apuntes 5 geología estructural

41
3.- Geología Estructural 3.1 Modelos tectónicos de la corteza terrestre Movimiento de placas Tipos de bordes entre placas Bloques tectónicos intrusivos Orogénesis Estructura interna de la tierra Estructuras geológicas 3.2 Deformación elástica Pliegues Anticlinales Pliegues Sinclinales Pliegues Monoclinales Fallas Diaclasas Cabalgamiento Foliaciones 3.3 Concepto de Rumbo, manteo, inclinación 3.4 Tipos y uso de brújulas geológicas 3.0 Geología Estructural Es parte de la ciencia de la geología que estudia la arquitectura de la tierra. Estudia el desarrollo, los procesos mecánicos, y los movimientos de la corteza terrestre. Estudia las deformaciones y las causas que originaron 3.1 Modelos tectónicos de la corteza terrestre La teoría de la deriva continental evolucionó dando lugar a la teoría de La Tectónica de Placas. Denominamos placas a cada una de las porciones de la litosfera terrestre que se mueve de forma independiente. Poseen forma de casquete esférico y unos límites definidos por procesos intensos de sismicidad y volcanismo. Se les denomina litosféricas pues afectan tanto a la corteza, cómo a la parte superior del manto que se desplaza de forma solidaria con esta.

Upload: ricardo-pinto

Post on 19-Jul-2015

620 views

Category:

Engineering


9 download

TRANSCRIPT

Page 1: Apuntes 5 geología estructural

3.- Geología Estructural

3.1 Modelos tectónicos de la corteza terrestre

Movimiento de placas

Tipos de bordes entre placas

Bloques tectónicos intrusivos

Orogénesis

Estructura interna de la tierra

Estructuras geológicas

3.2 Deformación elástica

Pliegues Anticlinales

Pliegues Sinclinales

Pliegues Monoclinales

Fallas

Diaclasas

Cabalgamiento

Foliaciones

3.3 Concepto de Rumbo, manteo, inclinación

3.4 Tipos y uso de brújulas geológicas

3.0 Geología Estructural

Es parte de la ciencia de la geología que estudia la arquitectura de la tierra.

Estudia el desarrollo, los procesos mecánicos, y los movimientos de la

corteza terrestre.

Estudia las deformaciones y las causas que originaron

3.1 Modelos tectónicos de la corteza terrestre

La teoría de la deriva continental evolucionó dando lugar a la teoría de La Tectónica de Placas. Denominamos placas a cada una de las porciones de la litosfera terrestre que se mueve de forma independiente. Poseen forma de casquete esférico y unos límites definidos por procesos intensos de sismicidad y volcanismo. Se les denomina litosféricas pues afectan tanto a la corteza, cómo a la parte superior del manto que se desplaza de forma solidaria con esta.

Page 2: Apuntes 5 geología estructural

PLACAS TECTONICAS DEL MUNDO

Page 3: Apuntes 5 geología estructural

Los movimientos que afectan a la corteza de la tierra provienen de las siguientes fuerzas:

a) Movimientos tectónicos o de placas

b) Movimientos ascensionales del magma

c) Presión litostática ejercidas sobre los fondos marinos, debido a la acumulación de

grandes masas de sedimentos

d) La acción de corrientes de convección del manto terrestre

a) Movimientos tectónicos o de placas convergentes: Son los movimientos

orogénicos.

OCEANICA vs CONTINENTAL

Ejemplo: Nazca vs Sudamericana

OCEANICA VS OCEANICA

Ejemplo Japón

CONTINENTE VS CONTINENTE

Ejemplo: India vs Asia

Page 4: Apuntes 5 geología estructural

EJEMPLO DE COLISION CONTINENTE VS CONTINENTE: INDIA VS ASIA

b) Movimientos ascensionales del magma

El magma al ser más ligero y más móvil que la roca sólida, tiende a elevarse en la corteza de la tierra, forzado por la presión excesivamente grande de la roca circundante. Con las condiciones que prevalecen durante la formación de montaña, simplemente el magma es comprimido hacia arriba. Cuando llega a muy cerca de la superficies, donde pueden existir extensas fracturas adyacentes, el magma comienza a moverse con mayor facilidad, irrumpe como lava cuando alcanza la superficie, existe la posibilidad que el magma pueda solidificarse a lo largo de su acenso.

