP1

))/(exp(P

EBA

Page 26: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Paschen’s Law(2)

1)1( de )1

1ln(

d

)1

1ln()/

exp(

pE

BApd

From the Breakdown criterion

• Breakdown voltage : function of only Pd

• Similarity law - Pd : constant → show the same discharge mode - P ↓ → λ ↑ → eEλ ↑ → need low voltage to breakdown - d ↑ → E ↓ → eEλ ↓ → need high voltage to breakdown

ex.) PDP : d=100μm → P ↑ → normal operation

)1

1ln(ln

)1

1ln()exp()1

1ln(1)1(

)exp()exp(

ApdBpd

V

V

BpdApdde

V

BpdAp

V

BpdA

p

B

B

d

BB

Page 27: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Paschen’s Law(3)

From Paschen’s Law

• Point P : Paschen minimum

pdK

BpdV f ln

)1

1ln()( min

A

epd

pd(pd)min

(Vf)min

Vf

P

Pd →小 충돌회수小→Vf↑

Pd → →大 충돌과다 Vf↑

)1

1ln()( min

A

BeV f

Page 28: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Corona discharge

• non-uniform electric field : point-to-plane electrode system• hysterisis phenomenon of V-I characteristics• very week pulsed discharge current(~μA)• conditions for corona stablization• ozone generation• communication-interference• application of corona discharge : environmental application → reduction of air

pollutants : air cleaner → reduction of ozone/or micro-dust/or

VOCs → generation of negative ion

Page 29: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Silent Discharge

• one or two dielectrics between electrodes• ions traverse the gas space in a pulse and are stored in the surface of dielectrics → space charges• space charges → reverse electric field : corona discharge terminates : sparkless high electron temp./low gas temp. reactive plasma• few kHz power supplies → enhance internal electric field → low voltage mode of operation

Page 30: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Some other discharges

• Surface Flashover

• Impulse Breakdown Phenomenon

• Vacuum Breakdown Phenomenon

• High Pressure Breakdown - pressure vs. mean free path

• Tree & Tracking

Page 31: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Some factors

• gas pressure : mean free path• gap distance : effect of space charge• polarity effect : point to plane electrode system• voltage waveform : dc, ac, impulse• frequency : deviation from the Paschen’s curve • medium effect• conditioning effect • impurity : particularly in the liquid dielectrics - liquid dielectric serves as insulator and coolant

Page 32: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Electrical breakdown of solid dielectrics

• Intrinsic breakdown theory

• Electron avalanche

• Thermal breakdown : E → joule heat → R↓→ more intense heating → breakdown at weak point(hot spot) • Electro-mechanical breakdown : Maxwell stress : void, craze & micro-crack

Page 33: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

What Is Plasma?

• H2O molecule : below 0oC → solid state,

at 0oC~ 100oC → liquid state,

above 100oC → gaseous state(vapor)

• dissociation : H2O → H+OH/2H+O (above 2000oC)

• ionization : atoms of hydrogen and oxygen → electrons

+ ions

: ionized gas is called Plasma

→ Solid, liquid, gas,

and plasma states

(the fourth state of matter) are

identified by difference of

its kinetic energy

Page 34: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Various kinds of plasmas

• Natural plasma : most of solar space/ or outer space, sun spot, aurora at the pole, thunder, lightning, solar wind, ionosphere etc.• Thermal plasma : by highly heated atom/ or molecule of gas : is generated by chemical reaction with

combustion : plasma torch (1,000~ 3,000oK)• Discharge plasma : ionized gas by electrical discharge : glow discharge/ arc discharge/ corona

discharge/ high frequency discharge plasmas, etc.

방전 플라즈마열 플라즈마자연계 플라즈마

Page 35: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Some properties of glow discharge plasma

• Low temperature plasma : electron temp. ~50,000oK : very low temp. compared with thermal plasma

• Non-equilibrium plasma : electron temp.(~50,000oK ) ≫ion temp.(~500oK) ≒ atom

temp. : different role of plasma particles ex.) sputtering

• Weekly ionized plasma : rate of ionization ~10% : negligible : electron density ~109~10/cm3

Page 36: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Generation of Discharge Plasma

• a ~ b : as an insulator : V ↑ → active ionization & electron emission → formation of plasma in front of the anode → increase in number of electrons & ions : self-sustaining

• b ~ c : (Pd)>(Pd)min : d↓→ discharge voltage↓→

discharge current↑→ electrical breakdown

• c ∼ d : in the (Pd)min range → discharge can be sustained at the

VB min

• d ∼ e : V ↑→ (Pd) 〈 (Pd)min : high voltage is needed to sustain

discharge• e ~ f : current ↑→ transition to the arc(by secondary electron emission & thermionic emission)

