asd vs lrfd

107
1 General Comparison between AISC LRFD and ASD Michael Angelo L. Roy

Upload: greenwallet

Post on 24-Oct-2014

425 views

Category:

Documents


45 download

TRANSCRIPT

Page 1: ASD vs LRFD

1

General Comparison between AISC LRFD and ASD

Michael Angelo L. Roy

Page 2: ASD vs LRFD

2

AISC ASD and LRFD

• AISC = American Institute of SteelConstruction

• ASD = Allowable Stress DesignAISC Ninth Edition

• LRFD = Load and Resistance Factor Design

AISC Third Edition

Page 3: ASD vs LRFD

3

AISC Steel Design Manuals

• 1963 AISC ASD 6th Edition• 1969 AISC ASD 7th Edition• 1978 AISC ASD 8th Edition• 1989 AISC ASD 9th Edition

• 1986 AISC LRFD 1st Edition• 1993 AISC LRFD 2nd Edition• 1999 AISC LRFD 3rd Edition

Page 4: ASD vs LRFD

4

ASD and LRFDMajor Differences

• Load Combinations and load factors• ASD results are based on the stresses and

LRFD results are based on the forces and moments capacity

• Static analysis is acceptable for ASD but nonlinear geometric analysis is required for LRFD

• Beams and flexural members• Cb computation

Page 5: ASD vs LRFD

5

ASD Load Combinations

• 1.0D + 1.0L

• 0.75D + 0.75L + 0.75W

• 0.75D + 0.75L + 0.75E

D = dead load

L = live load

W = wind load

E = earthquake load

Page 6: ASD vs LRFD

6

ASD Load Combinations

Or you can use following load combinations with theparameter ALSTRINC to account for the 1/3 allowableincrease for the wind and seismic load

1. 1.0D + 1.0L2. 1.0D + 1.0L + 1.0W3. 1.0D + 1.0L + 1.0E

• PARAMETER $ ALSTRINC based on the % increase

• ALSTRINC 33.333 LOADINGS 2 3

Page 7: ASD vs LRFD

7

LRFD Load Combinations

• 1.4D• 1.2D + 1.6L• 1.2D + 1.6W + 0.5L• 1.2D ± 1.0E + 0.5L• 0.9D ± (1.6W or 1.0E)

D = dead loadL = live loadW = wind loadE = earthquake load

Page 8: ASD vs LRFD

8

Deflection Load Combinationsfor ASD and LRFD

• 1.0D + 1.0L

• 1.0D + 1.0L + 1.0W

• 1.0D + 1.0L + 1.0E

D = dead load

L = live load

W = wind load

E = earthquake load

Page 9: ASD vs LRFD

9

Forces and Stresses

• ASD = actual stress values are compared to the AISCallowable stress values

• LRFD = actual forces and momentsare compared to the AISClimiting forces and momentscapacity

Page 10: ASD vs LRFD

10

ASTM Steel Grade

• Comparison is between Table 1 of the AISC ASD 9th Edition on Page 1-7 versus Table 2-1 of the AISC LRFD 3rd Edition on Page 2-24

• A529 Gr. 42 of ASD, not available in LRFD• A529 Gr. 50 and 55 are new in LRFD• A441 not available in LRFD• A572 Gr. 55 is new in LRFD• A618 Gr. I, II, & III are new in LRFD• A913 Gr. 50, 60, 65, & 70 are new in LRFD• A992 (Fy = 50, Fu = 65) is new in LRFD (new standard)• A847 is new in LRFD

Page 11: ASD vs LRFD

11

Slenderness Ratio

• Compression

KL/r ≤ 200

• Tension

L/r ≤ 300

Page 12: ASD vs LRFD

12

Tension Members

• Check L/r ratio

• Check Tensile Strength based on the cross-section’s Gross Area

• Check Tensile Strength based on the cross-section’s Net Area

Page 13: ASD vs LRFD

13

Tension Members

ASD

ft = FX/Ag ≤ Ft Gross Area

ft = FX/Ae ≤ Ft Net Area

LRFD

Pu = FX ≤ ϕt Pn = ϕt Ag Fy ϕt = 0.9 for Gross

Area

Pu = FX ≤ ϕt Pn = ϕt Ae Fu ϕt = 0.75 for Net Area

Page 14: ASD vs LRFD

14

Tension Members

ASD (ASD Section D1)

Gross Area Ft = 0.6Fy

Net Area Ft = 0.5Fu

LRFD (LRFD Section D1)

