assessing the future of hybrid and electric vehicles · assessing the future of hybrid and electric...

32
Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives The xEV Industry Insider Report advanced automotive batteries

Upload: others

Post on 22-Jan-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Assessing theFuture of Hybridand Electric Vehicles:

Based on private onsite interviews with leading technologists and executives

The xEV Industry Insider Report

advancedautomotivebatteries

Page 2: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

ACKNOWLEDGEMENTS

This study was conducted by Advanced Automotive Batteries. Dr. Menahem Anderman, President of Advanced Automotive Batteries and principal author of the study wishes to acknowledge the valuable contributions of the following individuals:

• Dr.JamesGeorge,former President, George Consulting International, Inc.

• Mr.KevinKonecky,Associate Consultant, Total Battery Consulting, Inc.

• Dr.RobertSpotnitz,President, Battery Design Company

• Prof.MartinWinter,Chair, Applied Material Science for Energy Conversion and Storage, Institute of Physical Chemistry, University of Muenster

Theauthoralsowishestoacknowledgethecooperationof forty-threeorganiza-tions—listed below—who shared their professional know-how and views in sup-port of this study during and following one or more on-site interviews throughout the last ten months.

Finally, our thanks to Catherine Searle for her dedicated work in the preparation ofthisreportandtoJenniferforhersupport.

Automakers/Automotive Systems

•Audi•AVL•BMW•Chrysler•ContinentalAG•Daimler•Ford•GeneralMotors•Honda•Hyundai•MagnaE-Car•MitsubishiMotors•OpelAG•Porsche•PSAPeugeotCitroën•Renault•RobertBosch•Toyota•Valeo•Volkswagen•ZFSachs

Other Participants

•CaliforniaAirResourcesBoard•HitachiChemical•MitsubishiChemical•NECDevices•ShowaDenko•Umicore

Battery Producers

•A123Systems•AESC•DeutscheAccumotive•DowKokam•Exide•GSYuasa•Hitachi•JohnsonControls•LGChem•LiEnergyJapan•PrimearthEVEnergy•Panasonic-Sanyo•RobertBosch•Samsung•SKInnovation•Toshiba

Page 3: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

TABLE OF CONTENTS

Executive Summary ............................................. 11. xEV Vehicle Technology ..................................................... 2

a. Market Drivers .................................................................... 2b. Hybrid-Vehicle Architecture ............................................... 2

2. HEV Battery Technology .................................................... 2a. Cell Module and Pack Technology .................................... 2b. Key Energy-Storage Technologies for HEVs ..................... 4

i) Lead-Acid Batteries .......................................................... 4ii) Nickel-Metal Hydride Batteries ......................................... 5iii) Lithium-Ion Batteries ........................................................ 6iv) Ultracapacitors .................................................................. 6

3. Battery Requirements and Battery Selection for Each Hybrid-Vehicle Category ..................................... 6a. Overview ............................................................................ 6b. Micro 2 ............................................................................... 6c. Mild-1 – 48V Systems ........................................................ 7d. Energy Storage for hybrid Cars - Summary ...................... 8

4. Batteries for EVs & PHEVs ................................................. 8a. EV & PHEV Battery Cost ................................................... 8b. EV Cell and Pack Key Characteristics ..............................11c. PHEV Pack Key Characteristics .......................................12d. Life, Reliability, and Safety ................................................12e. Technology Enhancement Roadmap ................................13

5. xEV Vehicle Market.............................................................13a. Market Drivers and Challenges for xEVs ..........................13b. Market Forecast for xEVs .................................................14 c. xEV Market Conclusions ...................................................16

6. Battery Market for xEVs.....................................................17a. Battery Markets for xEVs through 2016 ............................17

i) Micro Hybrids .................................................................. 17ii) Strong/Mild HEVs ........................................................... 17iii) PHEVs ............................................................................. 18iv) EVs .................................................................................. 18v) Combined Li-Ion Cell Markets ........................................ 18vi) Combined xEV Pack Markets ......................................... 18

b. xEV Battery Market to 2020 ..............................................19c. Industry Overcapacity .......................................................19

Chapter I:Introduction and Hybrid-Vehicle Technologies ...................................................... 21

1. Introduction ........................................................................ 22

2. Powertrain Technology .................................................... 24

3. Electrical Power on Board Vehicles ................................ 25a. Power Generation and Demand ...................................... 25b. Electrically Powered Ancillaries and Accessories ........... 25

4. The Stop/Start Function ................................................... 26

5. Hybrid-Vehicle Powertrain Architectures ....................... 27a. Overview .......................................................................... 27b. Series-Hybrid Architectures ............................................. 27c. Classical Parallel Architectures ....................................... 27d. The Integrated Starter Generator (ISG),

or Integrated Motor Assist (IMA) ...................................... 28e. Series/Parallel Single-Mode

Transmission Power-Split Architectures .......................... 28

6. Levels of Powertrain Hybridization ................................. 29a. Micro Hybrids ................................................................... 29b. Mild Hybrids ..................................................................... 30c. Moderate Hybrids ............................................................. 30d. Strong Hybrids ..................................................................31e. Plug-in Hybrids ..................................................................31

7. Hybridization of Specialty Vehicles .................................31

8. Hybridization Summary .....................................................31

Chapter II:Energy Storage Technologies for HEVs .......... 33

1. High-Power Battery Technology Key Attributes ........... 34a. Introduction ...................................................................... 34b. Battery Impedance and Power Rating ............................. 34c. Battery Life, Reliability, and Safety / Abuse Tolerance ... 36

2. Energy-Storage Systems and Module/Pack Technology .......................................... 37a. Introduction ...................................................................... 37b. Battery Module ................................................................. 38c. Thermal Subsystems ....................................................... 38

Page 4: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

d. Mechanical and Structural Subsystems .......................... 40e. Battery Management Systems (BMS)

and Electronics Hardware ................................................ 40f. Battery Management System Software ............................41g. ESS Safety Considerations...............................................41

3. Lead-Acid Batteries .......................................................... 42a. Introduction .......................................................................42b. Enhanced Flooded Lead-Acid Batteries (EFLAs) ............ 43c. AGM VRLA Designs ........................................................ 44d. VRLA Performance .......................................................... 44e. VRLA Life ......................................................................... 45f. Manufacturing and Cost Considerations for Enhanced-flooded and VRLAs ................................... 46g. New Lead-Acid Designs .................................................. 46

i) Batteries incorporating a high-surface area capacitive carbon ...........................46

ii) Bipolar Designs ............................................................... 47h. Lead-Acid Outlook ............................................................47

4. Nickel-Metal Hydride Batteries ........................................ 48a. Overview .......................................................................... 48b. High-Power Cell Design ................................................... 48c. Cell-Manufacturing Tolerance Issues .............................. 49d. Module Design ................................................................. 50e. Thermal and Electrical Management ............................... 50f. HEV Cell and Pack Performance .................................... 50g. Operating Temperature .....................................................51h. Life.................................................................................... 52i. Cost Estimates for NiMH Cells,

Modules, and Battery Packs ............................................ 52j. Outlook ............................................................................ 53

5. Lithium-Ion Batteries ........................................................ 53a. Overview .......................................................................... 53b. HEV-Cell Configurations .................................................. 54c. Choice of Cathode Material ............................................. 56d. Choice of Anode Materials ............................................... 57e. Electrolyte Considerations ............................................... 58f. Separators ........................................................................ 59g. HEV Module Design ........................................................ 59h. HEV Cell and Module Performance ................................ 59i. Operating Life ................................................................. 60j. Cost ...................................................................................61k. Safety / Abuse Resistance ............................................... 63l. Summary and Outlook ..................................................... 64

6. Ultracapacitors .................................................................. 64a. Overview .......................................................................... 64b. Symmetric Ultracapacitors (EDLCs) ................................ 65 c. Hybrid (Asymmetric) Ultracapacitors ............................... 66d. Hybrid Ultracapacitors in Non-aqueous Electrolytes ....... 66e. Performance of Symmetric EDLCs .................................. 67f. Cost .................................................................................. 68g. Applications and Outlook ................................................. 69

7. Summary and Comparison .............................................. 69

Chapter III:Battery Requirements and the Choice of Battery for Each Hybrid Vehicle Category ...... 71

1. Overview ............................................................................. 72

2. Basic Requirements and Conventional SLI Applications ................................................................ 72a. Requirements ................................................................... 72b. Energy-Storage Solutions ................................................ 73

3. Micro-1 – Stop/Start Vehicles with No Regenerative Braking ......................................... 73a. Load Profile and Energy-Storage Requirements ............. 73b. Energy-Storage Solutions .................................................74

4. Micro-2 – Stop/Start Vehicles with Regenerative Braking ................................................74a. Load Profile and Energy-Storage Requirements ..............74b. Energy-Storage Solutions .................................................75

i) VRLA battery .................................................................. 76ii) Single Graphite-LFP Li-Ion Battery ................................ 76iii) EFLA + UCap .................................................................77iv) EFLA + Graphite-LFP Li-Ion Battery .............................77v) EFLA + LTO-NMC Battery .............................................77vi) VRLA + NiMH String ......................................................77

c. Discussion .........................................................................77d. Outlook ............................................................................. 79

5. Mild-1 – 48V Systems ........................................................ 79a. Load Profile and Energy-Storage Requirements ............. 79b. Energy-Storage Solutions ................................................ 80

6. Mild-2 Hybrid Vehicles .......................................................81a. Energy-Storage Requirements .........................................81b. Energy-Storage Solutions .................................................81c. Discussion of Micro-2 and Mild Hybrid Architectures ...... 82

7. Moderate Power-Assist Hybrids ...................................... 82a. Energy-Storage Requirements ........................................ 82b. Energy-Storage Solutions ................................................ 83

8. Strong-Hybrid Vehicles .................................................... 83a. Energy-Storage Requirements ........................................ 83b. Energy-Storage Solutions ................................................ 84

9. Summary ............................................................................ 84

10. Power-assist Fuel-Cell Hybrid Vehicles.......................... 85

11. Hybridization of Specialized Heavy Vehicles ................ 86a. Introduction ...................................................................... 86b. Buses ............................................................................... 87c. Delivery Vehicles.............................................................. 87d. Military Vehicles ............................................................... 87e. Heavy-Duty Vehicles........................................................ 87f. Outlook ............................................................................. 88

Chapter IV:Lithium-Ion EV and PHEV Battery Technology ......................... 89

1. Battery Manufacturing and Cost ..................................... 90a. Introduction ...................................................................... 90

Page 5: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

b. Li-Ion Cell Manufacturing Technology ............................. 90i) Overview .........................................................................90ii) Electrode Fabrication ...................................................... 91iii) Cell Assembly ................................................................. 92iv) Formation and Final Quality Assurance ......................... 92v) Process Control and Yields ............................................93vi) Challenges Relative to Large

Automotive-Cell Manufacturing ......................................93c. Li-Ion Cell Cost Estimates ............................................... 94

i) General Considerations ..................................................94ii) Cost Estimates for 2.4-Ah 18650 Consumer Cells ........95iii) Manufacturing Investment

in a 1000-MWh Plant Producing 25-Ah Prismatic Metal-Can Flat Wound PHEV Cells ...............96

iv) Cost and Price Estimate for a 25-Ah NMC-Graphite Metal-Can Cell at a Production Volume of 10 Million Cells (1000 MWh) per Year .......... 97

v) Cost Analysis of a 36-Ah EV Pouch Cell with an NMC/LMO Blend Cathode ..............98

d. Battery Pack Development and Cost .............................. 99i) Introduction .....................................................................99ii) System Development and Integration ............................99iii) Development Timeline and Manpower Investment ........99iv) Test and Validation ....................................................... 100v) Subsystem Design Cost Consideration ........................ 101vi) Cell-Size Selection ....................................................... 101vii) Cost Summary .............................................................. 101