Page 37: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Electron and ion temperatures in discharge plasmas

• From the motional equation

• So, the energy can be expressed as follows:

• If electron and ion energy in the plasma are We and Wi, respectively

dt

dxt

m

eEveE

dt

dvmma

m

eEttdt

m

eEx

t

2

2

0

m

eEteExxFW

2

)( 2

ii

ee

m

eEtW

m

eEtW

2

)(

2

)(

2

2

Page 38: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Debye length and condition for plasma(1)

플라즈마에 국부적 전위변화 발생 ,If velocity of particle → Maxwelldistribution : 공간의 전자 및 이온밀도 및 는

이다 . Ne : electron density at V=0.

If, 라면 ,

 

한편 , 전위발생 이전의 입자밀도는

이므로 전위변화에 의한 밀도 ρ 는

가 된다 . 한편 , by Poisson’s eq.

이므로

Page 39: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Debye length and condition for plasma(2)

이다 . 또한 , 전위의 공간적 변화가 r

방향이라 가정하면

이므로

가 된다 . 경계조건 V=0 에서 r → ∞

을 적용하면

가 되며 , 이 때

이 다 . ion 의 경 우 , 전 자 운 동 에 준하여

생각하면

가 된다 .

Page 40: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Debye length and condition for plasma(3)

Vo

63.2%

37%

λ Dr

● V : r↑→decrease exponentially

after λ D → decrease by 63.2%

: Debye length λ D : 전하집중에 의한 전위 영향의

범위 측도● geometrical dimension L 》 λD

→ 전위의 영향 : λD 거리에서 차폐

→ 전위 영향 없이 plasma 유지

 

● λD 보다 먼 거리에서 : 전하집중의

영향은 무시 : 전하집중을 유발하는 Ne 와 Ni 의 차는 거의 무시

→ 플라즈마 : 준 중성 (quasi-neutral)

 ● 플라즈마의 조건 : λD 의 범위내에

충분한 하전입자 존재

If,

전리층플라즈마 : 수 m

핵융합플라즈마 : 수 십 mm

Page 41: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Plasma oscillation and frequency

x

E

A B

E

A B

(a) 전자군이 우측으로 변위한 경우

(b) 전자군이 좌측으로 변위한 경우

• If electrons shift by ξ, surface charge density ρs is . Electric field

intensity by ρs can be expressed as follows.

• Motional equation of electron is

• This means harmonic oscillation of electrons.

The angle frequency is

So, the plasma frequency fp is

• Electron density of ionizing layer plasma is about 1012/m3 → frequency range of over 10MHz is needed in the satallite communication.

Page 42: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Particle’s motion in the presence of electric and magnetic fields

• If we ignore the gravitational force, the coulomb’s

force is F=qE, and motional equation is

: 전계하의 하전입자 → 등가속도운동

: energy of particle increases with time → increment of kinetic

energy 

• Lorenz's force by magnetic field is

• 운동방정식은

• Taking dot product

: no variation of kinetic energy with time

Page 43: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Thin film fabrication in a vacuum

● 에너지 ( 전자기 , 광 , 열 ) → 박막 물질 : 원자 (or. 집합체 ) 를

다른 장소에

결합 혹은 응축

• If, 대기가 기화한 물질과 같이 존재하면

(1) 박막물질의 직진이 방해 , 공간 중의 미립자 형성 → 박막 특성 저해

(2) 공기분자의 불순물 작용

(3) 공기 활성 분자의 화합물 형성

(4) 가열장치나 증발물질과 공기분자가 반응 → 화합물을 형성

: 진공조의 필요성 ,

Page 44: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

박막작성을 위한 진공장치의 예

• ● RP 와 DP 사이의 밸브 잠금→ roughing line 으로 배기 (RP : 약 10-3 torr )

• ● DP 의 오일 가열 → roughing line의 밸브 close → DP 와 foreline valve open : 약 10-6 torr 까지 배기