Page 5: Apuntes 5 geología estructural

c) Como consecuencia de la posición de los estratos después de haber sufrido

grandes presiones tectónicas: las presiones tectónicas se dieron en zonas

profundas de la corteza terrestre

d) Celdas convectivas desarrolladas en el manto

Como la Tierra no tiene una temperatura uniforme, sino que está más caliente en la

parte central que en la superficie, existe también gradientes de temperatura en el

manto superior, con lo que éste se halla más caliente en la parte baja y más frío en la

parte superior, donde pierde calor por conducción a través de la litosfera. Por ello, y

gracias a su capacidad de actuar como un fluido, se originan unas corrientes de

convección que transportan el material más caliente, y por lo tanto menos denso,

hacia arriba. Este material fluye horizontalmente y, en contacto con la litosfera,

Page 6: Apuntes 5 geología estructural

va perdiendo calor y aumentado su densidad hasta que, por último, cuando esta

suficientemente frío y denso, empieza a descender. Durante el descenso y el recorrido

horizontal en contacto con el manto inferior, el material se calienta de nuevo, hasta que

finalmente vuelve a ascender, cerrando la celda de convección.

TIPOS DE BORDES O LIMITES DE PLACAS Pueden ser de tres tipos según el movimiento relativo de las placas: Límites divergentes o dorsales: el movimiento es de separación. Límites convergentes o fosas: el movimiento es de aproximación. Límites o fallas transformantes: el movimiento es paralelo.

Page 7: Apuntes 5 geología estructural

Límites divergentes Cuando el movimiento de las placas es de separación, se crea un "hueco" en la litosfera, aprovechado por rocas magmáticas para generar nueva corteza oceánica. También se denominan zonas de Dorsal o límites constructivos.

Page 8: Apuntes 5 geología estructural

Limites Convergentes

s

Page 9: Apuntes 5 geología estructural
Page 10: Apuntes 5 geología estructural

El ciclo de Wilson

Tuzo Wilson realizó un modelo teórico que resume la posible evolución de las placas.

Divide las posibles situaciones en etapas nombradas con el nombre de la zona donde

actualmente podemos encontrar esta situación.

Page 11: Apuntes 5 geología estructural

Movimiento de Bloques Tectónicos Intrusivos

Cuerpos intrusivos o plutónicos

El término plutón es el nombre genérico para los cuerpos intrusivos y las rocas que los envuelven, se denominan rocas de campo o rocas de caja. El tamaño y forma de los plutones es generalmente especulativo, porque la erosión expone sólo una pequeña parte del cuerpo, aunque se ha logrado considerable información de cuerpos profundamente erosionados, mediante observaciones de campo, estudios geofísicos y trabajos mineros. Estos han permitido, según su forma específica, agrupar a los cuerpos plutónicos en:

1. laminares 2. Globosos

En las clasificaciones también se tienen en cuenta las relaciones con la roca de campo, ya sea que corten a la estructura, o que se adapten a ella se los llama discordantes o concordantes, respectivamente.

Page 12: Apuntes 5 geología estructural

1. Cuerpos laminares

Los cuerpos laminares se caracterizan por tener una relación longitud/espesor >>>1 y sus lados son superficies con tendencias planas y subparalelas. Poseen alta relación superficie/ volumen, que permite la perdida rápida del calor y por ende su enfriamiento.

Entre los cuerpos plutónicos, se incluyen: lacolitos, facolitos y lopolitos (Fig. 1-1).

Lacolitos: son cuerpos concordantes con un piso plano y un techo arqueado. Las rocas que los constituyen son viscosas (silícicas) lo que limitan el flujo magmático a lo largo de la superficie horizontal y son suficientemente someros como para que puedan levantar las rocas del techo.

Facolitos: son cuerpos de pequeñas dimensiones que se ubican en las charnelas de los pliegues y se adelgazan paulatinamente en los flancos hasta desaparecer. Los tamaños varían desde pocos centímetros a algunos kilómetros. Los ejemplos más característicos se observan en las rocas metamórficas inyectadas Esto permite la formación de texturas características para las rocas de estos cuerpos.

Lopolitos: son cuerpos concordantes intruidos en una cuenca estructural. Son de gran extensión, con forma de “plato” y característicamente están formados por rocas básicas de baja viscosidad.

Figura 1-1. Formas de cuerpos plutónicos. A- Lacolito. B- Facolito. C- Lopolito. D- Stock

Entre los cuerpos laminares, los principales son:

a) Diques, diques anulares, diques cónicos b) Filones capa o Sills c) Chimeneas volcánicas

Page 13: Apuntes 5 geología estructural

El dique es una franja de magma casi vertical o vertical que empuja hacia arriba dentro de las rocas preexistentes. Es quizás el tipo de vulcanismo intrusivo más común. Es discordante,(Fig. 1-3). Un dique es un relleno de fractura que corta al bandeado o a las estructuras de las rocas preexistentes. Las fracturas son conductos ideales para el magma porque le permiten penetrar fácilmente. Estos cuerpos tabulares se presentan donde las rocas son suficientemente frágiles para fracturarse.