Gross Area ϕt Pn = ϕt Fy Ag ϕt = 0.9

Net Area ϕt Pn = ϕt Fu Ae ϕt = 0.75

Page 15: ASD vs LRFD

15

Compare ASD to LRFD

ASD 1.0D + 1.0L

LRFD 1.2D + 1.6L

0.6Fy (ASD) × (1.5) = 0.9Fy (LRFD)

0.5Fu (ASD) × (1.5) = 0.75Fu (LRFD)

ASD × (1.5) = LRFD

Page 16: ASD vs LRFD

16

Tension Members

X

Y

Z

FIXED JOINT

-400.

o

Page 17: ASD vs LRFD

17

Tension Members

• Member is 15 feet long• Fixed at the top of the member and free at the bottom• Loadings are:

• Self weight• 400 kips tension force at the free end• Load combinations based on the ASD and

LRFD codes• Steel grade is A992• Design based on the ASD and LRFD codes

Page 18: ASD vs LRFD

18

Tension Members

ASD

W18x46 Actual/Allowable Ratio = 0.989

LRFD

W10x49 Actual/Limiting Ratio = 0.989

Page 19: ASD vs LRFD

19

Tension Members

ASD

W18x46 Area = 13.5 in.2

FX = 400.688 kips Ratio = 0.989

LRFD

W10x49 Area = 14.4 in.2

FX = 640.881 kips Ratio = 0.989

Page 20: ASD vs LRFD

20

Tension Members

Load Factor difference between LRFD and ASD

640.881 / 400.688 = 1.599

Equation Factor difference between LRFD and ASD

LRFD = (1.5) × ASD

Estimate required cross-sectional area for LRFD

LRFD W10x49 Area = 14.4 in.2

A rea fo r L R F D 1 3 56 4 0 8 8 1

4 0 0 6 8 8

1 0

1 5

0 9 8 9

0 9 8 91 4 3 9 5.

.

.

.

.

.

..

Page 21: ASD vs LRFD

21

Tension Members

Code Check based on the ASD9 and using W10x49

FX = 400.734 kips Ratio = 0.928

Load Factor difference between LRFD and ASD

640.881 / 400.734 = 1.599

LRFD W10x49 Ratio = 0.989

L R F D R atio co m p uted fro m A S D 0 9 2 86 4 0 8 8 1

4 0 0 7 3 4

1 0

1 50 9 8 9.

.

.

.

..

Page 22: ASD vs LRFD

22

Tension Members

ASDExample # 1

Live Load = 400 kipsW18x46 Actual/Allowable Ratio = 0.989

LRFDExample # 1

Live Load = 400 kipsW10x49 Actual/Limiting Ratio = 0.989

Example # 2Dead Load = 200 kipsLive Load = 200 kips

W14x43 Actual/Limiting Ratio = 0.989Code check W14x43 based on the ASD9

W14x43 Actual/Allowable Ratio = 1.06

Page 23: ASD vs LRFD

23

Compression Members

• Check KL/r ratio

• Compute Flexural-Torsional Buckling and Equivalent (KL/r)e

• Find Maximum of KL/r and (KL/r)e

• Compute Qs and Qa based on the b/t and h/tw ratios

• Based on the KL/r ratio, compute allowable stress in ASD or limiting force in LRFD

Page 24: ASD vs LRFD

24

Compression Members

ASD

fa = FX/Ag ≤ Fa

LRFD

Pu = FX ≤ ϕc Pn = ϕc Ag Fcr

Where ϕc = 0.85

Page 25: ASD vs LRFD

25

Limiting Width-Thickness Ratiosfor Compression Elements

ASD

b/t = h/tw =

LRFD

b/t = h/tw =

9 5 / F y

0 5 6. /E F y

2 5 3 / F y

1 4 9. /E F y

Page 26: ASD vs LRFD

26

Limiting Width-Thickness Ratiosfor Compression Elements

Assume E = 29000 ksi

ASD

b/t = h/tw =

LRFD

b/t = h/tw =

9 5 / F y

9 5 3 6. / F y

2 5 3 / F y

2 5 3 7 4. / F y

Page 27: ASD vs LRFD

27

Compression Members

ASD KL/r ≤ C′c (ASD E2-1 or A-B5-11)

LRFD (LRFD A-E3-2)

F

QKL r

CF

KL r

C

KL r

C

a

c

y

c c

12

5

3

3

8 8

2

2

3

3

/

/ /

F Q FcrQ

yc 0 6 5 8

2

.

W here CE

Q Fcy

2 2

W here c

yKL

r

F

E

c Q 1 5.