• ● 콜드 트랩 : 액체질소 이용 → 관벽 냉각 → 수증기 응결 → 고진공도 달성

• RP 의 압력 : 1 기압 : Pump 기름의 배기계 내부로의 역류 방지

• DP : 고진공 상태 유지 • 배플 : DP Oil 의 진공조로의 역류 방지

Page 45: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

진공증착법

● Vaporization : 증발원자의 응축 현상

: 에너지→높은 온도의 원자의 증발 → 온도가 낮은 면에 응축

● 진공 증착법 : 박막 물질 가열 → 증발 → 부착

● 전구의 유리관 벽 : 백열필라멘트의 증발 ( 텅스텐 ) → 유리벽에 증착

● 진 공 증 착 장 치 의 구 성 : 진 공 장 치 , 가열장치 ( 증발원 ), 부착면 ( 기판면 )

● 가열방법 → 저항가열법 , 전자충격법

• ● 증착율 : 평균자유행정이 문제

• Ex.) 1 Pa → λ : 6.5mm 정도

• ∴ 10-2 Pa : 65cm 이하의 거리→분자 직진

Page 46: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

진공증착법의 장단점

● 저항가열법 : 증발원 (W, Mo, Ta)+

증착재료←전류인가 →가열→ 증발

재 료 의 증 발 온 도 : 1000∼2000oK 정도

∴ 증 발 원 재 료 의 융 점 ≫ 2000oK

: 증발원재료와 박막재료가 직접 접촉

● 전자충격법 : 직접 충돌 가열

: 고융점의 금속 /화합물도 증발 가능

: 여기원 → 레이저 /ion beam 가열

● 장점

• ① 장치의 구성이 간단

② 많은 물질에 쉽게 적용 가능

• ③mechanism 이 비교적 간단 → 핵 생성 및 성장 이론 간단

• ④화합물 용이 : 결정구조 및 성분비

● 단점

• ① 기판 사이의 접착이 나쁘다 .

• ②재현성이 나쁘다 ( 구조민감성 ) → 소자 등의 신뢰성에 문제

• ③증기압 낮은 물질 곤란 : Pt, Ta, Ti, W 등

• ④heater 재 료 증 발 → 불 순 물 로 작용

Page 47: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Concepts of sputtering method

• ● Sputtering Phenomenon • Electric Field→ accelerate the

ion → collide solid surface • : energy exchange between

atom & ion → atom emission

• ● Vacuum chamber• Target(cathode),

Substrate(anode)• Discharge gas(mainly Ar)• Power supply(RF/DC)• Gas inlet & MFC• Cooling system• Vacuum

gauges(Pirani/Ionization)

Page 48: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Main factors in thin film characteristics• Sputtering yields• Deposition rate• Plasma parameters• - electron density• - electron temperatures

• Sputter systems• : to make higher electron • density and temperature

• Electrode distance

• : to make glow discharge

• : not to be hindered by• discharge gas• Substrate temperature

→ Gas pressure & Magnetron mode of operation

Page 49: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Structures of target and substrate

• Target : collision of positive ion → to be too high temperature

• : possibility of dissolution of target material → cooling

• Ground shield : to protect the

• unnecessary discharge

• Careful consideration on the distance between HV & shield electrodes : Paschen’s Law

Page 50: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Concept of magnetron sputtering

1) 2 극 직류 스퍼터링법의 단점

● too high pressure at discharge

• : ion generation efficiency

• : scattering by atoms of

• discharge gas

● Temperature increase at target

and substrate

: by secondary electron emission

● difficulty in sputtering of

insulting materials

● Use of RF(13.56MHz) • : confinement of electron in

discharge region• Ex.)

• If, △ V≒103V , I = 10-2∼10-3 A , C=10-11~10-12 F → △t = 10-5∼10-

7s

• ∴ 100kHz ∼10MHz → 103 V

●Use of magnetic field : confinement of particle : control of gas pressure

Page 51: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

On the sputtering of insulting materials

• rmfla

S

++++

----

++++

----

++

B A

Vs

+++

< 1>그림

++++

----

B A

Vs S

----

A

++++

방전영역 절연물영역

+++++

-----

++++

E

-

---

+

+++

+++++

-----

----

E

< 2>그림 < 3>그림

Page 52: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Matching box in the RF magnetron sputtering

• Condition for maximum power transmission :

• MB is needed to control the internal impedance of power supply ZG = R + j XL

• → to reduce the reflected signal

Page 53: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Thin film fabrication with Ion Plating method

Collision of ion to the cathode : sputter, reflected ion &

neutrals secondary electron emission … ion implantation phenomenon Ion plating : sputtering + vacuum evaporation H.V → cathode(substrate) , heating/or. Electron beam→

Evaporation source : evaporated atoms, ionized ion

→ substrate : high mechanical resistance →TiC, CCr, TiN2 Resputtering & cleaning effect

Page 54: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Principle of Ion Plating