Diques maficos (dioríticos) sector de Chañaral, límite del dique con la roca de caja

Fig. 1-3. Dique de pegmatita cortando la estructura de un granito equigranular. Dique de cuarzo y feldespatos alcalinos

Page 14: Apuntes 5 geología estructural

Los sills o filones capas son plutones concordantes que se forman cuando el magma intruye en un ambiente cercano a la superficie. Son plutones tabulares formados cuando el magma es inyectado a lo largo de superficies de estratificación. Un cuerpo tabular intrusivo es simplemente magma que ha rellenado una fractura. Si el cuerpo es concordante con la estructura los sills con disposición horizontal son los más comunes, aunque se sabe ahora que existe todo tipo de orientaciones, incluso verticales. Debido a su grosor relativamente uniforme y a su gran extensión lateral, los Sills son probablemente el producto de lavas muy fluidas. Los magmas que tienen un bajo contenido de sílice son más fluidos, por eso la mayoría de los Sills está compuesta por basaltos. Un filón capa o Sills se desarrolla cuando el magma aprovecha los planos de debilidad de sedimentos, u otras foliaciones y se inyecta en las mismas.

El emplazamiento de un sill exige que la roca sedimentaria situada encima de él sea levantada hasta una altura equivalente al grosor de la masa intrusiva. Aunque esto es una tarea formidable, en ambientes superficiales a menudo requiere menos energía que la necesaria para forzar el ascenso del magma a la distancia que falta hasta alcanzar la superficie. Por consiguiente, los Sills se forman sólo a poca profundidad, donde la presión ejercida por el peso de las capas de rocas situadas encima es pequeña. Aunque los sills se introducen entre capas, pueden ser localmente discordantes. Los grandes sills atraviesan con frecuencia las capas sedimentarias y retoman su naturaleza concordante en un nivel más alto.

Fig. 1-2. Filones capa (sills) de pegmatitas. Observar la concordancia con la estructura metamórfica, así como las deformaciones plásticas sufridas.

Page 15: Apuntes 5 geología estructural

Los diques y filones capas pueden tener espesores desde pocos milímetros a más de un kilómetro, aunque comúnmente los observamos en el rango de las decenas de metros.

Aunque la mayoría de los diques y filones capa se emplazan durante un único evento, algunos presentan inyecciones múltiples, que puede tener lugar porque las rocas al enfriarse se contraen y desarrollan zonas de debilidad que permiten el ingreso de un nuevo pulso de magma. Un cuerpo se describe como múltiple, si las fases de inyección son todas de la misma composición y compuesto si más de un tipo de roca está presente.

Los diques y filones capa, puede presentarse como cuerpos solitarios, pero los diques en especial, típicamente se presentan en series, que reflejan los esfuerzos regionales que desarrollan fracturas en las cuales se inyecta el magma y se los denomina enjambre de diques, los que suelen tener desarrollo subparalelo. Los diques, también suelen desarrollarse como enjambres radiales en los alrededores de las chimeneas volcánicas, que en su ascenso producen fracturas radiales, por las que puede ascender el magma.

Otra forma de presentarse es con formas concéntricas, que se desarrollan por encima de los plutones. Los cuales se manifiestan como diques anulares y diques cónicos.

Los diques anulares se producen cuando la presión ejercida por el magma es menor que la presión de material sobreyacente.

Los diques cónicos, se forman cuando la presión del magma es mayor que la presión confinante de las rocas sobrepuestas.

Los diques anulares y los diques cónicos pueden ocurrir conjuntamente y serían el resultado de diferentes fases de una intrusión.

Fig. 1-4. Esquema de desarrollo de diques anulares en un cuerpo plutónico diferenciado.

Page 16: Apuntes 5 geología estructural

Cuerpos globosos

Los cuerpos globosos, tienden a desarrollar formas groseramente equidimensionales, poseen en general baja relación superficie/volumen, por lo que la irradiación de calor tiende a ser baja, permitiendo un enfriamiento lento y de larga duración. Entre los cuerpos globosos describimos: plutones, stocks y batolitos.

Plutones: este término fue usado por Pitcher (1993) para cualquier cuerpo grande, no tabular, y restringe el término batolito para agrupación de múltiples plutones que se desarrollan en zonas orogénicas.

Stocks: son plutones con forma cilíndrica, que ocupan un área de menos de 100 km2. Estos conductos plutónicos cilíndricos en Europa son denominados plugs. Y la parte expuesta de un plug, después de la erosión del material volcánico superior se denomina neck-volcánico.