Page 28: ASD vs LRFD

28

Compression Members

ASD KL/r > C′c (ASD E2-2)

LRFD (LRFD A-E3-3)

F

E

KL ra

1 2

2 3

2

2

/

W here CE

Q Fcy

2 2

c Q 1 5.

F Fcrc

y

0 8 7 72

.

W here

cyKL

r

F

E

Page 29: ASD vs LRFD

29

Compression Members

LRFD

F Fcrc

y

0 8 7 72

.

W here c

yKL

r

F

E

F

KL

r

F

E

Fcr

y

y

0 8 7 72

.

F

E

KL rcr

0 8 7 7 2

2

.

/

FE

K L rcr 2 0 1 7 1

2 3

2

2

.

/

Page 30: ASD vs LRFD

30

Compression Members

ASD LRFD

Fcr / Fa = 1.681

LRFD Fcr = ASD Fa × 1.681

F

E

KL ra

1 2

2 3

2

2

/

FE

K L rcr 2 0 1 7 1

2 3

2

2

.

/

Page 31: ASD vs LRFD

31

Compression Members

ASD

(ASD C-E2-2)

LRFD

λc = Maximum of ( λcy , λcz , λe )

KL rK L

r

K L

r

KL

ry Y

y

z z

z e

/ , ,

W hereKL

r

E

Fe e

Page 32: ASD vs LRFD

32

Compression Members

LRFDWhere:

cy

y y

y

yK L

r

F

E

cz

z z

z

yK L

r

F

E

ey

e

F

F

Page 33: ASD vs LRFD

33

Compression Members

Flexural-Torsional Buckling

F

E C

K LG J

I Iew

x x y z

2

2

1 0.

Page 34: ASD vs LRFD

34

Qs Computation

ASD

LRFD

W hen 9 5 1 9 5/ / / / /F k b t F ky c y c

Q b t F ks y c 1 2 9 3 0 0 0 3 0 9. . ( / ) /

W hen 0 5 6 1 0 3. / / . /E F b t E Fy y

Q b t F Es y 1 4 1 5 0 7 4. . ( / ) /

k

h th t kc c

4 0 57 0 1 0

0 .4 6

.

// , .if o therw ise

Page 35: ASD vs LRFD

35

Qs Computation

Assume E = 29000 ksi

ASD

LRFD

W hen 9 5 1 9 5/ / / / /F k b t F ky c y c

Q b t F ks y c 1 2 9 3 0 0 0 3 0 9. . ( / ) /

W hen 9 5 3 6 1 7 5 4. / / . /F b t Fy y

Q b t Fs y 1 4 1 5 0 0 0 4 3 4 5. . ( / )

Page 36: ASD vs LRFD

36

Qs Computation

ASD

LRFD

W hen b t F ky c/ / / 1 9 5

Q k F b ts c y 2 6 2 0 02

/ /

W hen b t E F y/ . / 1 0 3

Q E F b ts y 0 6 92

. / /

Page 37: ASD vs LRFD

37

Qs Computation

Assume E = 29000 ksi

ASD

LRFD

W hen b t F ky c/ / / 1 9 5

Q k F b ts c y 2 6 2 0 02

/ /

W hen b t F y/ . / 1 7 5 4

Q F b ts y 2 0 0 1 02

/ /

Page 38: ASD vs LRFD

38

Qa Computation

ASD

LRFD

bt

f b t fbe

2 5 3

14 4 3.

( / )

b tE

f b t

E

fbe

1 9 1 1

0 3 4.

.

( / )

A ssum e ksiE bt

f b t fe

2 9 0 0 03 2 5 2 6

15 7 9

,. .

( / )

Page 39: ASD vs LRFD

39

Compression Members

X

Y

Z FIXED JOINT

-100.o

Page 40: ASD vs LRFD

40

Compression Members

• Member is 15 feet long• Fixed at the bottom of the column and free at the top• Loadings are:

• Self weight• 100 kips compression force at the free end• Load combinations based on the ASD and

LRFD codes• Steel grade is A992• Design based on the ASD and LRFD codes

Page 41: ASD vs LRFD

41

Compression Members

ASD

W10x49 Actual/Allowable Ratio = 0.941

LRFD

W10x54 Actual/Limiting Ratio = 0.944

Page 42: ASD vs LRFD

42

Compression Members

ASD

W10x49 Area = 14.4 in.2

FX = 100.734 kips Ratio = 0.941

LRFD

W10x54 Area = 15.8 in.2

FX = 160.967 kips Ratio = 0.944

Page 43: ASD vs LRFD

43

Compression Members

Load Factor difference between LRFD and ASD

160.967 / 100.734 = 1.598

Equation Factor difference between LRFD and ASD

LRFD Fcr = (1.681) × ASD Fa

Estimate required cross-sectional area for LRFD

LRFD W10x54 Area = 15.8 inch

A rea fo r L R F D 1 4 41 6 0 9 6 7

1 0 0 7 3 4

1 0

1 6 8 1

1 0

0 8 5

0 9 4 1

0 9 4 41 6 0 5.