2. Battery Design and Key Attributes ................................103a. Cell Design .....................................................................103

i) Introduction ................................................................... 103ii) Mechanical Cell Construction ....................................... 103iii) Cathodes ....................................................................... 104iv) Anodes .......................................................................... 104v) Electrolytes ................................................................... 104vi) Separators .................................................................... 105

b. Cell and Battery Key Characteristics ............................. 105i) EV Cell Key Attributes .................................................. 105ii) Key Attributes of PHEV Cells ....................................... 106iii) Key Attributes of EV Packs ........................................... 106iv) Key Attributes of PHEV Battery Packs ......................... 109

c. Battery Power and Temperature Performance ...............110

3. Battery Durability and Safety .........................................112a. Battery Durability ............................................................112

i) Durability and Reliability ............................................... 112ii) EV-Battery Cycle Life ................................................... 113iii) EV Battery Calendar Life .............................................. 114iv) Battery Life in PHEV Applications ................................ 115v) Life Modeling and Predictions ...................................... 115vi) Summary: EV and PHEV Life and Reliability .............. 117

b. Safety / Abuse Resistance .............................................117i) Overview of Safety Challenges .................................... 117ii) Safety Characteristics ................................................... 117iii) Abuse Testing versus Field Failure .............................. 118iv) Soft Short Developing into a Hard Short ..................... 118v) Standardized Tests ....................................................... 119vi) Cell-Level Safety Enhancements ................................. 119vii) Pack-Level Safety Enhancements ................................ 120viii) Outlook: Safety Aspects of Utilizing Li-Ion

Batteries in PHEV and EV Applications ....................... 120

4. Technology Enhancement Roadmap .............................120a. Introduction .....................................................................120b. Key Short-Term Li-Ion Cell and Pack

Performance Enhancement Opportunities ....................121c. Cell Design Enhancements ............................................121

i) Cathodes ....................................................................... 121ii) Anodes .......................................................................... 122iii) Electrolytes ................................................................... 123iv) Separators .................................................................... 123v) Cell Packaging .............................................................. 123

d. Enhanced Li-Ion Pack Technology .................................123e. Beyond Li Ion ..................................................................123

i) Introduction ................................................................... 123ii) Lithium-Air (Oxygen) Chemistry ................................... 124iii) Lithium- Sulfur Chemistry ............................................. 124iv) Zn-Air (Oxygen) Chemistry ........................................... 125v) Hybrid Energy-Storage Systems .................................. 125vi) Conclusions .................................................................. 125

Chapter V:xEV Vehicle Market .......................................... 127

1. Market Drivers and Challenges for xEVs .......................128a. Introduction .....................................................................128b. Environmental and Energy-Security Drivers...................128

i) Influence of Governments on the Industry ................... 128ii) The Environmental Driver ............................................. 128iii) Energy Security ............................................................ 129

c. Benefits to Customers.....................................................130i) Fuel Savings for Customers ......................................... 130ii) Electrically Powered Ancillaries .................................... 130

d. Industrial Competitiveness and Corporate Image ..........131i) Industrial Competitiveness ........................................... 131ii) Corporate Image ........................................................... 131

e. Market Risks ...................................................................131i) Success of Advanced Diesel in North America ........... 131ii) Stabilization or Reversal in Oil Pricing and

Concern about Energy Security ................................... 132iii) Relaxation of Government Regulations ........................ 132iv) Life, Reliability, or Safety of xEV Batteries .................. 132

2. Market Conditions in Key Regions .................................132a. The U.S. Market ..............................................................132

i) California and its Air Resources Board (CARB) .......... 132ii) CAFE Standards and the U.S. Federal Scene ............. 134iii) Consumers .................................................................... 135

b. Europe .............................................................................135i) Regulations ................................................................... 135ii) Consumers and Carmakers .......................................... 135

c. Japan...............................................................................136d. China ...............................................................................136

i) Governmental Activities ................................................ 136ii) Vehicle and Battery Producers ..................................... 136iii) Chinese Customers ...................................................... 137

e. Summary .........................................................................137

3. Market Forecast for xEVs ................................................137a. Micro-Hybrids ..................................................................137b. Mild, Moderate, and Strong Hybrids ...............................138c. Plug-In Electric Vehicles .................................................140d. Electric Vehicles ..............................................................142

Page 6: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

e. PHEV and EV Market Conclusions ................................143

4. Activities of Key Automakers ........................................ 144a. Japanese Automakers ................................................... 144

i) Toyota/Lexus ................................................................. 144ii) Honda............................................................................ 145iii) Nissan ........................................................................... 145iv) Mitsubishi Motors .......................................................... 145v) Other Japanese Automakers ........................................ 146

b. US Automakers ...............................................................146i) General Motors ............................................................. 146ii) Ford ............................................................................... 146iii) Chrysler-Fiat ................................................................. 147iv) Tesla .............................................................................. 147

c. European Automakers ....................................................147i) Renault .......................................................................... 147ii) BMW ............................................................................. 148iii) Volkswagen/Audi/Porsche ............................................ 148iv) Daimler .......................................................................... 149v) PSA ............................................................................... 149

d. Korean and Chinese Producers ......................................149i) Hyundai ......................................................................... 149ii) Fully-Chinese-Owned Companies ............................... 150

iii) Joint Ventures with Western Companies ..................... 150e. Premium Brands: Jaguar, Land Rover, and Others .........150f. Heavy-Duty Vehicles.......................................................150

i) HEV Buses, Delivery Vehicles, and Work Vehicles ..... 150ii) EV Buses in Chinese Market with Fast Charge

and/or Fast Mechanical Battery Replacement ............. 150

Chapter VI:Battery Market for xEVs ...................................151

1. Batteries for Micro-Hybrids ............................................152a. Lead-Acid Batteries ........................................................152b. Other Energy-Storage Technologies ..............................152

2. Mild, Moderate, and Strong HEV Battery Market..........153

3. PHEV Battery Market .......................................................... 155

4. EV Battery Market ........................................................... 156

5. The xEV Battery Market Summary .................................157

6. Advanced Automotive Li-Ion Cell Materials Market ........................................... 159

7. Cell and Pack Business Structure and Key Criteria for Success ......................................... 160a. Emerging Industry Structures ........................................ 160b. Manufacturing Experience ..............................................161c. Overcapacity ...................................................................161

8. Notes on Key xEV Battery Producers ............................162a. Japan...............................................................................162

i) PrimeEarth EV Energy (PEVE) .................................... 162ii) Panasonic Including Sanyo Electric Division ............... 162iii) Automotive Energy Supply Corporation (AESC) .......... 162iv) GS Yuasa Corporation (GSYC) .................................... 163v) Hitachi Vehicle Energy (HVE)....................................... 163vi) Toshiba .......................................................................... 163vii) Shin Kobe Electric Machinery ...................................... 163viii) Furukawa ...................................................................... 164ix) Sony .............................................................................. 164

b. Korea .............................................................................. 164i) LG Chem ....................................................................... 164ii) Samsung Display Devices (SDI) .................................. 164iii) SK Innovation (SKI) ...................................................... 164iv) EIG ................................................................................ 165

c. China and Taiwan .......................................................... 165i) BYD ............................................................................... 165ii) Tianjin Lishen Battery Co. ............................................ 165iii) ATL Battery ................................................................... 165iv) Other Chinese Suppliers .............................................. 165

d. U.S. and Europe ............................................................. 166i) Johnson Controls (JCI) ................................................. 166ii) Exide ............................................................................. 166iii) A123 Systems ............................................................... 166iv) Bosch Automotive ......................................................... 166v) Li-Tec Corporation ........................................................ 167vi) Magna International ...................................................... 167vii) Continental AG .............................................................. 167viii) Saft ................................................................................ 167ix) EnerDel ......................................................................... 167x) Others ........................................................................... 168

Glossary ............................................................ 169

Page 7: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

LIST OF TABLES AND FIGURES

TablesExecutive Summary ...........................................................1

Table E.1.1: Hybrid Vehicle Configurations ............................... 3Table E.2.1: Characteristics of Candidate High-Power Energy-Storage Technologies for HEV Applications ....................... 4Table E.2.2: Cost, Manufacturing, and Logistic Issues of Candidate Energy-Storage Technologies for HEV Applications ....................... 5Table E.3.1: Energy-Storage Solutions for Micro-2 Profile with Existing Production Cells (Case 2); (HP = High Power, UHP = Ultra High Power) ....... 7Table E.3.2: Energy-Storage Solutions for Mild Hybrids ........... 7Table E.3.3: Energy-Storage Technology Solutions for Advanced Vehicles by Vehicle Category ............... 8Table E.3.4: Load Profiles for the Various Hybrid Architectures and Li-Ion Solutions ........................ 8Table E.3.5: Energy-Storage Solutions for Hybrid Vehicles: Key Characteristics .................... 9Table E.4.1: Cost Estimate for a 25-Ah PHEV Cell................... 9Table E.4.2: Cost Estimate for a 36-Ah EV Pouch Cell ...........10Table E.4.3: PHEV and EV-Pack Pricing .................................10Table E.4.4: Li-Ion Cells Employed in Current EVs ..................11Table E.4.5: EV Packs Key Energy Characteristics .................11Table E.4.6: Key Characteristics of PHEV Packs .....................12Table E.6.1: 2020 Automotive Li-Ion Battery Market ................19Table E.6.2: Estimated Globally Installed and Utilized xEV Li-Ion Cell Manufacturing ............... 20

Chapter I:Introduction and Hybrid-Vehicle Technologies ............21

Table I.6.1: Hybrid Vehicle Configurations ............................. 30Table I.8.1: Levels of Hybridization/Electrification ..................31

Chapter II:Energy Storage Technologies for HEVs ........................33

Table II.1.1: Key Processes that Contribute to Electronic Impedance ...................................... 35

Table II.1.2: Key Processes that Contribute to Ionic (Including Kinetic) Impedance ................ 35Table II.1.3: Typical Abuse Tests or EV / HEV Cells and Modules .......................... 36Table II.2.1: Types of Thermal Control System ....................... 39Table II.2.2: Summary of xEV Electrical Subsystem Components ......................................41Table II.4.1: Cost Estimate for a High-Power NiMH 6-Ah Nominal Cell, and a Module and a Battery-Pack Assembly of 6-Ah Cells .............. 53Table II.5.1: HEV Li-Ion Cell-Design Matrix Current/Future .......................................... 58Table II.5.2: Comparison of Module Design with Pouch and Metal-can Cells .......................... 59Table II.5.4: USABC HPPC Test Profile Data for a 5-Ah Samsung HEV Cell ............................ 60Table II.5.3: USABC HPPC Test Conditions ........................... 60Table II.5.5: Material Cost Estimates for a Li-Ion 5-Ah, 18-Wh, 500-Watt HEV Cell (250-MWh Plant) ..... 62Table II.5.6: Price Estimate for a 5-Ah, 18-Wh High-power Li-Ion Cell ............................. 62Table II.5.7: Cost Estimate for a 1.3-kWh Nominal 35-kW Air-Cooled Pack ........................ 63Table II.6.1: Electrode Configurations for Ultracapacitors and Li-Ion Cells ..................... 67Table II.6.2: Performance Targets for Cylindrical Hybrid Capacitor Device (Nippon Chemi-Con) ............... 68Table II.7.1: Characteristics of Candidate High-Power Energy-Storage Technologies for HEV Applications ..................... 69Table II.7.2: Cost, Manufacturing, and Logistics Issues of Candidate Energy-Storage Technologies for HEV Applications ..................... 70

Chapter III:Battery Requirements and the Choice of Battery for Each Hybrid Vehicle Category ...............71

Table III.3.1: Duty Cycle Estimates for Micro-1 ........................ 73Table III.4.1: Micro-2 Duty Profile ..............................................75

Page 8: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Table IV.2.7: Key Characteristics of PHEV Packs ...................110Table IV.2.8: Chevy Volt Battery Key Characteristics .............110Table IV.3.1: Hazard Level Categories for Abuse Tests .........119