Batolitos: son cuerpos plutónicos con superficies de exposición superiores a 100 km2. Cuando la parte superior de un batolito comienza a ser erosionado, aparecen afloramientos restringidos de granito, separados entre si por roca de caja, que se denominan cúpulas, cuando la evidencias geofísicas o el mapeo sugieren que un gran intrusivo se encuentra por debajo. Los batolitos constituyen los mayores cuerpos intrusivos y su composición corresponde a rocas silícicas. Los batolitos se forman por la actividad magmática relativamente continua en espacio y tiempo, con pulsos de variada magnitud que se suceden en forma intermitente, por lo que no constituyen un tipo de intrusión. El desarrollo de los batolitos está estrechamente ligado a los procesos geológicos regionales de tectónica de placas, ya sean procesos de subducción o de divergencia.

Según la relación con los procesos tectónicos podemos clasificar a los batolitos en: orogénicos, post-orogénicos y anorogénicos.

Batolitos orogénicos: son los que se desarrollan en los arcos magmáticos desarrollados en zonas de subducción. Como por ejemplo los batolitos andinos de Chile y Perú. Composicionalmente se caracterizan por granodioritas y tonalitas, metaluminosas y calcoalcalinas. Con carácter subordinado también se encuentran granitos, dioritas y gabros.

Batolitos post-orogénicos: son los que se emplazaron con posterioridad a la orogénesis y su consolidación es post-deformación. Con posterioridad a un período orogénico se produce la relajación mecánica, pasando de la compresión a la extensión, lo que produce el colapso orogénico, en el que la actividad magmática puede ser intensa. Es en este período en el que se producen los batolitos post-orogénicos. La composición es monzogranítica y granodiorítica. Los plutones intruyen aprovechando fracturas y los más tardíos son de sección circular.

Page 17: Apuntes 5 geología estructural

Fig. 1-5. Vista afloramiento Batolito

Batolitos anorogénicos: tienen lugar en el interior de las placas y su emplazamiento tiene lugar en corteza rígida, con bajo gradiente geotérmico. Se asocian con estructuras de rift, típicas de ambiente divergente. Constituyen complejos intrusivos centrados con notables diques anulares. Son generalmente de dimensiones menores que las otras dos categorías citadas. Las composiciones intermedias a silícicas tienen tendencias alcalinas y peralcalinas, constituyendo a menudo asociaciones bimodales, con participación de rocas básicas y ácidas. También constituyen complejos alcalinos máficos, que incluyen carbonatitas y sienitas Los plutones son generalmente de secciones circulares y muestran abundantes diques anulares.

Intrusivos compuestos. A: Secuencia intrusiva múltiple que va de 1 a 3. Los sucesivos pulsos aprovechan la zona más caliente para intruirse, mientras que las zonas de bordes están más frías y rígidas. B: Secuencia intrusiva múltiple que se inicia con un primer pulso (1), seguido por el 2 y finalmente el 3, ocasionados por colapsos progresivos. C: Intrusivo con borde de enfriamiento mostrando asimilación parcial de un dique anterior. D: cristalización centrípeta de un Plutón. (Modificado de Mc Birney 1984).

Page 18: Apuntes 5 geología estructural

Orogénesis (Orogenia)

La orogénesis u orogenia es el conjunto de procesos geológicos que se producen en los

bordes de las placas tectónicas y que dan lugar a la formación de una cadena montañosa

(orógeno).

Los orógenos son estructuras lineales, situadas en el límite entre una placa continental y

otra oceánica, o bien en la unión de dos placas continentales. Presentan pliegues, mantos

de corrimiento y fallas inversas. En la capa superficial pueden contener sedimentos de

origen marino. Estas características nos indican cómo se produce la orogénesis.

En una cuenca oceánica, limitada por el continente, se acumulan los sedimentos.

Después, los movimientos convergentes de las placas adyacentes provocan la

deformación y el metamorfismo de los materiales. Mientras una placa se introduce bajo la

otra, la corteza sufre un engrosamiento y emerge la cadena montañosa, que se incorpora

al continente.

Durante la orogénesis descrita puede haber manifestaciones volcánicas, como ocurre en

la formación de los orógenos térmicos; éste es el caso de los Andes. En los orógenos

mecánicos o de colisión, como los Alpes, no aparecen volcanes y sí grandes mantos de

pliegues y zonas de engrosamiento porque una placa continental se sitúa sobre la otra.

Se llama orogenia a la época de la historia de la Tierra en la que se levantan montañas.

La Alpina y la Andina están teniendo lugar en los últimos 65 millones de años. La

Caledoniana y la Herciniana tuvieron lugar hace más de 200 millones de años, al

comienzo y al final de la Era Paleozoica.