.

.

.

.

.

.

.

..

Page 44: ASD vs LRFD

44

Compression Members

Code Check based on the ASD9 and use W10x54

FX = 100.806 kips Ratio = 0.845

Load Factor difference between LRFD and ASD

160.967 / 100.806 = 1.597

LRFD W10x54 Ratio = 0.944

L R F D R atio co m p uted fro m A S D 0 8 4 51 6 0 9 6 7

1 0 0 8 0 6

1 0

1 6 8 1

1 0

0 8 50 9 4 4.

.

.

.

.

.

..

Page 45: ASD vs LRFD

45

Compression MembersASD

Example # 1Live Load = 100 kips

W10x49 Actual/Allowable Ratio = 0.941LRFD

Example # 1Live Load = 100 kips

W10x54 Actual/Limiting Ratio = 0.944Example # 2

Dead Load = 50 kipsLive Load = 50 kips

W10x49 Actual/Limiting Ratio = 0.921Code check W10x49 based on the ASD9

W10x49 Actual/Allowable Ratio = 0.941

Page 46: ASD vs LRFD

46

Flexural Members

• Based on the b/t and h/tw ratios determine the compactness of the cross-section

• Classify flexural members as Compact, Noncompact, or Slender

• When noncompact section in ASD, allowable stress Fb is computed based on the l/rt ratio. l is the laterally unbraced length of the compression flange. Also, Cb has to be computed

• When noncompact or slender section in LRFD, LTB, FLB, and WLB are checked

• LTB for noncompact or slender sections is computed using Lb and Cb. Lb is the laterally unbraced length of the compression flange

Page 47: ASD vs LRFD

47

Flexural Members

ASD

fb = MZ/SZ ≤ Fb

LRFD

Mu = MZ ≤ ϕb Mn

Where ϕb = 0.9

Page 48: ASD vs LRFD

48

Limiting Width-Thickness Ratiosfor Compression Elements

ASD

LRFD

Assume E = 29000 ksi

d t Fw y/ / 6 4 0

b t E F y/ . / 0 3 8 h t E Fw y/ . / 3 7 6

b t F y/ / 6 5

b t F y/ . / 6 4 7 h t Fw y/ . / 6 4 0 3

Page 49: ASD vs LRFD

49

Flexural MembersCompact Section

ASD (ASD F1-1)

Fb = 0.66Fy

LRFD (LRFD A-F1-1)

ϕb Mn = ϕb Mp = ϕb Fy ZZ ≤ 1.5Fy SZ

Where ϕb = 0.9

Page 50: ASD vs LRFD

50

Flexural MembersCompact Section

X

Y

Z

FIXED JOINT

-15.00

-15.00

o

o

FIXED JOINT

Braced at 1/3 Points

Page 51: ASD vs LRFD

51

Flexural MembersCompact Section

• Member is 12 feet long• Fixed at both ends of the member• Loadings are:

• Self weight• 15 kips/ft uniform load• Load combinations based on the ASD and

LRFD codes• Steel grade is A992• Braced at the 1/3 Points• Design based on the ASD and LRFD codes

Page 52: ASD vs LRFD

52

Flexural MembersCompact Section

ASD

W18x40 Actual/Allowable Ratio = 0.959

LRFD

W18x40 Actual/Limiting Ratio = 0.982

Page 53: ASD vs LRFD

53

Flexural MembersCompact Section

ASD

W18x40 Sz = 68.4 in.3

MZ = 2165.777 inch-kips Ratio = 0.959

LRFD

W18x40 Zz = 78.4 in.3

MZ = 3462.933 inch-kips Ratio = 0.982

Page 54: ASD vs LRFD

54

Flexural MembersCompact Section

Load Factor difference between LRFD and ASD

3462.933 / 2165.777 = 1.5989

Equation Factor difference between LRFD and ASD

LRFD = (0.66Sz)(1.5989) / (0.9Zz) × ASD

Zz

LRFDW18x40 Zz = 78.4 in.3

fo r L R F D 6 8 43 4 6 2 9 3 3

2 1 6 5 7 7 7

0 6 6

0 9

0 9 5 9

0 9 8 27 8 3.

.