Chapter V:xEV Vehicle Market ........................................................127

Table V.3.1: Strong, Mild and Moderate Hybrid-Vehicle Market (Historical and Forecast) by Producer....139Table V.3.2: PHEV Unit Production by Automaker .................141Table V.3.3: Historical and Forecast EV Sales by Automaker (in ‘000 Units) ..............................143

Chapter VI:Battery Market for xEVs ................................................ 151

Table VI.2.1: Dollar Volume of HEV Cell and Battery Production .......................................155Table VI.3.1: PHEV Battery-Cell Market by Producer ($ Million) ........................................155Table VI.4.1: EV Battery-Cell Market by Cell Producer ($ Million) ................................156Table VI.5.1: xEV Li-Ion Battery-Cell Marke by Producer ($ Million) ........................................157Table VI.5.2: Advanced Automotive Battery Pack Business ($ Million) ............................................158Table VI.5.3: 2020 Automotive Li-Ion Battery Market ..............159Table VI.6.1: Li-Ion HEV Battery Cell-Material Consumption .......................................................159Table VI.6.2: Li-Ion PHEV and EV Battery Cell-Material Consumption .................................159Table VI.7.1: Estimated Globally Installed and Utilized xEV Li-Ion Cell Manufacturing Capacity ............161

FiguresExecutive Summary ...........................................................1

Figure E.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells) Battery Pack for Mercedes S Class Vehicle ......... 4Figure E.5.1: Comparison of Global CO2 Emission Regulations in g CO2/km for Passenger Cars (Test Conditions Normalized to the New European Drive Cycle (NEDC) ..............14Figure E.5.2: Micro-Hybrid Market by World Region .................14Figure E.5.3: Strong, Mild/Moderate Hybrid-Market Growth by World Region ......................................15Figure E.5.4: PHEV Market Growth by World Region ...............15Figure E.5.5: World EV Market Growth by Region ....................16Figure E.5.6: Historical and Forecast EV Sales by Automaker..............................................16Figure E.6.1: Estimated Unit Sales of EFLA and VRLA Designs (in Million Units) ....................17Figure E.6.2: NiMH vs. Li-Ion HEV Battery-Pack Business ($ Million) ........................17Figure E.6.3: Li-Ion HEV Battery-Cell Business by Cell Producer ...................................18

Table III.4.2: Micro-2 Energy-Storage Solutions (Case 1) ........75Table III.4.3: Key Characteristics of Energy-Storage Components for Micro-2 Applications ................. 76Table III.4.4: Lower Performance, Lower Cost Energy-Storage Components for Micro-2 (Case 2)............................................. 78Table III.4.5: Energy-Storage Solutions for Micro-2 Profile with Existing Production Cells (Case 2) .............. 78Table III.5.1: Mild-1 Duty Cycle ................................................ 80Table III.5.2: Energy-Storage Solutions for Mild Hybrids ......... 80Table III.6.1: Duty Profile for Mild-2 Hybrids .............................81Table III.6.2: Energy-Storage Solutions for Mild-2 Hybrids ...... 82Table III.7.1: Duty Profiles for Moderate and Strong Hybrids .. 82Table III.8.1: USABC Battery Specifications for a Strong Hybrid .............................................. 83Table III.7.2: Energy Storage Solutions for Moderate Hybrids ........................................... 83Table III.8.2: Energy-Storage Solutions for Strong Hybrids ..... 84Table III.9.1: Energy-Storage Technology Solutions for Advanced Vehicles by Vehicle Category ............. 84Table III.9.2: Load Profiles for the Various Hybrid Architectures and Li-Ion Solutions ...................... 85Table III.9.3: Regenerative Charge Loads for the Various Hybrid Architectures and Li-Ion Solutions ........... 85Table III.9.4: Energy Storage Solutions for Hybrid Vehicles: Key Characteristics ............. 86

Chapter IV:Lithium-Ion EV and PHEV Battery Technology ............89

Table IV.1.1: Cell Assembly Techniques .................................. 93Table IV.1.2: Typical Manufacturing Yields in Li-Ion Cell Manufacturing ................................ 93Table IV.1.3: 18650 Cell Materials Cost ................................... 95Table IV.1.4: 18650 Cell Cost and Price .................................. 95Table IV.1.5: Equipment and Plant Cost Estimates .................. 96Table IV.1.6: Materials’ Cost Estimate for a 25-Ah PHEV Cell ........................................ 97Table IV.1.7: Cost Estimate for a 25-Ah PHEV Cell................. 98Table IV.1.8: Materials Cost for a 36-Ah EV Pouch Cell ......... 98Table IV.1.9: Cost Estimate for a 36-Ah EV Pouch Cell .......... 99Table IV.1.10: Four-Step ESS Development Process .............. 100Table IV.1.11: 36-Month Project Timeline ................................ 100Table IV.1.12: Thermal Subsystem Design Comparison ...........101Table IV.1.13: System-Configuration Analysis for a 60-Ah, Nominal 22kWh EV System ...........102Table IV.1.14: Amortization of NRE and Tooling Investment ....102Table IV.1.15: PHEV and EV-Pack Pricing ...............................103Table IV.2.1: Li Ion Cells Employed in Current EVs ............... 106Table IV.2.2: Key Characteristics of Current PHEV Cells ...... 106Table IV.2.3: Specifications of the Battery Pack for Mitsubishi Motors’ i-MiEV .............................107Table IV.2.4: Tesla Roadster Battery Pack ..............................107Table IV.2.5: Key Attributes of EV Packs ............................... 108Table IV.2.6: EV Packs Key Energy Characteristics .............. 108

Page 9: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Figure II.4.7: In-Vehicle Cycle Life of Prius NiMH (2009) ......... 52Figure II.4.8: Nickel-Metal Pricing from 2003 to 2013 .............. 52Figure II.5.1: Li-Ion Shuttle in a Li-Ion Cell............................... 54Figure II.5.2: A Prismatic Elliptic Spirally Wound Cell from Panasonic ................................ 54Figure II.5.3: Pouch HEV Cell from AESC 55Figure II.5.4: Comparison of Packaging Hardware for a Spirally Wound Hard-Can Cell (A) and a Soft-Pouch Cell (B) ...................... 55Figure II.5.5: Surface-modified Graphite Electrode (Hitachi Chemicals).............................................. 57Figure II.5.6: Samsung 5-Ah NMC-Cathode Prismatic Cell: Specific Power Charge and Discharge Performance ............................... 60Figure II.5.7: Discharge Power Capabilities (10 Seconds) of Hitachi 4.4-Ah, 260-gram HEV Cell .................61Figure II.5.8: Charge Power Capabilities (10 Seconds) of Hitachi 4.4-Ah, 260-gram HEV Cell .................61Figure II.5.9: Power Retention over Cycle Life of Samsung HEV Cells .........................................61Figure II.5.10: Calendar Life for Hitachi 4.4-Ah HEV Cells .........61Figure II.6.1: Idealized Voltage Profiles of a Battery and a Capacitor ............................... 65Figure II.6.2: Ultracapacitors Operating Voltages..................... 66Figure II.6.3: Operating Mechanism of the Graphite Activated Carbon (AC) Cell (after Nippon Chemi-Con) ....... 67Figure II.6.4: Two EDLC Cells (Maxwell) and a Module (Continental) for PSA C-3 Micro-1 Vehicle .......... 68

Chapter III:Battery Requirements and the Choice of Battery for Each Hybrid Vehicle Category ...............71

Figure III.4.1: Driving Mode Profile for Proposed Worldwide Light-Duty Vehicle Test Procedure (WLTP) Versus Existing European Drive Cycle (NEDC) ......74Figure III.4.2: Denso Micro-Hybrid Pack with Toshiba LTO Cells ........................................ 77

Chapter IV:Lithium-Ion EV and PHEV Battery Technology ............89

Figure IV.1.1: Major Cost Stages in the Production of EV Battery Packs ............................................ 90Figure IV.1.2: Electrode Fabrication Process Flow .....................91Figure IV.1.3: Knife-over-Roll Coating Head.............................. 92Figure IV.1.4: Production Calender ............................................ 92Figure IV.1.5: Production Slitter ................................................. 92Figure IV.2.1: AESC Pouch Cell .............................................. 104Figure IV.2.2: Lithium Energy Japan Prismatic Cell Structure.... 104Figure IV.2.3: LG Chem’s Safety Reinforcing Separator ......... 105Figure IV.2.4: The First Mass-Produced Li-Ion EV Cell by Li Energy Japan .................... 105Figure IV.2.5: AESC Cell Module and Pack .............................107Figure IV.2.6: The Nissan Leaf Battery Installed in the Car .....107Figure IV.2.7: Battery Pack Integration for the BMW Active E ... 109Figure IV.2.8: GM Chevy Spark Battery Pack ......................... 109

Figure E.6.4: Combined Li-Ion Automotive Cell Market for HEV, PHEVs, and EVs by Producer ...............18Figure E.6.5: Advanced Automotive Battery-Pack Business ($ Million) ..............................................19Figure E.6.6: xEV Key Cell Material Business ($ Million) ......... 20

Chapter I:Introduction and Hybrid-Vehicle Technologies ............21Figure I.3.1: Dual-Voltage Dual-Battery Architecture .............. 26Figure I.5.1: Series-Hybrid Architecture .................................. 27Figure I.5.2: Classical Parallel Architecture ............................. 28Figure I.5.3: Architecture with ISG ........................................... 28Figure I.5.4: Picture of Honda 2006 Accord IMA System ....... 29Figure I.5.5: Series/Parallel Single-Mode Transmission Power-Split Architecture ................ 29

Chapter II:Energy Storage Technologies for HEVs ........................33Figure II.1.1: Li-Ion Discharge Processes ................................ 34Figure II.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells) Battery Pack for Mercedes S Class Vehicle ....... 37Figure II.3.1: Enhancements to Flooded Lead-Acid Battery (After Exide) .......................... 43Figure II.3.2: Improved EFLA Cycle Life with Carbon Added to Negative Electrode (After Exide) ......... 43Figure II.2.2: Hitachi’s Air-Cooled Li-Ion Mild HEV (Cylindrical Cells) Battery Pack ........................... 37Figure II.2.3: Chevy Volt Direct Liquid Cooled (Pouch Cells) PHEV Battery Pack ...................... 38Figure II.2.4: NiMH 12-Cell Module Used in the 2006 Honda Civic Hybrid .......................... 38Figure II.2.5: Schematic of a Direct Liquid-cooled ESS by MagnaSteyr ............................................ 39Figure II.2.6: Direct Air Cooling Scheme for the Audi Q-5 HEV Li-Ion Battery ................... 39Figure II.3.3: Rapid Fading of Charge Acceptance (in Amp/Ah) of Lead-Acid Batteries Over Time ....................... 44Figure II.3.4: Rapid Fading of Charge Acceptance with Time for VRLA Batteries .............................. 45Figure II.3.5: Cycle-life Data for the Exide Orbital Battery at 2.5% DOD ........................................... 45Figure II.3.6: Schematic of the Ultrabattery with a Carbon-Lead Negative Electrode ............. 46Figure II.3.7: Cycle Life of the Ultrabattery Against Conventional and Enhanced SLI Designs - SAE J240 (17% DOD) Test Protocol ....47Figure II.4.1: Schematic of the Spirally Wound HEV Cell (After Sanyo Electric) ........................... 49Figure II.4.2: Current Collection Arrangement of a Recent Cylindrical HEV Cell from Sanyo ..... 49Figure II.4.3: NiMH Cylindrical Cells and String (Module) ........ 50Figure II.4.4: Prius Battery - 6-Cell Prismatic Module Block .... 50Figure II.4.5: Power Characteristics of PEVE NiMH Modules at 60% SOC .................................51Figure II.4.6: Charge Efficiency for Sanyo NiMH HEV Cells as a Function of Temperature .....................51