Page 19: Apuntes 5 geología estructural

ESTRUCTURA INTERNA DE LA TIERRA Características de la tierra

La rotación es el movimiento que realiza la Tierra girando sobre su propio eje de oeste a este. Da una vuelta completa en 24 horas que constituyen nuestro día completo. La velocidad de rotación no es la misma en todos los puntos del planeta: 1.700 km/h en el Ecuador 850 km/h a 60º de latitud. Nula en los polos. La traslación es el movimiento que realiza la Tierra girando alrededor del Sol a una velocidad es de 30 km/seg. Da una vuelta completa en 365 días y 6 horas. Por eso, cada cuatro años se suman las 6 horas formando un día completo que se agrega al mes de febrero, obteniéndose un año bisiesto Estructura en Capas Capas de composición Corteza Manto Núcleo Capas Mecánicas:

- Litosfera (corteza y manto) - Astenosfera (manto) - Mesosfera (manto) - Núcleo externo - Núcleo interno

Masa (1024 kg) 5.9736

Volumen (1010 km3) 108.321

Radio Ecuatorial (km) 6378

Radio Polar (km) 6356

Radio Medio Volumétrico (km) 6371

Radio del Núcleo (km) 3485

Densidad promedio (kg/m3) 5520

Gravedad en la superficie (m/s2) 9.78

Page 20: Apuntes 5 geología estructural

Tiene un espesor de unos 100 kilómetros, mas hacia el interior, encontramos el manto, líquido en su mayor parte y compuesto de elementos como sílice y aluminio. Es el magma que aflora en los volcanes.

En el centro encontramos el núcleo que se divide en externo de carácter líquido y la parte más interna sólida, constituida principalmente por hierro y níquel. Esta parte es fuertemente magnética y es la que origina el campo magnético de la tierra.

Puede observarse que por ser líquido el espacio entre la corteza y el núcleo existe la posibilidad de desplazamientos relativos entre uno y otro. Nuevos descubrimientos indican que el núcleo gira libremente y en forma independiente de la corteza, y por razones desconocidas, con una inclinación de algunos grados con respecto al eje de la corteza. Es importante anotar que los fenómenos geomagnéticos tienen asiento físico en el núcleo y no en la corteza.

La inclinación del eje de rotación terrestre permite, al aumentar su ángulo, temperaturas más extremas en ambos hemisferios (veranos más cálidos e inviernos más fríos). Actualmente, el eje de la Tierra está desviado 23,44 grados con respecto a la vertical; esta desviación fluctúa entre 21,5 y 24,5 grados a lo largo de un periodo de 41.000 años.

Desplazamientos del polo

Cuando hablamos de un desplazamiento del polo, en realidad, estamos expresando mal

el asunto. No es que el polo o lugar geográfico donde se interceptan la corteza y el eje de

giro vaya a cambiar de lugar en el espacio. Lo que sucede es que como se dijo

anteriormente, la corteza de la tierra puede desplazarse libremente con respecto al núcleo

y desplazarse a un nuevo lugar donde las fuerzas en equilibrio produzcan una situación

más estable. Las fuerzas que intervienen en este proceso son calculables en cierta forma.

Dependen principalmente del equilibrio de las masas de hielo en ambos polos.

En estos días tenemos un desequilibrio evidente, por la mayor intensidad del invierno en

el hemisferio norte, donde se deposita en la actualidad una gran cantidad de hielo contra

un verano intenso en el hemisferio sur, que reforzado por el agujero en la capa de ozono

ha permitido el deshielo de grandes zonas de la Antártida. Este fenómeno se ha dado ya

varias veces en la anterioridad y es estudiado por una ciencia que se denomina

paleomagnetismo. Mediante el estudio de muestras de lava de volcanes que se

encuentran en erupción en el momento del desplazamiento del polo, es posible

determinar mediante la dirección de cristalización de las partículas magnéticas,

donde se encontraba el polo magnético antes, en y después de la erupción.

El último cambio del polo se dio hace 12500 años, y existen huellas palpables del mismo

en uno de los volcanes de Norte América, (Steen Mountain, Oregon USA. Ver NATURE,

Page 21: Apuntes 5 geología estructural

Vol. 374 20 Abril de 1995 pag. 687-692) que coincidentemente se hallaba en erupción. En

esta ocasión, el polo se desplazó 27.5 grados o sea unos 3000 Km. en un espacio de 7

días, para una velocidad promedia de desplazamiento de 17.8 km./hr, habiéndose

registrado cambios tan altos como de 6.2º por día.

Durante los pasados 100.000 años, han habido cuatro desplazamientos grandes del polo

sembrado leyendas de todo tipo en las culturas ancestrales.

Visión dinámica: La tierra como motor térmico Dinámica del núcleo: magnetismo terrestre Dinámica del manto: Convección Dinámica de la litosfera: Movimiento de placas

Page 22: Apuntes 5 geología estructural

Objetivo de la geología estructural: Estudio de la estructura de la corteza terrestre o de una determinada región.