Page 55: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

Plasma Enhanced Chemical Vapor Deposition

Page 56: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

56

- +

- +

- +

- +

_

_

_

_

+

+

+

+

+

+

+

_

_

_

c d e f

- +

- +

- +

- +

그림 3 에서 인가전압 극성을 바꾼 순간 방전이 일어나지만 cd는 같은 전하로서 d 의 가 반발에 의해 벽면을 떠나간다 . 떠나가는 순간 방전이 일어나며 방전에서 생긴 전하가 그림 4 와 같이 되면 방전은 꺼진다 . 그림 2 의 좌우를 바꾼 것과 같다 . 그러므로 다시 인가전압의 부호를 바꾸면 그림 3 의 좌우를 바꾼 것과 같아지면서 방전이 일어남을 알 수 있다 .

그림 4

_ _ _ _ + + + +

- + + -- + + -- + + -- + + -

a b dc e

방전공간

MgO유전층전극

만일 그림 3 의 경우 아주 약한 방전이 발생하도록 하면 방전에서 발생된 3 개 3 개와 재결합하거나 Cell 벽으로 흩어져서 더 이상 벽전하는 형성되지 않는다 . 이 과정을 Erasing 과정이라 하고 인가전압의 진폭과 rising time 을 제어하거나 인가전압의 펄스폭을 극히 짧게 하여 Erasing하고 있다 . 결국 Erasing 과정은 벽전하를 완전히 제거하는 과정이다 .

표면 방전형 AC PDP

표면 방전형과 대향 방전형의 차이

표면 방전형은

(1) 방전공간의 전극간 간격이 일정치 않다 .

(2) bcd에 전계가 집중한다 . 그러므로 bold barbcd~ 부분이 가장 밝다 .

(3) bcd 부분에 있는 다른 부호의 벽전하는 가까워 인력에 의해 재결합 해 버리기 위해 방전 전압이 높아질 가능성이 있다 . 이러한 현상은 전극 간격이 좁아질 수록 심하게 된다 .

이상과 같이 AC PDP의 실제 전극은 MgO라고 볼 수 있으며 연속 방전을 하기 위해서는 연속적으로 부호가 바뀌는 Pulse 전원을 필요로 하고 있다 . 특히 AC PDP의 방전 특성을 깊게 이해하기 위해서는 전극에 해당하는 MgO의 특성과 벽전하 형성과정 및 벽전하 계측기술 확립이 필요함을 알 수 있다 . 그 후 Cell 구조와 벽전하의 상관관계를 파악할 필요가 있다 .

Page 57: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

+ -

+ -

+ -

+ -

+ -

+ -

+ -

+ -

_

_

_

_

+

+

+

+

MgO 표면유전분극 유전분극전하전극전하

a b c d e f g h

R V 0

AC PDP에는 면방전 구조와 대향전극 구조가 있으나 원리상으로는 같으므로 대향전극형으로 설명하기로 한다 .

우선 직류전압을 걸면 전극전하가 형성되고 (콘덴서 작용 ) 유전층은 유전분극 전하가 그림과 같이 형성된다 . 이 경우 겉보기상으로 a 의 (-)와 b 의 (+)전하가 중화되고 g,h도 중화된다 .(속박전하 ) 그 결과 남은 전하는 c의 (-)와 f 의 (+)뿐이다 . 이 전하는 각각 a 와 h 의 전하와 같으므로 방전공간에는 전압 V0가 모두 가해진다 . 만일 V0가 방전개시 전압 이상이면 방전공간에 방전이 개시된다 . 이 1 회 방전으로 충돌전리하여 생긴 ion과 전자는 c 와 f 의 전하에 이끌려 가서 다음 그림과 같이 된다 .

+ -

+ -

+ -

+ -

+ -

+ -

+ -

+ -

_

_

_

_

+

+

+

+

+

+

+

_

_

_

방전plasma

c d e f

방전 plasma에 있던 ion 와 전자 가 차츰 이끌려 가면 (Coulomb force) c, f의 전하가 차츰 중화되어 ( 겉보기상 cd, ef 전하중화 ) 방전공간 전압이 저하하게 된다 .이 전압이 방전 유지전압 이하로 되면 방전은 정지한다 . 그 이상 STOP 상태임방전 지속 시간은 0.1∼수 μs정도이다 .일반적으로 d 와 e 에 모이는 전하를 벽전하 , 벽전하에 의해 생기는 전압을 벽전압이라 한다 . 이 벽전하는 전극전압이 가해져 있으면 며칠이든 없어지지 않는다 .