Page 10: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Figure IV.2.9: Discharge Curves for Samsung 63-Ah EV Cell at 25°C ....................................... 111Figure IV.2.10: Power Capability of Li Energy Japan 50-Ah EV Cell ......................... 111Figure IV.2.11: Power versus Temperature and SOC for Samsung 63-Ah EV Cell ............................... 111Figure IV.2.12: PHEV Charge and Discharge Power Profile in Relative Power Versus SOC ...............112Figure IV.3.1: Cycle Life for Samsung 63Ah EV Cells .............113Figure IV.3.2: Cycle Life for LFP-Based Cathode EV Cells from ATL Battery (a Chinese Manufacturer) ......113Figure IV.3.3: Cycle Life of Toshiba LTO-Based EV Cells ........113Figure IV.3.4: Calendar-Life Data for Samsung EV Cells as a Function of Temperature .............114Figure IV.3.5: Li Energy Japan Cells Calendar Life Performance at 25°C and 45°C ..................114Figure IV.3.6: State of Charge in an Ageing PHEV Battery .....115Figure IV.3.7: Calendar-Life Test Results for Automotive Cells Tested at BMW at 60°C ....116Figure IV.3.8: Cycle Life Data of Lishen EV Cells as % of Initial Capacity .......................................116Figure IV.3.9: Cell Self-Heating Rate During Forced Thermal Ramp Test of a Li-Ion Cell ...................118Figure IV.4.1: Challenges Inherent to Battery EVs ...................121Figure IV.4.2: Discharge Voltage of Future and Current Li-Ion Cathodes ..............................122Figure IV.4.3: Li-Air Cell Processes ..........................................124Figure IV.4.4: Discharge/Charge Profile of Li-Sulfur Chemistry and Associated Species ...................124

Chapter V:xEV Vehicle Market ........................................................127

Figure V.1.1: Comparison of Well-to-Wheel Greenhouse Gas (GHG) Emissions ...................129Figure V.2.1: CARB Projections of Likely Sales of PHEVs (TZEVs), Battery EVs (BEVs), and Fuel Cell EVs (FCVs) in California to Meet the 2018-2025 Regulations ...................133Figure V.2.2: US GHG C02 and CAFE Targets for 2012 to 2025................................................. 134Figure V.2.3: Comparison of Global CO2 Emission Regulations in g CO2/km for Passenger Cars (Test Conditions Normalized to the New European Drive Cycle (NEDC)) .......137Figure V.3.1: Micro-Hybrid Market by World Region ...............138Figure V.3.2: Micro-Hybrid Unit Market by World Region .......138Figure V.3.3: Hybrid Market Growth: Strong Versus Mild and Moderate .................................139Figure V.3.4: Strong, Mild and Moderate Hybrid-Vehicle Market by Carmaker...................140Figure V.3.5: Strong, Mild and Moderate Hybrid Vehicle Market Excluding Toyota and Honda .....140Figure V.3.6: Strong, Mild and Moderate Hybrid-Market Growth by World Region ............140Figure V.3.7: PHEV Market Growth by World Region .............141

Figure V.3.8: PHEV Unit Production by Automaker .................142Figure V.3.9: World EV Market Growth by Region ..................142Figure V.3.10: Historical and Forecast EV Sales by Automaker............................................143

Chapter VI:Battery Market for xEVs ................................................ 151Figure VI.1.1: Estimated Unit Sales of EFLA and VRLA Designs (in Million Units) ..................152Figure VI.2.1: NiMH vs. Li-Ion HEV Battery-Pack Business ($ Million) ............................................153Figure VI.2.2: Li-Ion HEV Battery-Cell Business by Cell Producer ................................................ 154Figure VI.3.1: PHEV Battery-Cell Market..................................156Figure VI.4.1: EV battery-Cell Market by Cell Producer ($ Million) ................................157Figure VI.5.1: Combined Li-Ion Automotive Cell Market for HEV, PHEVs, and EVs by Producer .............158Figure VI.5.2: Advanced Automotive Battery Pack Business .....158Figure VI.6.1: xEV Key Cell-Material Business ($ Million) ....... 160

Page 11: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary

Page 12: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 2

1. xEV Vehicle Technology

a. Market Drivers

Thedrivetoreducefuelconsumptioninthetransporta-tion sector has reached unprecedented levels in thelast3-4years.Hybridandelectricvehiclesaresoughtafterascriticaltechnologiesthatcanreducefuelcon-sumptionandemissionofCO2,theincreasedlevelsofwhichintheatmosphereareconsideredamajorcon-tributor toglobalwarming.Variousgovernmentalpoli-ciesaroundtheworldareprovidingfinancialincentivesfor vehicle electrification, setting standards for lowerfleet-average fuel consumption and even mandatingtheintroductionofelectrifiedvehicles.

Theautomotiveindustryisbeingforcedtodevelopmul-tipletechnologiestoaddressthesegovernmentalinitia-tives,butfacessignificantchallenges.Thelatterincludetechnological readiness and cost1, product reliabilityanddurability,andaboveallcustomerinterestandwill-ingness to actually pay for the technology. In additiontoelectrification,othertechnologieswithsomeenviron-mentalbenefits,suchasultra-efficientICengines,cleanturbo-dieselengines,andbio-fueledICengines,arealsoevolving.Inmanycases,thesealternativetechnologiesare less expensive and less risky to the automakers,thusexplainingtheirinterestinpursuingtheminparallelto,orinsteadof,theelectrificationapproach.However,automotiveengineersarediscoveringthatmanyofthealternativesolutionswillalso require increasedelectri-cal power, which reinforces the desirability of at leastsomelevelofvehicularhybridization.

b. Hybrid-Vehicle Architecture

Hybridcarstodaycoverarangeoftechnologiescharac-terizedbroadlybytheextenttowhichelectricalpowerisusedforpropulsioninanICEvehicle.Atoneendofthe spectrum is the ‘micro-hybrid’—a car that is nottrulyahybridasitsuppliesnoelectricalenergyinsup-

portoftraction,butfeaturesa“beefed-up”starterora2- to 4-kW belt-driven integrated-starter-alternator, inwhichfuelissavedduringvehicleidlestop,andsomemechanical energy is captured during braking. At theotherendof the range is the “plug-inhybrid” (PHEV),inwhicha30- to100-kWelectricmotor iscapableofpropelling thecaron itsown for, say,10 to40miles,andsupplementsthepoweroftheinternalcombustionengineinmostaccelerationevents.

Beyondthehybridsarefullelectricvehicles(EVs),whichuseasingleelectricmotorwithanall-electricpowertrainpoweredbyabatteryorafuelcell(FC).WhileFC-poweredvehicleshavebeenindevelopmentsincethemid-1990sandarestill of interest, infrastructure issuesappear tolimittheircommercialviabilityfortheforeseeablefuture.

The debate over the “right” level of electrification orhybridizationhasrecentlyintensified.Ontheonehanda low levelofhybridizationprovidesonlyasmall fuel-efficiency benefit but its relatively low cost facilitateshigh-volumeintroductionandcanthusrapidlyproduceanotableimpactonfleet-averagefuelconsumption.Attheotherextreme,fullEVsandPHEVsoffersignificantlylower fuel consumption per vehicle, but their muchhighercost, inadditiontothelimitedrangeoftheEV,reducethemarketappealandthustheenvironmentalimpactonthefleet.

Several levels of hybridization are possible as is dis-cussedindetailinChapterI.Theyaregenerallyclassifiedaccordingtoi)thefunctionstheyprovide,orii)theratioofthepoweroftheelectric-drivemotortototalpower(theratedmaximumpoweroftheelectricmotoraddedtothatoftheICengine.)TableE.1.1describesthevarioushybrid-vehiclecategoriesandthemainfunctionstheyenable.

2. HEV Battery Technology

a. Cell Module and Pack Technology

The important parameters for hybrid-vehicle batteriesarei)thecostofusableenergyunderconditionsofhigh-

1 All cost estimates in this report are based on an exchange-rate of 90 Yen per U.S. dollar.

Page 13: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 3

powerdischarge,ii)theirlifeintheapplication,andiii)thevolumeandweightoftheenergy-storagedevicecapableofdeliveringtherequiredpowerfortherequiredlengthoftime,derivedfromtheenergydensity(Wh/literandWh/kg)andpowerdensity (W/literandW/kg).Thefirst twoparameters(costandlife),incombination,representtheeconomic cost of an energy-storage system capable ofprovidingthehybridizationfunctionoverthevehicle’slife.

Other energy-storage system parameters include: i)operating temperature range, ii) thermal manage-ment requirements, which relate to the weight andcostof thedeviceand thecomplexityofkeeping itattemperatures that do not shorten the desired life, iii)chargeacceptance, foreffectiveregenerativebraking,iv)electricalmanagementrequirements,v)robustnessunderabuse,vi)chargeretentiononstorage,vii)avail-ability,reliability,andlong-termsecurityofsupply,and

viii) logistic issues relative to shipping, storage, andrecycling.Inaddition,afundamentalrequirementforallhybrid-vehicleenergy-storagesystemsisthattheymustbeessentiallymaintenance-free.

Battery packs for xEV applications are complex sys-temscomposedofmultiplemodulesusuallyarrangedin series electrical configurations, together with sup-porting subsystems tomaintain the battery cells andcommunicatekeyparameterstoahigher-levelvehiclecontroller. Themodulesare in turn composedof sev-eralindividualcells(typicallyfourormore)arrangedinparallel, series, or a parallel/series combination withthe related electronics. Modules include a thermalmanagement system, some voltage and temperaturesensors,andcouldalsoincludelocalelectroniccontrolfunctionssuchasacell-balancingsystem.

Thebatterypackiscomprisedofthemodules,coolingsystem,mechanicalenclosuresandfasteners,batterycontrollerandelectricalcomponents,includingcontac-tors,connectors,bus-bars,sensors,and fuses.FigureE.2.1showsageneralviewofaliquid-cooledHEVLi-Ionbatterypack.

1 2 3 4 5 6 7 8

Electric machineRegular starter

or belt-driven

alternator

Regular starter

or Belt-driven

alternator

Belt-driven or

crank shaftCrank shaft Crank shaft Two crank shaft Two crank shaft Drive Motor

Electrical power level,

small to mid-size car2-4 kW 2-4 kW 5-12 kW 10-15kW 12-20 kW 25-60 kW 40-100 kW 70-130 kW

Operating voltage 14 14-24 48 100-140 100-150 150-350 150-600 200

ExampleMost new

German cars

Mazda ,

Suzuki

In

development

GM Malibu

EcoHonda Civic

Prius/Ford

FusionC-max PHEV Chevy Volt

Cold engine cranking

Stop/start cranking

Crank to idle speed

Regen braking

Alternator assist

Torque smoothing

Launch assist

Power assist

Electric drive

Extended-

Range EV

(EREV)

Largely Electric

Drive

Desired

Strong Parallel

Plug-in

Moderate power

assist

Limited electric

drive

Extended

electric drive

Moderate

Mild power

assist

Main attribute Stop/Start Regen brake Launch assist

HYBRID CATEGORY: Micro-1 Micro-2 Mild-1 Mild-2

Table E.1.1: Hybrid Vehicle Configurations

Page 14: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 4

Figure E.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells) Battery Pack for Mercedes S Class Vehicle

b. Key Energy-Storage Technologies for HEVs

Fourenergy-storagetechnologies,Lead-Acid(Pb-Acid),Nickel-Metal Hydride (NiMH), and Lithium-Ion (Li-Ion)batteriesaswellasUltracapacitors(UCaps)areusedin

currentHEVsandare theonly technolo-giesofinterestfortheforeseeablefuture(10+years).TableE.2.1providesagener-ic comparison of the technologies. Thetablewasassembledbasedondatafrombothcarcompaniesandbatterydevelop-ers,andshouldbetakenasrepresentinggeneral “typical-to-best” characteristicsof high-power devices designed for HEVapplications.

