atmospheric chemistry lecture 4: stratospheric ozone chemistry dr. david glowacki university of...

22
Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK [email protected]

Upload: austin-law

Post on 28-Mar-2015

221 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Atmospheric chemistry

Lecture 4:

Stratospheric Ozone Chemistry

Dr. David GlowackiUniversity of Bristol,UK

[email protected]

Page 2: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Yesterday…

• We discussed tropospheric chemistry• The troposphere is a massive chemical reactor that

depends on pressure, temperature, sunlight, and ground level chemical emissions

Today…

• We will discuss some of the chemistry in the stratosphere• Stratospheric chemistry is a little bit simpler than

tropospheric chemistry because there’s less pollutants• Also, the molecules involved are smaller so there’s fewer

branching reactions

Page 3: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Integrated column - Dobson unit

Page 4: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Atmospheric O3 profiles

• In the 1920s, observations of the solar UV spectrum suggested a significant atmospheric [O3]

Page 5: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

• At the ground: [O3] ~ 10-100 ppb

• In the stratosphere: [O3] ~ 5-10 ppm

O3 altitude profile measured from satellite

Page 6: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

The Chapman Cycle

O2 + hv O + O (1)O + O2 + M O3 + M (2)O3 + hv O2 + O (3) O3 + O O2 + O2

(4)

Page 7: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

O2 O(3P) + O(1D) - Threshold < 176 nm

Chapman Cycle Step 1: O2 + hv O + O

O2 O(3P) + O(3P) - Threshold < 242 nm

Page 8: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Chapman Cycle Step 2: O + O2 + M O3 + M

O + O2 reaction coordinate

O OO

M

M = O2 or N2

O3

Page 9: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

UV absorption spectrum of O3 at 298 K

Hartley bands

Very strong absorption

Photolysis mainly yields O(1D) + O2, but as the stratosphere is very dry (H2O ~ 5 ppm), almost all of the O(1D) is collisionally relaxed to O(3P)

Chapman Cycle Step 3: O3 + hv O2 + O

Small but significant absorption out to 350 nm (Huggins

bands)

λ < 336 nm

Page 10: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

UV absorption spectrum of O3 at 298 K Chapman Cycle Step 4

O3 + O O2 + O2

Occurs via an abstraction mechanism

Page 11: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

The Chapman Cycle

O2 + hv O + O (1)O + O2 + M O3 + M (2)O3 + hv O2 + O (3) O3 + O O2 + O2

(4)

Rate coefficients for each reaction have been measured in the lab

Page 12: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Solving for [O3] using the Chapman Mech

(1)

(2)

(3)

(4)

[O] =k1[O2]

k4[O3]

[O3] =k1k2

k3k4

⎝ ⎜

⎠ ⎟

1/ 2

CO2na

3 / 2

[M] = na[O2] =CO2

na€

[O]

[O3]=

k3

k2[M][O2]

(A1)

(A2)

(B1)

(B2)

(na is the atmospheric number density)

(CO2 is the O2 mixing ratio)

Substitute (A2) into (B2)

Page 13: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

How good is the Chapman mechanism?

k1 = j1 = σ A (λ ,T)φA (λ ,T)∫ I(λ )dλ

[O3] =k1k2

k3k4

⎝ ⎜

⎠ ⎟

1/ 2

[O2]na3 / 2

Beer Lambert Law

Atmospheric optical depth

k1 & k3 are photolysis rates

• Determining stratospheric [O3] using the above Chapman equation isn’t entirely straightforward because k1 and k3 are photolysis rates!

where

and

Page 14: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

How good is the Chapman mechanism?

Increasing photolysis with altitude

Chapman overpredicts by a factor of 2

The maximum reflects k1, which is affected by:(1)Decreasing [O2] with altitude following the barometric law(2)Increasing hv with altitude

[O3] =k1k2

k3k4

⎝ ⎜

⎠ ⎟

1/ 2

[O2]na3 / 2

A

ltit

ude

Page 15: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Q: Why does Chapman overpredict?

A: Catalytic Ozone loss cycles

Page 16: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Catalytic ozone destructionThe loss of odd oxygen can be accelerated through catalytic cycles whose net result is the same as the (slow) 4th step in the Chapman cycle

Uncatalysed: O + O3 O2 + O2 k4

Catalysed: X + O3 XO + O2 k5

XO + O X + O2 k6

Net rxn: O + O3 O2 + O2

X is a catalyst and is reformed

X = OH, Cl, NO, Br (and H at higher altitudes)Reaction (4) has a significant barrier and so is slow at stratospheric temperatures

Reactions (5) and (6) are fast, and hence the conversion of O and O3 to 2 molecules of O2 is much faster, and more ozone is destroyed.

Using the steady-state approximation for XO, R5=R6 and hence k5[X][O3] = k6[XO][O]

Rate (catalysed) / Rate (uncatalysed) = R5/R4 = k5[X][O3]/k4[O][O3]= k5[X]/k4[O]

Or Rate (catalysed) / Rate (uncatalysed) = R6/R4 = k6[XO][O]/k4[O][O3]=k6[XO]/k4[O3]

Page 17: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

• X+O3 (k5) and XO+O (k6) are up to a factor of ~104 faster than O + O3 (k4)!

• A little bit of XO makes a big difference!

k5 (220K) k4

k6 (220K)

Catalytic ozone loss kinetics

Page 18: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Catalytic O3 loss via HOx

• OH is an even more efficient catalyst because the intermediate HO2 also destroys O3

• OH in the stratosphere is generated in the same way it is generated in the troposphere

Page 19: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Predominant fate of stratospheric NO

(null cycle, no net change)

A small fraction of NO2 reacts with O

Catalytic O3 loss via NOx

Catalytic Loss Cycle

Page 20: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Loss of stratospheric NOx

• Primarily via formation of HNO3, transport to troposphere, & deposition

• HNO3 & N2O5 are NOx ‘reservoirs’

• Very stable & have a long lifetime

daytime

nighttime

Page 21: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

N2O: another source of stratospheric NOx

• Because the N2O lifetime is very long, it may be transported to the stratosphere, where it undergoes the following:

• Consideration of N2O brings the Chapman model into much better agreement with observations

• Ice Core data show increase of atmospheric [N2O] of ~0.3% year since 18th century

Page 22: Atmospheric chemistry Lecture 4: Stratospheric Ozone Chemistry Dr. David Glowacki University of Bristol,UK david.r.glowacki@bristol.ac.uk

Some complications to stratospheric O3 chemistry

• Catalytic Loss cycles are coupled to each other• Aerosols