.

.

.

.

..

Page 55: ASD vs LRFD

55

Flexural MembersCompact Section

Code Check based on the ASD9, Profile W18x40

MZ = 2165.777 inch-kips Ratio = 0.959

Load Factor difference between LRFD and ASD

3462.933 / 2165.777 = 1.5989

LRFDW18x40 Ratio = 0.982

L R F D R atio co m p uted fro m A S D 0 9 5 93 4 6 2 9 3 3

2 1 6 5 7 7 7

0 6 6

0 9

6 8 4

7 8 40 9 8 1.

.

.

.

.

.

..

Page 56: ASD vs LRFD

56

Flexural MembersCompact Section

ASDExample # 1

Live Load = 15 kips/ftW18x40 Actual/Allowable Ratio = 0.959

LRFDExample # 1

Live Load = 15 kips/ftW18x40 Actual/Limiting Ratio = 0.982

Example # 2Dead Load = 7.5 kips/ftLive Load = 7.5 kips/ft

W18x40 Actual/Limiting Ratio = 0.859Code check W18x40 based on the ASD9

W18x40 Actual/Allowable Ratio = 0.959

Page 57: ASD vs LRFD

57

Flexural MembersNoncompact Section

ASD• Based on b/t, d/tw and h/tw determine if the section is

noncompact

• Compute Cb

• Compute Qs

• Based on the l/rt ratio, compute allowable stress Fb

• Laterally unbraced length of the compression flange (l) has a direct effect on the equations of the noncompact section

Page 58: ASD vs LRFD

58

Flexural MembersNoncompact Section

ASD

fb = MZ/SZ ≤ Fb

LRFD

Mu = MZ ≤ ϕb Mn

Where ϕb = 0.9

Page 59: ASD vs LRFD

59

Limiting Width-Thickness Ratiosfor Compression Elements

ASD

LRFD

6 5 9 5F b t Fy y

d t Fw y 6 4 0

0 3 8 0 8 3. / .E F b t E Fy L

3 7 6 5 7. .E F h t E Fy w y

h t Fw b 7 6 0

Page 60: ASD vs LRFD

60

Limiting Width-Thickness Ratiosfor Compression Elements

Assume E = 29000 ksi

ASD

LRFD

6 5 9 5F b t Fy y

d t Fw y 6 4 0

6 4 7 1 4 1 3. / / . /F b t Fy L

6 4 0 3 9 7 0 7. / . /F h t Fy w y

h t Fw b 7 6 0

Page 61: ASD vs LRFD

61

Flexural MembersNoncompact Section

ASD

(ASD F1-3)

(ASD F1-2)

ASD Equations F1-6, F1-7, and F1-8 must to be checked.

F Fb

tFb y

f

fy

0 7 9 0 0 0 22

. .

I f m inim um o rL L

b

F d A Fb c

f

y f y

7 6 2 0 0 0 0

Page 62: ASD vs LRFD

62

Flexural MembersNoncompact Section

ASD

When

(ASD F1-6)

1 0 2 1 0 5 1 0 1 03 3

C

F

l

r

C

Fb

y T

b

y

F

F l r

CF F Qb

y T

by y s

2

3 1 5 3 0 1 00 6

2

3

/.

Page 63: ASD vs LRFD

63

Flexural MembersNoncompact Section

ASD

When

(ASD F1-7)

l

r

C

FT

b

y

5 1 0 1 0 3

F

C

l rF Qb

b

T

y s

1 7 0 1 0

0 63

2/

.

Page 64: ASD vs LRFD

64

Flexural MembersNoncompact Section

ASD

For any value of l/rT

(ASD F1-8)FC

ld AF Qb

b

fy s

1 2 1 00 6

3

/.

Page 65: ASD vs LRFD

65

Flexural MembersNoncompact Section

LRFD

1. LTB, Lateral-Torsional Buckling

2. FLB, Flange Local Buckling

3. WLB, Web Local Buckling

Page 66: ASD vs LRFD

66

Flexural MembersNoncompact Section

LRFD– LTB

• Compute Cb

• Based on the Lb, compute limiting moment capacity. Lb is the lateral unbraced length of the compression flange,λ = Lb/ry

• Lb has a direct effect on the LTB equations for noncompact and slender sections

– FLB• Compute limiting moment capacity based on the b/t ratio of

the flange, λ = b/t– WLB

• Compute limiting moment capacity based on the h/tw ratio of the web, λ = h/tw

Page 67: ASD vs LRFD

67

Flexural MembersNoncompact Section

LRFD LTB (Table A-F1.1)