Table E.2.2 compares estimated initialcost, manufacturing, and logistic issuesrelatingtothebatteryandultracapacitortechnologiespresentedinTableE.2.1.

i) Lead-Acid BatteriesThe flooded SLI (Starting/Lighting/Ignition) Lead-Acidbattery has been the dominant automotive battery

Table E.2.1: Characteristics of Candidate High-Power Energy-Storage Technologies for HEV Applications (Pack level unless noted otherwise)

Available with Report purchase

Page 15: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 5

foroveracentury.Itsannualsalesgloballyamounttoabout$11billion. This typeof battery hasbeen fine-tunedfortheapplicationthroughextensivecooperationbetween battery manufacturers and the automotiveindustry, andamajoradvantage is its lowcost ($40-70/kWh,relatedtothepriceoflead).Recentimprove-ments in the flooded design predominantly aim atimprovingcyclingbehavior,powerdensity,andchargeacceptance.Keydesignmodifications in theso-calledEnhancedFlooded (EFLA)designs includeaddingcar-bon to the negative electrode, a more sophisticatedgridmatrix,andtheadditionofaglassmatnexttothepolyethyleneseparator.

As the load on the micro-hybrid battery during idlestop increases, the cycling throughput requirementfollows,whichhaspromptedmanyEuropeanautomak-erstointroduceabetter-cyclingvalve-regulated(VRLA)design.However,sincethepressureonautomakerstokeepbatterypriceslowcannotbeoverstated,acontin-uedlargemarketshareforEFLAsisassured,atleastinthehigh-volumeeconomy-carmarketinEurope,Japan,andChina.Whilemorecomplexdesignsutilizingcapac-itancecarboninthenegativeelectrodesareundertest,itisstilltooearlytotellwhethersuchdesignswillfindmarketacceptance.

Lead-Acidbatterieswill remain thedominant14Vbat-tery technology in automotive applications for many

years tocome,although inhigher-voltagesystems thecompetition from the lighter and better-cycling Li-Iontechnologyisstrong.TheimmediatechallengeforLead-Acidistoenhancecharge-acceptance,cyclingthrough-put,andoperatinglifeatintermediatestates-of-charge,tosupportitsuseinmicro-2vehicleconfigurations.

ii) Nickel-Metal Hydride BatteriesNickel-Metal Hydride (NiMH) offers the advanced-vehicleindustryafairlyruggedbatterywithgoodcyclelife, good power and charge-acceptance capabilities,andexcellentreliability.Itsweakestpointsareitsmod-erately high cost with limited opportunity for furthercost reduction, marginal power at low temperatures,and significant cooling/thermal-management require-ments.

Used inHEVs for13 years,NiMHhasproven tobeavery reliable product with a life expectancy of morethan 10 years in most installations, albeit only twocompanies, PEVE and Sanyo Electric (now a divisionof thePanasonicgroup),havebeensuccessful in themarket place with a reliable product. Although someminor improvements inperformanceand reduction incost (which is influenced significantly by the price of

Table E.2.2: Cost, Manufacturing, and Logistic Issues of Candidate Energy-Storage Technologies for HEV Applications

Available with Report purchase

Page 16: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 6

nickel)canstillbeexpected,thetechnologyismatureand close to its perceived potential. While NiMH willcontinue tobeused inHEVs throughout this decade,their subsequent market position will depend largelyon the field reliability and cost reductionachievedbycompetingLi-Ionbatteries.ShouldLiIonmatchthecostand reliabilityofNiMHHEVbatteries, theiradvantagein power, energydensity, andenergyefficiencywouldmakethemthepreferredchoiceforjustaboutallHEVapplications.

iii) Lithium-Ion BatteriesTheLithium-Ion(Li-Ion)batterytechnologythatnowdom-inates much of the portable-battery business enteredtheHEVmarketin2009andisthepreferredtechnologyformostHEVapplicationsinthefuture.Itspowerdensityis50 to100%greater than thatofexistingHEVNiMHbatteries, and early field data support the laboratorytestingthat indicatesgoodlife.Foragivenapplication,current Li-Ion technologyoffersabattery that is about20%smallerand30%lighterthanexistingNiMHbatter-ies,whichisanotable,ifnotoverwhelming,advantage.Inthelongrun,itisanticipatedthatLiIonwillincreaseitsperformancemarginoverNiMHbatteries,strengthenitsrecordforreliability,andalsoofferlowercost,afac-tor that ismost critical for themarket. The lower costcanbeachievedbyincreasingmanufacturingyieldsandsimplifying pack electronics, but mainly by enhancinglow-temperaturepowerandreducingpower-fadingoverlife. This approach will substantially eliminate the cur-rentpracticeofusinganoversizedbatterytomeetthespecifications for low-temperature power and providesufficientmarginforfading.

TherearemultiplecellandpackdesignsforHEVapplica-tions,themostcriticalbeingthecathodechemistryandthecell’sphysicalconfiguration.Thesedesignvariablesand theperformance, life, safety, and cost issues andtrade-offsarediscussedindetailinChapterII.

iv) Ultracapacitors Ultracapacitors(UCaps),afamilyofenergy-storagedevic-eswithhigherpowerbutmuchlowerenergydensitythanthat of batteries, are of interest for some HEV applica-

tions.Theycangenerallybedividedintotwomaincatego-ries:i)deviceswithtwosymmetricactivated-carbonelec-trodesfeaturingelectrostaticenergystorage,andii)hybrid(asymmetric)deviceswithoneredox-storage(battery-like)electrodeandoneelectrostatic-storageelectrode.ExistingapplicationsforUCapsinvehiclesarepresentlylimitedto:i)distributedpowerinanactiveorbackuprole,ii)enginestartforheavy-dutyvehiclesinultra-coldclimates,andiii)microhybrids(sofarlimitedtoPSAandMazda),andiv)mildhybridbuses,andotherheavy-dutyvehicles.Futureapplicationscouldincludeusageinmild-1hybrids.

3. Battery Requirements and Battery Selection for Each Hybrid-Vehicle Category

a. Overview

ChapterIIIreviewstherequiredperformanceandcom-parative merits of batteries (and UCaps) to qualifyas power sources for the seven categories of hybridvehiclesidentifiedinChapterI.Theelectricalloadsandduty-cycle requirement data were gathered frommul-tiplesources,includingfieldinterviews,andaveragedtoobtainatypicalprofileforeachcategory.ThenumericalanalysesapplytoatypicalU.S.familyvehicleoftheC-Dsegment,acategorythatincludespopularvehiclessuchas the Toyota Camry, GMMalibu, Ford Fusion, HondaAccord,HyundaiSonata,andNissanAltima.AllofthesevehiclesarecurrentlyofferedintheU.S.marketwithahybrid-powertrainoption.

Whilebatteryselectionappearsclear-cutinmanyvehi-clecategories,insomeothers,particularlythemicro-2and 48V mild-1 hybrids, several approaches may beviable,asdiscussedinChapterIIIandnotedbelow.

b. Micro 2

Automakers aiming to enhance the fuel economybenefits of the current micro-1 hybrid by developingmicro-2architecturesarefacedwithselectinganener-gy-storagesystemthatiseitheraheavyandunsatisfac-tory (in charge acceptance) Lead-Acid battery or one

Page 17: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 7

of several systems incorporating higher performance,butalsohigherinitialcostandsomeyet-to-be-resolvedcomplexities.TheresultsofoneofthecasesanalyzedinChapterIIIaresummarizedinTableE.3.1.

Inpractice,theautomakersresolvethesedilemmasbyenteringthemarket in lowvolumes,whichpermitsanevaluationofcostsandmeritsatlowexposure.

c. Mild-1 – 48V Systems

TableE.3.2displaystheloadprofileandprovidesthreeenergy-storagesolutionsforthemild-1architecture.While NiMH seems the least expensivesolution, it is the largest and heaviestand has somewhat lower energy effi-ciency. Justas important, thecalculated10-11Ah size cell is not available com-merciallyandthereisscantincentiveforthedevelopmentofsuchacell,consider-ing themarket risk and themomentumtoward Li-Ion solutions. The latter doseemtobethemostpromising,butintheshorttermthelackofavailabilityof7-8Ahultra-high-rateLi-Ioncellsisabarrier.TheUCap solution at an estimated cost of

$1,049isthemostpre-dictable and presentsthe lowest risk in theshort term. However, itisdifficulttoseeUCaps

inthisapplicationforanybutthehighest-endEuropeancars,asthevaluepropositionofthearchitectureisnotnearlysufficienttosupportthatlevelofpricingfortheenergy-storagesystem.

Thus,allsolutionsseemproblematic,makingthe48Vmild-1hybridachallengingarchitectureforallbutthemostexpensivecars.Incentivesforitsusemaywellbepredominantly driven by the need for extra power onboard tosupporthigh-endcomfortanddrivability fea-tures,withthefuel-economybenefitsbecomingasec-ondarypriority.Toexperiencesignificantmarketexpan-sion,somecombinationofthefollowingmustunfold:

Table E.3.2: Energy-Storage Solutions for Mild Hybrids

Table E.3.1: Energy-Storage Solutions for Micro-2 Profile with Existing Production Cells (Case 2); (HP = High Power, UHP = Ultra High Power)

Unit i ii iii iv v vi

ParameterFull

VRLALi Ion

HP-LFP UCap UHP LFP UHP LTO NiMH

Max charge current Amp 38.4 336 225 139 225 142

Number of years # 5.0 10 10 10 10 10

Rated capacity Ah 80 70 1.1 4.0 3.1 6.0

Volume liter 22 14.0 21 18 18 19

Weight kg 31 18 27 25 25 26

Cell cost, upfront $ 100 337 261 94 97 98

Pack cost (excluding DC/DC ) $ 115 604 426 228 245 187

Pack cost, 10 years $ 250 604 527 330 347 288

COMBINATIONS 60Ah EFLA + UHP

Micro-2 - Case 2

Characteristics Unit Li Ion NiMH UCap

Max power, pulse and regen. kW 7 7 7

Max current, pulse and regen. Amp 200 200 200

Annual kwh throughput kWh 192 192 192

10-year throughput kWh 1920 1920 1920

Cell capacity Ah 7.6 10.4 0.70

Design charge acceptance A/Ah 26.3 19.2 286

Cell energy, Wh Wh 27.7 12.8 1.75

Number of cells # 13 38 20

Battery energy Wh 361 486 35

Design throughput FOM 5324 3950 54885

Battery weight kg 9.5 13.9 8.7

Battery volume liter 10.9 13.9 10.0

Cell cost $ 270 292 455

Battery cost $ 568 492 729

System cost $ 728 652 1049

Page 18: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 8

i) Asignificantreductionofsystemcostbelowtheval-uescalculatedhere

ii) A significant increase in the valueof reduced fuelconsumption due to increased fuel prices and/ortightenedregulations

iii)A sharing of the amortized cost of the upgradedpowersystemwithadditionalpower-hungryfeaturesthatmaybeintroducedinfuturevehicles

d. Energy Storage for hybrid Cars - Summary

When hybrid vehicles were first introduced in thelate1990s,NiMHwaschosen foressentiallyallhigh-voltageconfigurations,andLead-AcidaswellasNiMHsolutionswerepromoted for the lower levelofhybrid-ization.NiMHisstill thedominantbattery inthehigh-voltagehybridmarketbutitsmonopolyhasbeenendedbyLi-Iontechnology,whichstartedtotakemarketsharearound2009andisexpectedtocontinuallyincreaseitssharewithtime.TableE.3.3(whichalsocoversPHEVs

andEVs)providesanoverviewof the relative prospects ofenergy-storage technologiesto capture the various hybrid-vehiclemarketsegments.TableE.3.4summarizestypicalpulse-discharge requirements

ofthemild,moderate,andstrong-hybridarchitectures,and the ratedcapacitiesofLi-Ionbatteries thatcouldmeet these requirements, while Table E.3.5 presentsacondensedsummaryofthepotentialenergy-storagesolutionsdiscussedinChapterIII,forvehiclehybridiza-tionlevelsrangingfrommicro-2tostrong.