그림 1

그림 2

Q=CV

- +

- +

- +

- +

_

_

_

_

+

+

+

+

+

+

+

_

_

_

c d e f

- +

- +

- +

- +

a b g h

이 때 인가전압 V0 의 극성을 바꾸어 연결하면 그림과 같다 . 이 경우 ab 및 gh 는 중화되고 그 외 중화되지 못한 전하는 cd 의 (+) 전하와 ef 의 (-) 전하이다 . 그림 1 에 비하여 방전공간에는 많은 전하가 남게 되어 V0 이상의 방전공간 전압이 가해져 다시 방전이 개시되며 이러한 과정이 반복된다 . 한번 벽전하가 생기면 낮은 역전압을 가해도 방전될 수 있음을 알 수 있다 .

그림 3

역극성 인가 순간 (a=c) 의 전압

이벽전압 +Vw 는 잠시후 -Vw 로 바뀐다 .

[-Vw 가 형성되어도 인가전압 (C 전하 )을

완전히 중화시킬 수 없다 .]

Page 58: Atomic Structure Rutherford model of atom : ~largely empty space : nucleus & electrons Electron orbits - distance of closest approach : r=Ze 2 /4πε o K

58

4-6 AC PDP 에 직류전압으로 구동하면 어떤 현상이 나타나는가

+ -

+ -

+ -

+ -

+ -

+ -

+ -

+ -

_

_

_

_

+

+

+

+

MgO 표면유전분극 유전분극전하전극전하

a b c d e f g h

R V 0

AC PDP에는 면방전 구조와 대향전극 구조가 있으나 원리상으로는 같으므로 대향전극형으로 설명하기로 한다 .

우선 직류전압을 걸면 전극전하가 형성되고 ( 콘덴서 작용 ) 유전층은 유전분극 전하가 그림과 같이 형성된다 . 이 경우 겉보기상으로 a 의 (-)와 b 의 (+)전하가 중화되고 g,h도 중화된다 .(속박전하 ) 그 결과 남은 전하는 c 의 (-)와 f 의 (+)뿐이다 . 이 전하는 각각 a 와 h 의 전하와 같으므로 방전공간에는 전압 V0가 모두 가해진다 . 만일 V0가 방전개시 전압 이상이면 방전공간에 방전이 개시된다 . 이 1 회 방전으로 충돌전리하여 생긴 ion과 전자는 c 와 f 의 전하에 이끌려 가서 다음 그림과 같이 된다 .

+ -

+ -

+ -

+ -

+ -

+ -

+ -

+ -

_

_

_

_

+

+

+

+

+

+

+

_

_

_

방전plasma

c d e f

방전 plasma에 있던 ion 와 전자 가 차츰 이끌려 가면(Coulomb force) c, f의 전하가 차츰 중화되어 ( 겉보기상 cd, ef 전하중화 ) 방전공간 전압이 저하하게 된다 .이 전압이 방전 유지전압 이하로 되면 방전은 정지한다 . 그 이상 STOP 상태임방전 지속 시간은 0.1∼수 μs정도이다 .일반적으로 d 와 e 에 모이는 전하를 벽전하 , 벽전하에 의해 생기는 전압을 벽전압이라 한다 . 이 벽전하는 전극전압이 가해져 있으면 며칠이든 없어지지 않는다 .

그림 1

그림 2

Q=CV

- +

- +

- +

- +

_

_

_

_

+

+

+

+

+

+

+

_

_

_

c d e f

- +

- +

- +

- +

a b g h

이 때 인가전압 V0 의 극성을 바꾸어 연결하면 그림과 같다 . 이 경우 ab 및 gh 는 중화되고 그 외 중화되지 못한 전하는 cd 의 (+)전하와 ef 의 (-) 전하이다 . 그림 1 에 비하여 방전공간에는 많은 전하가 남게 되어 V0 이상의 방전공간 전압이 가해져 다시 방전이 개시되며 이러한 과정이 반복된다 . 한번 벽전하가 생기면 낮은 역전압을 가해도 방전될 수 있음을 알 수 있다 .

그림 3 역극성 인가 순간 (a=c) 의 전압

공간전압 = 역극성인가순간의 전압 + 벽전압

이벽전압 +Vw 는 잠시후 -Vw 로 바뀐다 .

[-Vw 가 형성되어도 인가전압 (C 전하 ) 을

완전히 중화시킬 수 없다 .] 총벽전압 변화량 = 2Vw

( 정상동작하에의 벽전하 ( 압 ) 변화량 )

참고