For λp < λ ≤ λr

(LRFD A-F1-2)

Where:

Mp = Fy Zz ≤ 1.5Fy Sz

Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw

λ = Lb/ry

λp =

M C M M M Mn b p p rp

r pp

1 7 6. E F yf

Page 68: ASD vs LRFD

68

Flexural MembersNoncompact Section

LRFD LTB (Table A-F1.1)

Where:

λr =

X1 =

X2 =

X

FX F

LL

12

21 1

S

E G JA

z 2

42

C

I

S

G Jw

y

z

Page 69: ASD vs LRFD

69

Flexural MembersNoncompact Section

LRFD FLB (Table A-F1.1)

For λp < λ ≤ λr

(LRFD A-F1-3)

Where:

Mp = Fy Zz ≤ 1.5Fy Sz

Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw

λ = b/t

λp =

λr =

M M M Mn p p rp

r p

0 3 8. E F y

0 8 3. E F L

Page 70: ASD vs LRFD

70

Flexural MembersNoncompact Section

LRFD WLB (Table A-F1.1)

For λp < λ ≤ λr

(LRFD A-F1-3)

Where:

Mp = Fy Zz ≤ 1.5Fy Sz

Mr = Re Fy Sz

Re = 1.0 for non-hybrid girder

M M M Mn p p rp

r p

Page 71: ASD vs LRFD

71

Flexural MembersNoncompact Section

LRFD WLB (Table A-F1.1)

λ = h/tw

λp =

λr =

3 7 6. E F y

5 7. E F y

Page 72: ASD vs LRFD

72

Flexural MembersNoncompact Section

ASD

LRFD

C M M M M

M M

M M M C

b

b

1 7 5 1 0 5 0 3 2 3

1 0

1 2 1 22

1 2

1 2

. . . .

, .maxIf b e tw een and

CM

M M M M

M

M

M

bA B C

A

B

C

1 2 5

2 5 3 4 3

.

.m ax

m ax

ab so lute va lue o f m o m ent a t q uarter p o int

ab so lute va lue o f m o m ent a t center line

ab so lute va lue o f m o m ent a t three q uarter p o int

Page 73: ASD vs LRFD

73

Flexural MembersNoncompact Section

X

Y

Z

Roller

-12.00

-12.00

o

o

Pin

Page 74: ASD vs LRFD

74

Flexural MembersNoncompact Section

• Member is 12 feet long• Pin at the start of the member• Roller at the end of the member• Cross-section is W12x65• Loadings are:

• Self weight• 12 kips/ft uniform load• Load combinations based on the ASD and LRFD codes

• Steel grade is A992• Check code based on the ASD and LRFD codes

Page 75: ASD vs LRFD

75

Flexural MembersNoncompact Section

ASD

W12x65 Cb = 1.0Actual/Allowable Ratio = 0.988

LRFD

W12x65 Cb = 1.136Actual/Limiting Ratio = 0.971

Code check is controlled by FLB.

Cb = 1.0 Actual/Limiting Ratio = 0.973

Page 76: ASD vs LRFD

76

Flexural MembersNoncompact Section

ASDExample # 1

Live Load = 12 kips/ftW12x65 Actual/Allowable Ratio = 0.988

LRFDExample # 1

Live Load = 12 kips/ftW12x65 Actual/Limiting Ratio = 0.971

Example # 2Dead Load = 6 kips/ftLive Load = 6 kips/ft

W12x65 Actual/Limiting Ratio = 0.85Code check W12x65 based on the ASD9

W12x65 Actual/Allowable Ratio = 0.988

Page 77: ASD vs LRFD

77

Design for Shear

ASD

fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)

LRFD

Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-

1)

Where ϕv = 0.9

h t Fw y/ 3 8 0

h t E Fw yw/ . / 2 4 5

Page 78: ASD vs LRFD

78

Design for Shear

Assume E = 29000 ksiASD

fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)

LRFD

Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1)

Where ϕv = 0.9

h t Fw y/ 3 8 0

h t Fw yw/ . / 4 1 7 2

Page 79: ASD vs LRFD

79

Design for Shear

ASD

fv = FY/Ay ≤ (ASD F4-2)

LRFD

Vu = FY ≤ ϕvVn = ϕv (LRFD F2-2)

Where ϕv = 0.9

h t Fw y/ 3 8 0

2 4 5 3 0 7. / / . /E F h t E Fyw w yw

FF

C Fvy

v y 2 8 9

0 4.

.