4. Batteries for EVs & PHEVs

a. EV & PHEV Battery Cost

Chapter IVprovidesdetailedanalysesofPHEVandEVLi-Ion cell and pack design, manufacturing, and cost.PresentedinTableE.4.1isacostestimatefora25-AhPHEVprismaticmetal-cancellbasedonNMC/graphitechemistry—themost common cell used in the applica-

Table E.3.3: Energy-Storage Technology Solutions for Advanced Vehicles by Vehicle Category

Table E.3.4: Load Profiles for the Various Hybrid Architectures and Li-Ion Solutions

48V 45-120V 100-200V

SLI Micro-1 Micro-2 Mild-1 Mild-2 Moderate Strong PHEV EV

SLI-FLA

EFLA

VRLA

Lead Acid + UCap

Lead Acid + Li Ion

Lead Acid + NiMH

Li Ion

NiMH

Legend: Dominant Contender Some prospects

14V 200-380V

Freq. ISS Total Rated Throughput

Load Duration Load Duration Per day Event Day Per Year Per Year Per Year Capacity FOM

kw sec kw sec # Wh Wh kWh kWh kWh kWh #

Mild-1 7 10 6 3 120 5.0 600 192 84 276 0.24 11500

Mild-2 12 10 9 3 150 7.5 1125 360 198 558 0.48 11625

Moderate 18 10 12 4 200 13.3 2667 853 198 1051 0.8 13142

Strong 30 12 18 4 200 20.0 4000 1280 198 1478 1.25 11824

Battery

Average power assist energy

consumptionMaximum Average

Discharge Pulse

Page 19: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 9

tion. The cost components are analyzed in detail inChapterIVandarenotedinthetable.Theresultingper-kWhpriceof$350/kWhallowsforasomewhatlowgrossmarginof23%.

The analysis is onlymoderately sensitivetothechoiceofchemistry,withLMO-NMCblendsproviding lowercost(butrequiringmore aggressive cooling) and LFP-basedcells, slightly higher cost per kWh dueto the inherently lower voltage of thatsystem.Asomewhat lowercostthanthatcalculatedabovecouldbeachievedatthemorerecentyen-dollarexchangerate(102yen/$ in May 2013), and also throughengineering and chemistry optimization.

However, only chemistries with higher capacity/highervoltage would lower the costs significantly, develop-mentswhicharelikelytotakeatleastanother4-5years.

TableE.4.2detailsthecostofa36-AhEVpouchcellforwhich theyieldedCOGamounts to$28.1,equivalent

Table E.3.5: Energy-Storage Solutions for Hybrid Vehicles: Key Characteristics

Table E.4.1: Cost Estimate for a 25-Ah PHEV Cell

Component $ Per kWh %

Materials 15.6 170 53%

Factory Depreciation 5.3 58 18%

Manufacturing Overhead 1.78 19 6.1%

Labor 1.15 13 3.9%

Un-yielded COG 23.9 259 81.6%

Scrap, 4% 0.99 10.8 3.4%

Yielded COG 24.9 270 85%

Company Overhead 4.4 48 15.0%

Burdened Cost 29.2 318 100%

Warranty & Profit 2.9 32 10%

Price 32.2 350 135%

Gross Margin 7.3 23%

NMC Cathode, Metal Can, 10 Million 25Ah PHEV Cells / year

Available with Report purchase

Page 20: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 10

to $211/kWh.Most cost factors are similar to thosefor the25-Ahprismatic-woundPHEVcell.Toarriveatasellingprice,15%wasaddedforSGA,and10%overtheburdenedcost(COG+SGA)forprofitandwarranty.Thesellingpriceof$36.4percelltranslatesto$273/kWh, which is just slightlyhigher than that of 18650cells, although it will clear-ly take the industry severalyearstoachievesuchapricelevelforEVbatteries.

TableE.4.3providesestimatesforpackcostattwoproductionvolumes. It is assumed thatthe PHEV prismatic cells areliquid-cooled on their narrowsidewithoutasecondaryloop,while EV pouch cells utilize aconductive heat sink on oneside of each cell to removeheat to a centralized liquid-cooledplate. Thenumbers in

the tableshouldbe regardedasamiddle-of-the-line cost for the2016-17 time-scalewithlarge variations possible based on specificdesigndecisionsinindividualprograms.Key factors that can increase cost includeadditionalsafetyfeaturessuchascrushpro-tection and protection against fire propaga-tion,more complex cooling systems, highercosts of testing, and additional electronicsfor safety, reliability, and diagnosis. Lowercostscanbeexpectedifdeveloperscanbothamortize development/tooling costs andobtainlowerpiece-pricesfromlarger-volumeorders by using designs and componentsovermultipleprograms.

Theanalysesshow that therearemultiplecostdriversfor Li-Ion batteries, which include cell materials, cellmanufacturing,packcomponents,andpackintegrationandtesting.Considering thehigh levelofR&D inauto-motive Li-Ion batteries worldwide, continued improve-ment in performance and reduction in cost are to be

Table E.4.2: Cost Estimate for a 36-Ah EV Pouch Cell

Table E.4.3: PHEV and EV-Pack Pricing

Component $ Per kWh %

Materials 16.8 126 51%

Factory Depreciation 6.0 45 20%

Manufacturing Overhead 2.40 18 8.2%

Labor 1.30 10 4.4%

Un-yielded COG 26.5 199 83.8%

Scrap, 6% 1.69 12.7 5.1%

Yielded COG 28.1 211 89%

Company Overhead 5.0 37 15.0%

Burdened Cost 33.1 249 100%

Warranty & Profit 3.3 25 10%

Price 36.4 273 138%

Gross Margin 8.3 23%

NMC/LMO Cathode, Pouch Cell, 16 Million Cells / Year

Available with Report purchase

Page 21: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 11

expected.However,whilesomeofthecostscalculatedinthisreportforrelativelylargevolumesarealreadybeingequaled in themarketplacebyanumberofquotes forsmaller volumes, it seems likely that the latter canberegarded as loss-leading ‘buy-in’ prices, resulting fromthehighlycompetitivenatureoftheindustryandthecur-rentovercapacityinlarge-batteryproduction.

b. EV Cell and Pack Key Characteristics

TableE.4.4providesthekeycharacteristicsofeightcellsusedincurrentEVs.WhilethefirstfivearetypicalcellsutilizingNMCorLMO-NCM/LMO-NCAblendedcathodesversusagraphiticanodeinprismaticorpouchcells,thelast threeare less commondesignswhich comprise i)a Lishen cell utilizing LFP cathodes, a chemistry withsomewhat lowerspecificenergy thatuntil recentlywasfavored bymany Chinese producers, ii) a Toshiba cellutilizing an LTO anode and thus delivering the lowestspecificenergyinthegroup,andiii)aPanasonic18650cylindrical cell utilizing a high-capacity computer-celldesignwithanNCAcathode,whichdeliversby far thehighestenergydensityandspecificenergy.

As seen in the table, state-of-the-art Li-Ion EV batterycellsareratedat90to160Wh/kgand200to320Wh/liter.Incontrast,thebestcylindricalconsumercells,asshownforthePanasoniccell(row8),deliver248Wh/kgand630Wh/liter.ThisgapinperformanceisrelatedtothedesigncompromisesmadeintheregularEVcellstosupportthemorecriticalrequirementsofsafety,reliabil-ity,durability,andcost.EVcellandbatteryperformancecanbeexpectedtoincreaseovertimeasconfidenceinthetechnology’sdurabilityandsafetyincreases.

TableE.4.5detailstheenergycharacteristicsofthevari-ouspacks.Thespecificenergyrangesfrom73to100Wh/kg,valuesthatareapproximately50%higherthanthoseavailablefromNiMHbatteriesinthelate1990s.Asnotedin the last column of the table, specific energy at thepacklevelisonly53to74%ofthecell’sspecificenergy,demonstrating the significant extra weight involved inintegratingcellsintoanautomotivepack.Table E.4.5: EV Packs Key Energy Characteristics

Table E.4.4: Li-Ion Cells Employed in Current EVs

Cell Maker Chemistry Capacity Configuration Voltage Weight Volume Ener dens Spec Ener

Anode/Cathode Ah V Kg liter Wh/liter Wh/kg Company Model

1 AESC G/LMO-NCA 33 Pouch 3.75 0.80 0.40 309 155 Nissan Leaf

2 LG Chem G/NMC-LMO 36 Pouch 3.75 0.86 0.49 275 157 Renault Zoe

3 Li-Tec G/NMC 52 Pouch 3.65 1.25 0.60 316 152 Daimler Smart

4 Li Energy Japan G/LMO-NMC 50 Prismatic 3.7 1.70 0.85 218 109 Mitsubishi i-MiEV

5 Samsung G/NMC-LMO 64 Prismatic 3.7 1.80 0.97 243 132 Fiat 500

6 Lishen Tianjin G-LFP 16 Prismatic 3.25 0.45 0.23 226 116 Coda EV

7 Toshiba LTO-NMC 20 Prismatic 2.3 0.52 0.23 200 89 Honda Fit

8 Panasonic G/NCA 3.1 Cylindrical 3.6 0.045 0.018 630 248 Tesla Model S

Used in:

Available with Report purchase

Page 22: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 12

TherelativelypoorpackagingefficiencyofEVbatteriesisduetooddpackshapesresultingfromtheneed,inmostcurrentEVs,tofitthepackintoanavailablespaceinthepredesignedvehicleplatform.Forthesamerea-son,effectivevolumetricenergydensitiesfor installedEV batteries can differ quite widely from nameplatevalues.Anotherparametersignificantlyaffectingvolu-metric and gravimetric energy density is the coolingsystem,ifthereisone.Whilerefrigerant/liquidcoolingismorevolume-efficientthanaircooling,itisalsomoreexpensive.

c. PHEV Pack Key Characteristics

TableE.4.6summarizesthekeyelectricalcharacteristicsof PHEV packs in, or close to, commercial production.The packs are listed by their rated capacity—a param-eterthatcorrelateswiththevehicle’selectricrange.Forthefirstfourvehicleswithbatterycapacitiesexceeding10kWh, twoor threecellsareassembled inparallel toreachthedesiredpackenergycapacityatoptimalmotorvoltages(typical300-360V).TheToyotaPriusstandsoutas a relatively low-capacity, aswell as a relatively low-voltagesystem.However,thePriusup-convertsthebat-teryvoltagetoover600Vsothatmotorandbatteryvolt-ageare largely independentofeachother. TheenergydensityofthePHEVpacksistypically10-20%lowerthanthatoftheEVpacksduetothehigher-powerdesignof

theapplication.Averyimportantquantityisthecapacitythatcanbeutilizedoverlongcyclelife,whichistypically55to75%oftheinitialratedcapacity.d. Life, Reliability, and Safety

The lifeandreliabilityofEVandPHEVLi-Ionbatteriesinthefieldwillplayamajorrole inthecostofowner-ship and thus the overall viability of these vehicles.While results in accelerated cycle-life testing supporttheLi-Ionbattery’sprospectsofmeeting thecycle-liferequirements(atleastforEVs),andprovideanexpecta-tionofanadequatecalendar life forbatteriesthatdonot experience temperatures above40°C, real life inthe field is obviously yet to be confirmed. This repre-sentsasignificantriskfactorfortheindustry.

