atomconfigelectrons h1s 1 1 he1s 2 2 li1s 2 2s 1 3 be1s 2 2s 2 4 b1s 2 2s 2 2p 1 5 c1s 2 2s 2 2p 2 6...

29
Atom Config Electrons H 1s 1 1 He 1s 2 2 Li 1s 2 2s 1 3 Be 1s 2 2s 2 4 B 1s 2 2s 2 2p 1 5 C 1s 2 2s 2 2p 2 6 N 1s 2 2s 2 2p 3 7 O 1s 2 2s 2 2p 4 8 F 1s 2 2s 2 2p 5 9 Ne 1s 2 2s 2 2p 6 10 n = 2 n = 1

Upload: kristopher-mccormick

Post on 05-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Atom Config Electrons

H 1s1 1He 1s2 2

Li 1s22s1 3Be 1s22s2 4B 1s22s22p1 5C 1s22s22p2 6N 1s22s22p3 7O 1s22s22p4 8F 1s22s22p5 9Ne 1s22s22p6 10

n = 2

n = 1

Page 2: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Na 1s22s22p63s1 11Mg 1s22s22p63s2 12Al 1s22s22p63s23p1 13Si 1s22s22p63s23p2 14P 1s22s22p63s23p3 15S 1s22s22p63s23p4 16Cl 1s22s22p63s23p5 17Ar 1s22s22p63s23p6 18

K 1s22s22p63s23p63d04s1 19Ca 1s22s22p63s23p63d04s2 20Sc 1s22s22p63s23p63d14s2 21Ti 1s22s22p63s23p63d24s2 22V 1s22s22p63s23p63d34s2 23Cr 1s22s22p63s23p63d54s1 24Mn 1s22s22p63s23p63d54s2 25Fe 1s22s22p63s23p63d64s2 26Co 1s22s22p63s23p63d74s2 27Ni 1s22s22p63s23p63d84s2 28Cu 1s22s22p63s23p63d104s1 29Zn 1s22s22p63s23p63d104s2 30

n = 3

Page 3: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

3d metals(8 First transition series metals constitute the bulk of

essential microminerals to life)

Page 4: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

An element in the periodic table characterized by having partially filled d orbitals, created by having the adjoining s orbitals filled before the d.

Definition: What is a transition element?

Properties:

The 3d orbitals are split by ligands resulting in orbitals with higher and lower energy states that supersede the 5 degenerate orbitals. Characterized by Multi-valence states

Importance:

Resulting complexes take on specific geometrical shapes that relate to binding, color formation, and functionality

Page 5: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Important Definitions

Ligand: (Lat: that which ties) A ligand is a charged or neutral molecule that binds to a metal through either coordinate covalent or ionic bonds. Water is a neutral ligand, CN is a charged ligand.

Chelator: (Lat. Claw) A chelator is an organic compound that is capable of wrapping around a metal in multiple bonds thus competing with other molecules (e.g., proteins, nucleic acids) for the metal.

Orbital Splitting: A process by which d orbitals are split into high and low energy levels in response to the binding of a ligand.

Coordination Number: Referring to the number of ligands that attach

Multidentate: ( Lat: dentate, teeth) Referring to a molecule that has multiple binding groups within the same chain capable of forming multiple bonds with the metal ion, e.g., bidentate (2) tridentate (3) etc.

Coordinate covalent: A type of bond created when a ligand provides the pair of bonding electrons (Lewis base) to share with the metal.

Page 6: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Multi-dentate Ligands

Oxalate C C

OO

O O

CH2-CH2

NH2H2N

Co3+

OO

OO

C - C

Cu2+ Ethylene diamine

CH2-CH2

NN

OOC

OOC

COO

COO

Ethylenediamine tetraacetic acid (EDTA)

..

..

.. ..

Page 7: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Z Z

Z Z

Z

X

X

X

X

XY

Y Y

Y

Y

dxy dyzdxz

d dX2-Y2 Z2

3d orbitals

Page 8: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Octahedral Complex

Page 9: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

3 of most common complexes with metal ions are:

Octahedral (most common)

An 8 sided figure featuring 6 ligands, 4 in one plane and two above and below the plane.