0 62 4 5

.. /

/F A

E F

h tyw w

yw

w

Page 80: ASD vs LRFD

80

Design for Shear

LRFD

Vu = FY ≤ ϕvVn = ϕv (LRFD F2-

3)

Where ϕv = 0.9

3 0 7 2 6 0. / /E F h tyw w

A

E

h tw

w

4 5 22

.

/

Page 81: ASD vs LRFD

81

Design for Shear

X

Y

Z

FIXED JOINT

-15.00

-15.00

o

o

FIXED JOINT

Braced at 1/3 Points

Page 82: ASD vs LRFD

82

Design for Shear

• Same as example # 3 which is used for design of flexural member with compact section

• Member is 12 feet long• Fixed at both ends of the member• Loadings are:

• Self weight• 15 kips/ft uniform load• Load combinations based on the ASD and LRFD codes

• Steel grade is A992• Braced at the 1/3 Points• Design based on the ASD and LRFD codes

Page 83: ASD vs LRFD

83

Design for Shear

ASD (Check shear at the end of the member, equation “F4-1 Y”)

W18x40 Actual/Allowable Ratio = 0.8

LRFD (Check shear at the end of the member, equation “A-F2-1 Y”)

W18x40 Actual/Limiting Ratio = 0.948

Page 84: ASD vs LRFD

84

Design for Shear

ASD

W18x40 Ay = 5.638 in.2

FY = 90.241 kips Ratio = 0.8

LRFD

W18x40 Ay = 5.638 in.2

FY = 144.289 kips Ratio = 0.948

Page 85: ASD vs LRFD

85

Design for Shear

Code Check based on the ASD9, Profile W18x40

FY = 90.241 kips Ratio = 0.8

Load Factor difference between LRFD and ASD

144.289 / 90.241 = 1.5989

Equation Factor difference between LRFD and ASD

LRFD = (0.4)(1.5989) /(0.6)(0.9) × ASD

LRFDW18x40 Ratio = 0.948

L R F D R atio co m p uted fro m A S D 0 81 4 4 2 8 9

9 0 2 4 1

0 4

0 6

1 0

0 90 9 4 8.

.

.

.

.

.

..

Page 86: ASD vs LRFD

86

Design for ShearASD

Example # 1Live Load = 15 kips/ft

W18x40 Actual/Allowable Ratio = 0.8LRFD

Example # 1Live Load = 15 kips/ft

W18x40 Actual/Limiting Ratio = 0.948Example # 2

Dead Load = 7.5 kips/ftLive Load = 7.5 kips/ft

W18x40 Actual/Limiting Ratio = 0.83Code check W18x40 based on the ASD9

W18x40 Actual/Allowable Ratio = 0.8

Page 87: ASD vs LRFD

87

Combined Forces

ASD fa /Fa > 0.15

(ASD H1-1)

(ASD H1-2)

LRFD Pu /ϕPn ≥ 0.2

(LRFD H1-1a)

f

F

C f

f

FF

C f

f

F

a

a

m y by

a

eyby

m z bz

a

ez

1 1

1 0.

f

F

f

F

f

Fa

y

by

by

bz

bz0 61 0

..

P

P

M

M

M

Mu

n

uy

b ny

uz

b nz

8

91 0.

Page 88: ASD vs LRFD

88

Combined Forces

ASD fa /Fa ≤ 0.15

(ASD H1-1)

LRFD Pu /ϕPn < 0.2

(LRFD H1-1a)

f

F

f

F

f

Fa

a

by

by

bz

bz

1 0.

P

P

M

M

M

Mu

n

uy

b ny

uz

b nz21 0

.

Page 89: ASD vs LRFD

89

Combined Forces

X

Y

Z

Page 90: ASD vs LRFD

90

Combined Forces

• 3D Simple Frame• 3 Bays in X direction 3 @ 15 ft• 2 Bays in Z direction 2 @ 30 ft• 2 Floors in Y direction 2 @ 15 ft

• Loadings• Self weight of the Steel• Self weight of the Slab 62.5 psf• Other dead loads 15.0 psf• Live load on second floor 50.0 psf• Live load on roof 20.0 psf• Wind load in the X direction 20.0 psf• Wind load in the Z direction 20.0 psf

Page 91: ASD vs LRFD

91

Combined ForcesASD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 >< W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Page 92: ASD vs LRFD

92

Combined ForcesLRFD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 >< W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 >< W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 >< W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >< W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 >< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 >< ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Page 93: ASD vs LRFD

93

Combined Forces

ASD

WEIGHT = 46.566 kips

LRFD

WEIGHT = 33.874 kips

Page 94: ASD vs LRFD

94

Deflection DesignASD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >< W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 >< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Page 95: ASD vs LRFD