Theautomakers’guidingprinciplefortheuseofLi-Ionbatteriesinanyautomotiveapplicationisthat,regard-less of what happens, no flame or burningmaterialsshouldbeexpelledfromthebatterypack.Acellcatch-ing fire that does not propagate outside the batterypack is thus a reliability event rather than a safetyincident. While it is the ultimate responsibility of thevehicle-engineering team to provide a vehicle thatunderanyreasonablecircumstanceswillnotendanger

Table E.4.6: Key Characteristics of PHEV Packs

Cathode Capacity Energy Capacity Voltage

Chemistry Ah kWh Ah V

Fisker Karma A123 LFP 20 A123 20 60 333

GM Volt LG LMO-NMC 15 GM 16 45 356

Mitsubishi Outlander LEJ LFP 21 LEJ 12 42 286

Volvo V60 LG LMO-NMC 15 LG 11 30 367

Porsche Panamera Samsung NMC-LMO 26 Bosch 9.4 26 362

BMW i-8 Samsung NMC-LMO 26 BMW 8.5 26 327

Ford C-Max Sanyo NMC 24 Ford 7.6 24 317

Ford Fusion Sanyo NMC 24 Ford 7.6 24 317

Audi A3 Sanyo NMC 24 Sanyo 7.5 24 313

Honda Accord Blue Energy NMC 21 Honda 6.6 21 314

Daimler S class LEJ LFP 21 Magna 6.5 21 310

Toyota Prius Sanyo NMC 22 Toyota 4.5 21.5 209

Cell Pack

Carmaker ModelMaker Maker

Page 23: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 13

the driver or passengers, engineers in all fields keepmakingdesigndecisionsaffectingsafetythataretrade-offs between product requirements that allow only asmallmarginofcostincreaseorperformancereductiontoachievetheirgoal.

Lithium ion is a high-energy, high-power, flammable,andeasilyignitablepowersource.However,soisgaso-line.Therearegoodreasonstobelievethatsafetycanbe engineered into the system, even if mistakes areoccasionallymade in the learning process. Given thevery conservative approach of automotive engineers,it seems likely that future battery-related safety inci-dents,atleastatestablishedwesternautomakers,willberareandisolatedcases.

e. Technology Enhancement Roadmap

This study revealed that PHEV-EV batteries throughthe end of the decade will all feature Li-Ion technol-ogy with further optimization of existing chemistries,andcellandpackdesigns.Thelargeststepforwardinperformancewillrequiretheimplementationofhigher-voltagecathodesandsilicon-containinganodes.Suchdesigns are expected to support a50% improvementin performance coupled with potential for a substan-tialreductionincost.However,themainchallengefor

thesehigherperformancechemistrieswillbetoensurethattheycontinuetoprovideanadequatelifeandinnowaycompromisesafety.

Inrecentyearsdevelopmentwork, largelysupportedbytheU.S.government,hasbeendirectedattechnologiesthatmaysupersedeLiIon,themostvisibleofwhichpres-entlyaretheprogramsonlithium-oxygen.Whilesomeofthese futuristic chemistriesandapproachesoffer inter-estingprospects,replacingLiIonwithabatteryofoverallbettervaluefortheEVandPHEVmarketwouldbeafor-midabletask.Fortheforeseeablefuture,itseemslikelythatthecombinationofhighgravimetricandvolumetricenergyandpowerdensitywithveryhighcyclelifeofferedbytheLi-Iontechnologywillremainunique.

5. xEV Vehicle Market

a. Market Drivers and Challenges for xEVs

Theautomakers’motivationfordevelopinghybridandelectricvehiclesstemsprimarilyfromthefollowing:i. Theenvironmentaldriver:Theever-increasingpres-

sure to reduce pollutant and CO2 emissions thatthreatentheenvironment

ii. Theenergysecuritydriver:Theconcernaboutener-gysupplyshortagesandsecurity

iii. Thecustomer’sfuel-savingdriveriv. The customer’s ancillaries driver: The promise of

enhancedandnew(electricallypowered)customerfeatures that improve the vehicle’s functionality/efficiencyand/ordrivingcomfort

v. Industrialcompetitivenessdriver:Thenationalandlocalgovernments’drivetobuildtechnologicalcom-petenceandcreatejobsinfuturetechnology

vi. The image driver: The desire to project a “green”and“high-tech”imagetothebuyingpublic.

Currently, thestrongestglobalmotivationtoencouragethe use of xEVs is the drive to reduce CO2 emissionsfromthetransportationsector,anditisaugmented,par-ticularlyintheU.S.andChina,byconcernsaboutenergysecurity.FigureE.5.1showsthehistoricalandproposed

Available with Report purchase

Page 24: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 14

b. Market Forecast for xEVs

The estimated growth of themicro-hybrid market by geo-graphical region is illustrat-ed in Figure E.5.2. Marketgrowth in Europe showsstrong momentum, which isalso expected to extend toJapan;fortheU.S.andChina,thesituationisnotasclear.

Strong and moderate (high-voltage) hybrids on themarket since late 1997 showed a strong growth lastyearandreachedmarketsharesof25%inJapan,and3% in the U.S. While the global strong-hybridmarketseems likely tomaintain a steady growth, that of themild-hybrid market is expected to accelerate later inthedecade,predominantlyinEuropeandpotentiallyat

48V,whereitwillbedrivenbythe anticipated step-tighten-ingof theCO2 regulations in2020. Figure E.5.3 provideshistoricalandforecastfiguresfor these markets by worldregionfortheperiodbetween2009through2020. PHEV sales by world regionfor 2012 and projections for2016 and2020 are illustrat-

Figure E.5.1: Comparison of Global CO2 Emission Regulations in g CO2/km for Passenger Cars (Test Conditions Normalized to the New European Drive Cycle (NEDC)

Figure E.5.2: Micro-Hybrid Market by World Region

90

110

130

150

170

190

210

230

250

270

2000 2005 2010 2015 2020 2025

Gra

ms C

O2

pe

r kilo

me

ter,

norm

aliz

ed

to

NE

DC US

Europe

China

Japan

(usually via legislation) CO2 emissions standards in g/kmintheglobalpassengercarmarket. Itcanbeseenthatthereductionisquitesignificant,particularlyfortheperiod2015through2020.Meetingtheserequirementsat the lowestpossiblecostdetermines thedirectionofxEV-vehicledevelopmentatautomakers.

Available with Report purchase

Available with Report purchase

Page 25: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 15

vehiclemanufacturers(withtheexceptionofTesla)havealimitedrange,typically50to100miles.Thishandicap

effectively restricts their useto urban driving. Additionally,thesevehiclesare typicallyofthe mini (city), subcompact,and compact classes, whichlimitstheirmarkettobuyersofsmallercars.

Figure E.5.5 shows the geo-graphical distribution of EVsales in 2012 and forecastsfor2016and2020.The worldwide EV market isexpected togrow fromabout75,000 units in 2012 to

205,000 units in 2016 and 480,000 units in 2020,showing a projected average annual growth rate of26%.Theestimatefor2020willaccountforonlyabout0.6% of the expected total market of 74million newvehiclesinthatyear.

FigureE.5.6showshistoricalandprojectedEVsalesbyautomakerfrom2009to2016.TheNissan-Renaultalliance will continue to hold the largest share, but

ed in Figure E.5.4. By 2020, the PHEVmarket is pro-jectedtoaccountfor750,000units,orabout1%ofthe

anticipatedglobalsalesvolumeforthatyear.ContinuedgrowthintheU.S.,stillpredominantlydrivenbytheCARBmandate,willbeaugmentedbymorenotablegrowthinEuropeandChinaascarmakerstakeadvantageoftheCO2test-certification,andextracreditsavailable to thePHEVasameanstomeettighteningCAFEstandards.

Note that for PHEVs—as for conventional hybrids butnot forEVs—the technicalandeconomicchallengesaresomewhatindependentofvehiclesize.Infact,amid-sizevehicle,orevenlarger,ispotentiallymoreattractiveforaPHEVpowertrainsince ithasmorespaceavailable than smaller vehicles toaccommodate the larger PHEV battery.Furthermore,sinceaU.S.subsidyisavail-able and is a function of battery energycapacityandnotofvehiclefueleconomy,the tax credits for a given fuel-economyimprovementorall-electricrangecapabil-ityaregreaterthelargerthevehicle.

AllEVsunderdevelopmentatmajorelectric-

Figure E.5.3: Strong, Mild/Moderate Hybrid-Market Growth by World Region

Figure E.5.4: PHEV Market Growth by World Region

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2009 2012 2016 2020

000

's o

f u

nit

s

ROW strong

ROW mild

Europe strong

Europe mild

China strong

China mild

US strong

US mild

Japan strong

Japan mild

Available with Report purchase

Page 26: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 16

western governments, both federal andstate, for economic, if not political rea-sons,maynotbeabletocontinuesubsi-dizing vehicle electrification at the levelrequiredforthemtocompetewithhybridsandotheradvanced-propulsiontechnolo-gies. In fact, despite the sizeable subsi-dies and discounts provided by govern-mentsandcarmakersrespectively,PHEVandEVcarsalesoverthepast24monthshavefallenshortofthecarmakers’plans.

In the long term, EVs are unlikely toaccount for more than a small percent-

age of the world’s new-car market until well after2020,andtheywillprobablybeusedmainly inurbandriving.Despitetheirrelativelyweakvaluepropositionin comparison with ICE and HEV powertrains, PHEVsseem to be the secondmost realistic (afterHEVs) ofthe four electrified-vehicle configurations (the othersbeingBEVsandFCVs).ThePHEV’slimitationsofhighervehicle cost and somewhat reduced cabin space areminor in comparisonwith the BEV’s problems of lim-ited range and slow re-fueling time. In contrast withfuel-cell-poweredvehicles,PHEVsdonotrequireheavyupfrontinvestmentininfrastructure.Itstandstoreasonthatifgovernmentscontinuetopromoteandsubsidizethemassintroductionofvehicleselectrifiedbeyondthe

itsactualsalesarelikelytobeafractionofwhathadbeen anticipated. Chinese automakers, MitsubishiMotors,luxury-carmakerTesla,andGermanautomak-ersmakeupmostoftherestofthemarket,whiletheother Japanesecarmakersand theU.S. “Big Three”,whose interest in EVs is largely limited to meetingtheCARBrequirements,arenotexpectedtopromotethemheavilyoutsidethe‘CARB-states’.

c. xEV Market Conclusions

HEVs are now mainstream products in Japan andare approaching unsubsi-dized commercial viability intheU.S.,whilemicrohybridsare strongly entrenched inEurope. In the absence of amarket-based value proposi-tion forEVsandPHEVs,gov-ernments are attempting toadvance these technologiesby issuing variousmandatesand subsidies (as discussedin Chapter V). Unfortunately,

Figure E.5.5: World EV Market Growth by Region

Figure E.5.6: Historical and Forecast EV Sales by Automaker

0

100

200

300

400

500

600

2012 2016 2020

00

0's

of

un

its

Other

Japan

US

China

Europe

0

10

20

30

40

50

60

70

2009 2010 2011 2012 2013 2014 2015 2016

00

0's

of

un

its

Renault &Nissan

Chineseautomakers

BMW

Mitsubishi

Tesla

U.S.automakers

VW Group

Daimler

Toyota andHonda

Other

Page 27: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 17

as main-stream car produc-erssuchasToyota,VW,Ford,Honda, and others expandtheir micro-hybrid offeringsin Europe and Japan, theirpreference for the EFLA bat-tery will rapidly increase itsvolumeandmarketshare.ii) Strong/Mild HEVs Figure E.6.2 illustrates thegrowth of the HEV battery-pack market over the pastfouryearsandincludesapro-jectionforthenextfouryears.NiMHwasthedominanttech-nologyuntilrecentlybutitnow

seemsthattheNiMHHEVbatterymarkethaspeakedorisabouttopeak.Thecorrespondinghistoricalandpro-jectedmarketsforLi-IonHEV-cellsbymanufacturerareshown inFigureE.6.3.Thedataarebasedontheunitsales forecast presented in Chapter V, and combinedwith industry pricing information discussed in Chapter

II.ThetotalLi-IonHEVcellbusinessisestimatedtogrowfromabout$200millionin2012tonearly$570millionin2016—acompoundaveragegrowth-rateof30%.

level of conventional HEVs, then PHEVs are relativelythebestchoice.Battery-poweredEVswillremainniche-market vehicles for urban usage, while fuel-cell-pow-eredEVsmayfindapplicationinbusesandotherlargevehiclesownedandoperatedbygovernmentsorcorporations,whichareinapositiontoinstallarefuelinginfrastructure.