Square planar

A 4 sided figure with 4 ligands all in the same plane

Tetrahedral

4 ligands vectorially positioned to have minimum interaction

Page 10: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p
Page 11: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Fe Ni

Co Mn

Cr

Transition metals that form octahedral complexes

Zn

Page 12: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Transition metals that form tetrahedral complexes

Zn Cu Co

Transition metals that form square planar and 5-coordination complexes

Cu Zn Cu

Page 13: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Orbital splitting

Take Home: By altering the energy state of electrons in a metal ion, ligands are capable of determining valence,

reactivity, and even the color of the complex

Insights into the properties of ligands

Page 14: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

3d Orbitals

dz2

dx2

-y2

Page 15: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Fe forms an octahedral (8 sided figure, six ligands) complex by having its 5, 3d orbitals split into two 2 new orbitals, eg and t2g.

xy xz yz x2-y2 z2

z2x2-y2

xy xz yz

o

eg

t2g

Octahedral Iron

Before splitting

After splitting

Energy difference

Page 16: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

z2x2-y2

xy xz yz

Ti =

z2x2-y2

xy xz yz

hv

Ground state

[Ar]4s23d2 Ti(II) = [Ar]3d2 Ti(III) = [Ar]3d1

t12g

Excited state

e1g

Ti(III)

Ti2+ Ti3+

TiL

LL

L

L

L

One 3d

Page 17: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

z2x2-y2

xy xz yz

z2x2-y2

xy xz yz

Feo [Ar]4s23d6

[Fe(H2O)6]2+

t62g

Low Spin(Highly energetic) Diamagnetic

High Spin(Low energetic) Paramagnetic

t42ge2

g

[Fe(CN)6]4-

Fe2+ [Ar]3d6

(water as a ligand)CN- as a ligand

Ionizes (loses 4s2 electrons to form Fe2+)

Fe(II)

Page 18: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

V [Ar]4s23d3

Cr[Ar]4s13d5

Mn[Ar]4s23d5

High Spin Low Spin

No low spin possible

V(II)

Cr(II)

Mn(II)

Page 19: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Fe[Ar]4s23d6

Co[Ar]4s23d7

Ni[Ar]4s23d8

No low spin possible

Fe(II)

Co(II)

Ni(II)

Page 20: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Cu[Ar]4s13d10

Cu[Ar]4s13d9

Zn[Ar]4s23d10

Cu(I)

Cu(II)

No low spin possible

No low spin possible

No low spin possible

Zn(II)

Page 21: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Class Exercise: Draw the electronic configuration of octahedral [Zn(H2O)6]2+ and predict the color. Zn is [Ar]4s23d10

Solution

z2x2-y2

xy xz yz

All orbitals are filled, no color is possible

Upon ionization, Zn loses its 2, 4s electrons and becomes 3d10

Page 22: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Common Ligands

F- Fluoride FluoroCl- Chloride ChloroBr- Bromide BromoI- Iodide IodoCN- Cyanide CyanoNCS- Isothiocyanate IsothiocyanatoSCN- Thiocyanate ThiocyanatoOH- Hydroxide HydroxoO2- Oxide OxoONO- Nitrite NitroCO Carbon monoxide CarbonylH2O Water AquaNH3 Ammonia Ammine

Underline indicates atom bonded to metal

Ligand Name Name as ligand

Page 23: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Ligand Strength and Numbers as a determinant

Rule: Ligands differ in the strength of their orbital splitting. The following has been determined experimentally

Cl < F- < H2O < NH3 < NO2- < CN- < CO

Rule: Low spin complexes are created by ligands with strong orbital splitting properties

Rule: Octahedral complexes that have 3, 4, 5, or 6 electrons in the t2g orbital tend to be very stable (inert). All others are labile.

Page 24: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Biological Relevance

Page 25: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Myoglobin

Heme group

O=O

Interfere

Spherical-90% -helix

Page 26: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

O2 binding to Heme

Histidine F8

Ferrous (Fe(II)

O2 binds abovethe ring planeHistidine binds below theplane of the ring

Only Fe(II) will bind O2

C O

A linear carbonmonoxide can bind with lessinterference

His E7

Page 27: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

COLOR

Page 28: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

garnet aquamarine

amethystruby

topaz

kyanite

Page 29: AtomConfigElectrons H1s 1 1 He1s 2 2 Li1s 2 2s 1 3 Be1s 2 2s 2 4 B1s 2 2s 2 2p 1 5 C1s 2 2s 2 2p 2 6 N1s 2 2s 2 2p 3 7 O1s 2 2s 2 2p 4 8 F1s 2 2s 2 2p

Red Blood vs Blue Blood

O2 binding to the heme ring of hemoglobin is coordinated to iron (II). When O2 is bound to one of the coordinates, Fe(II) is in a low spin (high energy) state and the light emitted is a red. Without O2 the iron binds water resulting in high spin (low energy) and takes on a bluish color.

red blue

Hmb 4O2

red (low spin) Hmbblue (high spin) + 4O2

Arterial blood Venous blood