95

Deflection DesignLRFD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 >< W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 >< W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 >< W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 >< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Page 96: ASD vs LRFD

96

Deflection Design

ASD

WEIGHT = 46.933 kips

LRFD

WEIGHT = 38.345 kips

Page 97: ASD vs LRFD

97

Compare Design without and with Deflection Design

ASDWithout Deflection Design WEIGHT = 46.566 kips

With Deflection Design WEIGHT = 46.933 kips

LRFDWithout Deflection Design WEIGHT = 33.874 kips

With Deflection Design WEIGHT = 38.345 kips

Page 98: ASD vs LRFD

98

Design same example based onCb = 1.0

Code and deflection design with Cb = 1.0

ASDCompute Cb WEIGHT = 46.933 kips

Specify Cb = 1.0 WEIGHT = 51.752 kips

LRFDCompute Cb WEIGHT = 38.345 kips

Specify Cb = 1.0 WEIGHT = 48.421 kips

Page 99: ASD vs LRFD

99

Design Similar example based onCb = 1.0 and LL×5

• Code and deflection design with Cb = 1.0 and increase the live load by a factor of 5.

• Area loads are distributed using two way option instead of one way

• Also change the 2 bays in the Z direction from 30 ft to 15 ft.

ASD WEIGHT = 25.677 kips

LRFD WEIGHT = 22.636 kips

Difference = 3.041 kips

Page 100: ASD vs LRFD

100

Design Similar example based onCb = 1.0 and LL×10

• Code and deflection design with Cb = 1.0 and increase the live load by a factor of 10.

• Area loads are distributed using two way option instead of one way

• Also change the 2 bays in the Z direction from 30 ft to 15 ft.

ASD WEIGHT = 31.022 kips

LRFD WEIGHT = 29.051 kips

Difference = 1.971 kips

Page 101: ASD vs LRFD

101

Stiffness Analysisversus

Nonlinear Analysis• Stiffness Analysis – Load Combinations or Form

Loads can be used.• Nonlinear Analysis – Form Loads must be used.

Load Combinations are not valid.• Nonlinear Analysis – Specify type of Nonlinearity.• Nonlinear Analysis – Specify Maximum Number of

Cycles.• Nonlinear Analysis – Specify Convergence

Tolerance.

Page 102: ASD vs LRFD

102

Nonlinear AnalysisCommands

• NONLINEAR EFFECT• TENSION ONLY

• COMPRESSION ONLY

• GEOMETRY AXIAL

• MAXIMUM NUMBER OF CYCLES

• CONVERGENCE TOLERANCE

• NONLINEAR ANALYSIS

Page 103: ASD vs LRFD

103

Design using Nonlinear AnalysisInput File # 1

1. Geometry, Material Type, Properties, 2. Loading ‘SW’, ‘LL’, and ‘WL’3. FORM LOAD ‘A’ FROM ‘SW’ 1.44. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.65. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.56. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.67. DEFINE PHYSICAL MEMBERS8. PARAMETERS9. MEMBER CONSTRAINTS10. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ $ Activate only the FORM loads

11. STIFFNESS ANALYSIS12. SAVE

Page 104: ASD vs LRFD

104

Design using Nonlinear AnalysisInput File # 2

1. RESTORE2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’3. SELECT MEMBERS4. SMOOTH PHYSICAL MEMBERS5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’6. SELF WEIGHT LOADING RECOMPUTE7. FORM LOAD ‘A’ FROM ‘SW’ 1.48. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.69. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.510. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.611. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’12. STIFFNESS ANALYSIS13. CHECK MEMBERS14. STEEL TAKE OFF15. SAVE

Page 105: ASD vs LRFD

105

Design using Nonlinear AnalysisInput File # 3

1. RESTORE2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’3. SELECT MEMBERS4. SMOOTH PHYSICAL MEMBERS5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’6. SELF WEIGHT LOADING RECOMPUTE7. FORM LOAD ‘A’ FROM ‘SW’ 1.48. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.69. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.510. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6

Page 106: ASD vs LRFD

106

Design using Nonlinear AnalysisInput File # 3 (continue)

1. NONLINEAR EFFECT

2. GEOMETRY ALL MEMBERS

3. MAXIMUM NUMBER OF CYCLES

4. CONVERGENCE TOLERANCE DISPLACEMENT

5. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’

6. NONLINEAR ANALYSIS

7. CHECK MEMBERS

8. STEEL TAKE OFF

9. SAVE

Page 107: ASD vs LRFD

107

General Comparison between AISC LRFD and ASD

Questions