6. Battery Market for xEVs

a. Battery Markets for xEVs through 2016

i) Micro HybridsThe cost/performance trade-offs betweenthe two Lead-Acid technologies—EFLA andVRLA—that share the micro-hybrid markettoday are reviewed in Chapters II and III,while their projectedmarket shares are presented inChapterVI.FigureE.6.1providesabestestimateoftheunitsalesofthesetwodesignsfor2012and2016.Inthe former year themajor customers were Europeanmanufacturers of high-end vehicles such as BMW,Mercedes,andAudi,whichpreferVRLA. Inthefuture,

Figure E.6.1: Estimated Unit Sales of EFLA and VRLA Designs (in Million Units)

Figure E.6.2: NiMH vs. Li-Ion HEV Battery-Pack Business ($ Million)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2009 2010 2011 2012 2013 2014 2015 2016

$ M

illio

n

Total NiMH

Total Li-Ion Packs

0

1

2

3

4

5

6

7

8

9

10

2012 2016

Mill

ion U

nits

EFLA

VRLA

Page 28: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 18

battery-packbusinessexceed-ing $2.3 billion in that year.Hereagainmostautomakersdesign and build their ownpacks.Chrysler-Fiat,forwhomBoschdesignsandbuildsbat-terypacks,isanexception.

v) Combined Li-Ion Cell MarketsFigure E.6.4 shows the com-bined Li-Ion automotive bat-

tery-cellmarket forHEV,PHEVs,andEVsbyproducer.This market, which was miniscule in 2009, grew to$1.23billion lastyearandisexpectedtoexceed$2.9billion in2016. The eleven listed suppliers, eachwithannualsalesforecastsrangingfrom$60milliontoover$500million,areprojectedtoaccountforabout$2.64billion,or90%ofthebusiness.Notethatthe‘Other’cat-egory includessomepotentiallysignificant futureplay-ers,suchasSKInnovation,Toshiba,JCI,Li-TecBattery,andseveralChineseproducers.vi) Combined xEV Pack Markets Figure E.6.5 summarizes the estimated $6.2 billion

advanced automotive bat-tery-pack market in 2016 bymarket segment. The NiMHHEV-pack market, the domi-nant segment in2009-2010,is expected to maintain its$1.8 billion level through2016, but represents only29% of the business in thatyear.Themorerapidlygrowing

iii) PHEVsThe PHEV battery-cell market, which is 100% Li Ion,is expected to increase from $9 million in 2010 toover $650million in 2016. The corresponding PHEVbattery-packbusinessisestimatedtoexceed$1billionin2016(withmostofthevalueaddedaccruingtotheautomakers),sincecellsrepresentabout65%ofPHEVbattery-packcosts.

iv) EVsTheEVcellmarket—also100%LiIon—whichgrewfrom$41millionin2009to$768millionlastyear,isforecasttobeover$1.7billionin2016,withtheassociatedEV

Figure E.6.3: Li-Ion HEV Battery-Cell Business by Cell Producer

Figure E.6.4: Combined Li-Ion Automotive Cell Market for HEV, PHEVs, and EVs by Producer

0

40

80

120

160

200

2009 2010 2011 2012 2013 2014 2015 2016

$ M

illi

on

Sanyo

PEVE

Blue Energy

LG Chem

Hitachi

A123 Systems

AESC

JCI

Available with Report purchase

Page 29: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 19

alsohaveasignificantbusiness inconsumer(portable)batteries, suchasSanyo,LGChem,Samsung,and twoorthreeChineseplayers,willhaveabuilt-inadvantageassupplierstothedemandingautomotivemarket,becauseoftheirexperienceinthecost-effectivemanufacturingofreliableproducts.Afactorthatwillgreatlyimpacttheposi-tionofsomeearlyentries,includingLGChemandAESC,isthedegreetowhichthepouch-celltechnologywillbeacceptedbyautomakersthathavesofaravoidedit.

AsnotedinTableE.6.1,thetotalautomotiveLi-Ionbat-teryproduction isprojected toexceed20,000MWh in2020.ThedollarvaluesofthekeyxEV-cellmaterialscor-respondingtothisestimateareshowninFigureE.6.6.

c. Industry Overcapacity

Generous government subsidies have triggered therapidandapparentlyprematureconstructionofPHEV

Li-Ionbatterybusinessesaccountfortherest.TheLi-Ion EV-pack businessis estimated to exceed$2.3billionin2016,withLi-Ion HEV and PHEVpacks topping$1billioneach. These estimatesdonotincludeanyafter-marketandreplacementbusinessoranypossiblemicro-hybridLi-Ionbattery-packbusiness,whichisgen-erallyexpectedtobestillquitesmallin2016.

b. xEV Battery Market to 2020

After2016,thegrowthrateoftheLi-IonHEVandPHEVbatterybusinessisexpectedtoexceedthatoftheothertwosegmentsandchangetherelativemagnitudesofthe fourmarket-segment categories. Table E.6.1 pro-videsaprojectionforthe2020worldLi-Ionautomotivebattery market. All key assumptions are indicated inthe table, including unit sales, based on data fromChapterV,averagebatterycapacity inkWh,cell-costsper kWh,andbattery-pack cost for eachmarket seg-ment,derivedfromtheanalysesinChaptersII&IV.

It is too speculative to suggest which battery compa-nies will share this significant and growing market.Nevertheless, thecompanieswith the largestshares in2016, shown in FigureE.6.5 are the favorites,provided their cash flowturns positive by thattime.Otherwiseitseemsclear that those which

Figure E.6.5: Advanced Automotive Battery-Pack Business ($ Million)

Table E.6.1: 2020 Automotive Li-Ion Battery Market

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2009 2010 2011 2012 2013 2014 2015 2016

$ M

illio

n

Li Ion Total

Li-Ion EV

NiMH HEV

Li-Ion HEV

Li-Ion PHEV

Available with Report purchase

Page 30: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

Executive Summary 20

anassessmentoftheactualinstalledcapacityasofQ12013, and iii) the expectedproduction level this year(2013).Asthetableindicates,thelikelyproductionvol-

ume this year will be a littleover3,000MWh,whichisonly11% of the proposed 2014plant capacity and about21%ofthecapacityinstalledto date. This extreme over-capacity is the main reasonwhy many xEV-battery man-ufacturers submit productquotations at or below cost.While the automakers ben-efit from lowerpricing in theshort term, a problem maydevelopinthelongrunsinceahealthy industryrequiresaprofitablesupplychain.Whilesomeplantswillundoubtedlyclose,anotherlikelyoutcomeof thisovercapacity is indus-tryconsolidationviamergers.

Table E.6.2: Estimated Globally Installed and Utilized xEV Li-Ion Cell Manufacturing

andEVbatteryplants. IntheU.S., grants awarded by thefederal and several stategovernments as part of the2009 economic stimuluspackage covered 50 to 80%of the cost of new plantslocated in the automotive-industry states of Michiganand Indiana. Other grantsandpreferred-termsloans(inparticular to Nissan-Renault)wereawarded in France, theU.K.,Portugal,China,andtheU.S.TableE.6.2detailsi)theplantcapacitiesannouncedbymajorbatterymak-ersandscheduledtobecomeoperationalby2014,ii)

Figure E.6.6: xEV Key Cell Material Business ($ Million)

0

100

200

300

400

500

600

700

$ M

illio

n

Fully InstalledForecasted

Production

Capacity

Utilization

MWh MWh MWh %

AESC, Japan 2200 2200 500 23%

Nissan, U.S. 4000 1100 200 18%

Nissan, U.K. 2000 1100 100 9%

LG Chem, Korea 3500 2200 600 27%

LG Chem, U.S. 1200 600 150 25%

BYD, China 4000 1000 100 10%

Lithium Energy Japan, Japan 2300 1100 350 32%

Lishen, China 1400 500 150 30%

JCI, U.S. 1200 600 40 7%

Panasonic-Sanyo Electric, Japan 1000 1000 300 30%

SK Innovation, Korea 1000 500 30 6%

Dow Kokam, U.S. 600 600 20 3%

A123 Systems, U.S. 500 300 100 33%

Samsung, Korea 500 500 125 25%

Hitachi, Japan 200 100 35 35%

EnerDel, U.S. 300 0 0 0%

Blue Energy, Japan 200 200 40 20%

Li-Tec, Germany 300 300 80 27%

Other, China 2000 800 200 25%

Toshiba, Japan 300 300 80 27%

TOTAL 28,700 15,000 3,200 21%

Estimated 2013 StatusPlanned

Capacity for

2014Company

Page 31: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

The AuthorDr. Menahem Anderman, PresidentTotal Battery Consulting, Inc.Menahem Anderman has directed development programs for high-pow-er nickel-based and Li-Ion batteries as well as electrochemical capaci-

tors. His corporate experience ranges from materials research, cell design, and product development, to bat-tery-product application, market development, technol-ogy and business assessment and general management. He holds a PhD with honors in Physical Chemistry from the University of California, and founded Total Battery Consulting in 1996 to offer consulting services in lithium- and nickel-based battery development and application, intellectual property issues in battery-related markets, and investment assessment.

Dr. Anderman provides technology and market assess-ments to international clients and government agencies including the U.S. Senate, the California Air Resources Board, the National Research Council, the U.S. Department of Energy, and others. As the world’s leading independent expert on advanced automotive batteries, Dr. Anderman is routinely quoted in news and business journals includ-ing The Wall Street Journal, The Washington Post, and The New York Times.

Page 32: Assessing the Future of Hybrid and Electric Vehicles · Assessing the Future of Hybrid and Electric Vehicles: Based on private onsite interviews with leading technologists and executives

The VisionReducing the harmful impact of vehicles on the environment is a vital task for the industrial world. With the introduction of advanced electrical and hybrid functions in vehicles, the automotive industry is now approach-ing cost-effective ways to reduce fuel consumption and emissions. Energy storage technology is the key to the commercial success of these advanced vehicles. The objective of the Report is to make available to industry profes-sionals around the world information that will help them focus their financial and human resources on the most technologically viable and economically affordable solutions to the future needs of automotive energy storage. It will thus contribute to the development and support of more eco-friendly vehicles, a cleaner environment, and more responsible usage of our planet’s resources.

Advanced Automotive BatteriesIn 2000, Dr. Anderman founded Advanced Automotive Batteries (AAB) to provide up-to-date technology and market assessments of the rapidly grow-ing field of energy storage for advanced automotive applications. Advanced Automotive Batteries published the 2002 and 2007 Advanced Automotive Battery Industry Reports, the 2005 Ultracapacitor Report and the 2010 Plug-In Hybrid and Electric Vehicle Opportunity Report.

Advanced Automotive Batteries also organizes the main international event in the industry: the Advanced Automotive Battery Conference (AABC), with Dr. Anderman serving as Chairman. For over a decade, the annual AABC has attracted professionals from the hybrid and electric vehicle world and the three tiers of the battery supply chain. Renowned as a global meeting place, AABC features presentations and discussions that address the most pivotal issues affecting the technology and market of advanced vehicles and the batteries that will power them. In 2010, to keep pace with the rapidly expanding tech-nology and market development, AAB started hosting two conferences annu-ally, in the U.S. and Europe, which together attracted over 1,500 participants. AABC Europe 2013 will take place in Strasbourg, France, June 24 - 28, and the International AABC 2014 will be held in Atlanta, Georgia, February 3 - 7.

tel: 1 (530) 692 0140 fax: 1 (530) 692 [email protected] www.advancedautobat.com

advancedautomotivebatteries