Para que se necesita un levantamiento tectónico? a) Definir las fuerzas que estaban presente en las rocas, definir la simetría de las foliaciones o b) Caracterización de las fuerzas c) Cronología de los fases tectónicos

Donde se usa la información de la tectónica:

a) Génesis de los yacimientos: Muchos depósitos tienen un origen tectónico - o por lo menos el ambiente tectónico juego un papel muy importante. La estructura tectónica como formador de un depósito. En los yacimientos del tipo vetiforme es muy importante,

b) Deformación tectónica de los depósitos después de la génesis: Definición de desplazamientos - en qué manera y magnitud afectó una fase tectónica el yacimiento ya formado.

c) Geotécnica: Las estructuras tectónicas también tienen su "cara negra". Derrumbes, caída de bloques, planchones, zonas de poca estabilidad, cuñas etc. tienen un origen sumamente tectónico.

Trabajos que se realizan: a) Levantamiento de las foliaciones (planos geológicos) b) Análisis de la deformación tectónica de las rocas presentes c) Reconocimiento de las estructuras tectónicas en un sector (fallas, diaclasas) d) Interpretación de las estructuras - desarrollo de un modelo tectónico.

1. Planos geológicos

En la mayoría las rocas de la corteza terrestre muestran varios tipos de planos geológicos. Existen en general dos tipos de planos:

a) Foliaciones primarias

Tienen su origen antes de la litificación, es decir durante la deposición. Ejemplos: Estratos, Flujo magmático.

b) Foliaciones secundarias

Tienen su origen después de la litificación: Todos los planos cuales se han formado a causa de fuerzas tectónicas presentes en la corteza terrestre. Ejemplos: Diaclasas, Fallas.

Page 23: Apuntes 5 geología estructural

Para estudios en la geología estructural es muy importante diferenciar entre foliaciones primarias y estructuras generadas por fuerzas tectónicas (foliaciones secundarias).

Foliaciones secundarias: Diaclasas, fallas, esquistosidad

1) Diaclasas (juntas; inglés: joints): Fracturas sin desplazamiento transversal detectable, solo con poco movimiento extensional. Son las fracturas más frecuentes en todos los tipos de rocas. En la superficie son más frecuentes como en altas profundidades. Tienen una extensión de milímetros, centímetros hasta pocos metros. Normalmente existen en una masa rocosa grupos de diaclasas y/o sistemas de diaclasas. Los grupos de diaclasas son estructuras paralelas o subparalelas. Los sistemas de diaclasas se cortan entre sí en ángulos definidos y tienen una cierta simetría. Algunas diaclasas muestran un relleno (secundario) de calcita, cuarzo, yeso u otros minerales.

Aparte de diaclasas tectónicas existen diaclasas de origen no-tectónico:

a) Fisuras de enfriamiento: Tienen su origen durante el enfriamiento de una roca

magmática (Materiales o rocas calientes que ocupan más espacio con la misma

cantidad de materia fría).

Foto: Columnas de enfriamiento en rocas volcánicas de la Formación Monardes en el sector "El

Patón", Región Atacama,

Page 24: Apuntes 5 geología estructural

b) Grietas de desecación: Durante la desecación de un barro o lodo bajo condiciones

atmosféricas hay una disminución del espacio ocupado y la superficie se rompe en

polígonos.

c) Fisuras de tensión gravitacional: Sobre estratos inclinados se puede observar bajo

algunas condiciones un deslizamiento de las masas rocosas hacia abajo. Al comienzo

de este fenómeno se abren grietas paralelas al talud

2) Fallas: Son la rotura en las rocas a lo largo de la cual ha tenido lugar movimiento

o desplazamiento. Este movimiento produce un plano de falla o una zona de falla. Las zonas de fallas tienen un ancho que va desde milímetros hasta cientos de metros. Los movimientos o desplazamientos (salto total) pueden ser pequeño (milímetros) hasta muy grandes (cientos de kilómetros). Algunas fallas muestran un relleno de calcita, yeso o sílice.El movimiento en las fallas produce algunas estructuras o rocas especiales: Estrías, arrastres, brecha de falla, milonitas y diaclasas plumosas. Estas estructuras se pueden usar como indicadores directos de fallas.

Page 25: Apuntes 5 geología estructural

3) Esquistosidad: En condiciones extremas, por ejemplo, durante el metamorfismo,

las rocas se rompen en tablas. Este fracturamiento se repite en una frecuencia entre 0,5 hasta 3 centímetros. Las rocas se llaman esquistos, pizarras o filitas. Durante este proceso generalmente ocurre una orientación de varios minerales, especialmente de las micas.

Esquistos: Rocas metamórficas con fuerte clivaje producido por un metamorfismo de contacto. Los esquistos tienen micas de tamaño visible. En contrario en las filitas las micas no alcanzan tamaños mayores de 0,02mm

3.2 Deformación Elástica Las Deformaciones: Los Pliegues y las Fallas Según su naturaleza y condiciones de presión y temperatura, los materiales geológicos pueden reaccionar de dos formas diferentes ante los esfuerzos (presiones dirigidas) de la tectónica de placas. Plástica: Origina la formación de pliegues. Rígida: Tiene lugar la rotura y formación de una falla. Los Pliegues En los pliegues podemos definir una serie de elementos: Los flancos (cada una de las Superficies que forman el pliegue), la charnela (línea de unión de los dos flancos), y el plano o superficie axial (plano formado por la unión de las charnelas de todos los estratos).

Page 26: Apuntes 5 geología estructural

En atención a su morfología los pliegues se clasifican como Anticlinales, cuando

presentan en su núcleo materiales más antiguos y Sinclinales cuando presentan en su

núcleo materiales más recientes.

EJEMPLO DEFORMACION SINCLINAL

Page 27: Apuntes 5 geología estructural

EJEMPLO DEFORMACION ANTICLINAL

Page 28: Apuntes 5 geología estructural

Las Fallas Cuando se supera la capacidad de deformación plástica de una roca, se fractura, en este caso, hay dos bloques separados. . GRAFICO ESFUERZO VS DEFORMACION

Puede ser de dos tipos: fallas y diaclasas Falla: fractura en las que se produce el desplazamiento de un bloque con respecto a otro. Por el plano de la falla. Diaclasa: es cuando los bloques no se desplazan uno con respecto al otro y forman grietas. En las fallas podemos definir una serie de elementos geométricos: Plano de falla: superficie de fractura sobre laque se produce el desplazamiento Labios de falla: cada una de boques en que queda dividido el terreno Salto de falla: medida de desplazamiento relativo entre los labios.

Page 29: Apuntes 5 geología estructural

En atención a su morfología los fallas se clasifican como: Normales, inversas, de desgarre o dirección

FALLA NORMAL O DIRECTA

1. El plano de falla buza hacia el labio hundido

2. Se origina por fuerzas de tracción

FALLA INVERSA

1. El plano de falla buza hacia el labio levantado

2. Se origina por esfuerzos de compresión

Page 30: Apuntes 5 geología estructural

FALLA DE DESGARRE o DIRECCION

1. No hay labio levantado ni hundido

2. Hay un desplazamiento relativo de los bloques

GRABEN O FOSAS TECTONICAS: Son depresiones elongadas, limitadas por fallas

directas, es decir, por dos fallas normales paralelas con inclinación que se da en un

ambiente de tectónica expansiva.

HORST O PILARES TECTONICOS: Son elevaciones limitadas por fallas, que producen

una topografía de tipo lineal.

FALLAS DE CABALGAMIENTO: Son grandes planos de fallas horizontales con

desplazamientos que pueden alcanzar muchos kilómetros como por ejemplo, Himalaya,

los Alpes, Apalaches, CORDILLERA DE LOS ANDES.

FALLA TRANSFORMANTE: La corteza no se genera ni se destruye solo de desliza, como

ejemplo la Falla de SAN ANDRES.

Page 31: Apuntes 5 geología estructural
Page 32: Apuntes 5 geología estructural

FALLA NORMAL

FALLA INVERSA

Page 33: Apuntes 5 geología estructural

PLIEGUE SINCLINAL Y ANTICLINAL

PLIEGUE MONOCLINAL

Page 34: Apuntes 5 geología estructural
Page 35: Apuntes 5 geología estructural
Page 36: Apuntes 5 geología estructural

3.3 Concepto de Rumbo, manteo, inclinación

Para definir la orientación de un plano (estrato, falla, diaclasa) en la naturaleza matemáticamente se usan el rumbo, la dirección de inclinación y el manteo. Para describir la orientación de un plano geológico matemáticamente se necesitan dos (o tres) propiedades:

a) Dirección de inclinación b) Rumbo c) Manteo (o buzamiento)

Manteo: es la Inclinación del plano El rumbo: Siempre es la línea perpendicular al manteo.

Dirección de inclinación: hacia donde el plano de inclinación

Para definir la orientación de un plano se

necesita la dirección de inclinación y el

manteo; o el rumbo, manteo y la dirección

de inclinación. La dirección de inclinación

(ingl. Dip Direction) marca hacia donde se

inclina el plano, o la proyección horizontal

de la línea del máximo pendiente.

El rumbo es la línea horizontal de un plano

(véase abajo). El manteo o buzamiento

(ingl. dip) mide el ángulo entre el plano y el

plano horizontal.

El rumbo se puede definir como línea que

resulta por la intersección del plano

geológico por un plano horizontal.

Se puede imaginarse una superficie de

agua (que es siempre horizontal), se

hunde el plano hasta la mitad, la línea

hasta donde se mojo el plano será el

rumbo.

Page 37: Apuntes 5 geología estructural

Un sencillo, pero muy atractivo dibujo para graficar el rumbo (s-t) y la dirección de inclinación (f-a) de estratos. . 3.4 Tipos y uso de brújulas geológicas

Tipos de Brújulas Para tomar los datos tectónicos de planos geológicos en terreno se usan la brújula. Existen dos tipos de brújulas para tomar las medidas: La brújula del tipo Brunton (generalmente para mediciones con el rumbo) y la brújula tipo Freiberger (generalmente para mediciones con la dirección de inclinación). La brújula "Geo-Brunton" es una combinación de las dos tipos anteriormente mencionado.

La brújula en general: Una brújula mide la dirección del campo magnético terrestre. La aguja se orienta de acuerdo de la orientación del campo magnético del sector donde se ubica. Eso significa en términos teoréticos que el aparato "brújula" se compone de dos sistemas principales independientes: Una agua y el "cuerpo" - la cáscara con la escala etc. Interesante es que (sí pensamos bien) la aguja es la parte fija en una brújula. La aguja siempre marca Norte-Sur (sin contar movimientos de arreglo). la parte móvil "suelta" en una brújula es el cuerpo, la cáscara.

La escala de las brújulas normalmente es azimutal - es decir entre 0º hasta 360º o entre 0g hasta 400g. La escala azimutal tiene que ser orientada en el sentido contrarreloj - eso implique que este (E) y oeste (W) se ve cambiado. La escala del sentido contrarreloj permite una lectura directa, azimutal. Es decir el valor donde apunta la aguja es el valor final.

Foto: A= Escala azimutal contrarreloj

Page 38: Apuntes 5 geología estructural

La aguja de la brújula necesita generalmente un contrapeso: El campo magnético tiene una componente vertical de acuerdo a la distancia hacia los polos. Entonces en latitudes entre 15º hasta 90º del hemisferio norte y sur la aguja muestra una fuerte inclinación hacia arriba y choca con el vidrio de protección de la brújula. Para que la aguja se ubique horizontal se usa un contrapeso. Durante viajes del hemisferio norte a sur y viceversa hay que cambiar el peso de un lado al otro.

En algunas partes del mundo hay que aplicar una permanente corrección azimutal a causa de la distancia entre polo magnético y polo geográfico. (los polos magnéticos se ubican bastante lejos del eje rotacional de la tierra). Este corrección se puede hacer directamente en la brújula - girando la rosa (escala azimutal) de acuerdo del error (recomendado). El valor normalmente sale en las cartas topográficas correspondientes. Pero también se puede corregir los valores después - en el programa computacional. Las brújulas profesionales generalmente tienen un botón para liberar o fijar la aguja. Una aguja fijada es un poco más protegido y no se suelta de su eje durante fuertes movimientos. (En la foto "D")

Brújula del tipo Brunton:

La brújula "Brunton" se usa generalmente para mediciones del rumbo y manteo. Es decir mediciones del tipo "medio circulo" y del " tipo americano". También mediciones del concepto "circulo completo" son posible. La brújula "Brunton" existe en la versión azimutal (de 0 hasta 360º) y en la versión de cuadrantes (cada cuadrante tiene un rango entre 0-90º) el "rumbero".

La brújula Brunton tiene un clinómetro, un botón para fijar/liberar la aguja. La escala es azimutal / contrarreloj. Adentro de la escala un poco escondido se nota la escala del clinómetro y las niveles.

Uso de las brújulas para planos geológicos

Brunton normal notación: americano

detallado notación americano

notación circulo completo

Page 39: Apuntes 5 geología estructural

B) Brunton para tipo americano (más detalles)

1. La brújula está en orientación del rumbo, junto a las rocas 2. La burbuja del nivel esférico tiene que ser en el centro 3. La aguja tiene que ser libre 4. Se toma el valor del rumbo N.....E o N.....W (véase especial) 5. Se pone la brújula perpendicular al rumbo 6. Se usa el clinómetro 7. La burbuja del nivel tubular tiene que ser en el centro 8. Se toma la lectura del clinómetro como manteo 9. Se estima la dirección de inclinación en letras (N,NW,E,SE,S,SW,W,NW) véase fotos: medición del rumbo - medición del manteo - medición de la dirección de inclinación

Page 40: Apuntes 5 geología estructural
Page 41: Apuntes 5 geología estructural