andrzej pownuk, the university of texas at el paso

118
Modeling of Uncertainty in Computational Mechanics Andrzej Pownuk, The University of Texas at El Paso http://andrzej.pownuk.com

Upload: dorcas-hodges

Post on 18-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Andrzej Pownuk, The University of Texas at El Paso

Modeling of Uncertainty in Computational Mechanics

Andrzej Pownuk, The University of Texas at El Paso

http://andrzej.pownuk.com

Page 3: Andrzej Pownuk, The University of Texas at El Paso

Modeling errors

Approximation errors

Rounding errors

Uncertainty

Human errors

Errors in numerical computations

3

2 2

''''

1 ( ')

y M My

EJ EJy

( )b

ii i

a

f x dx w f

Page 4: Andrzej Pownuk, The University of Texas at El Paso

Truss structure

1

23

4

5

67

8

9

1 0

11

1 2

1 3

1P 2P 3P

1 4

1 5

LLLL

L

Page 5: Andrzej Pownuk, The University of Texas at El Paso

Perturbated forces

No 1 2 3 4 5 6 7 8

ERROR % 10 9,998586 10,00184 10,00126 60,18381 11,67825 9,998955 31,8762

No 9 10 11 12 13 14 15

ERROR % 10,00126 11,67825 60,18381 9,998955 10,00184 10 9,998586

0P P P

5% uncertainty

1

23

4

5

67

8

9

1 0

11

1 2

1 3

1P 2P 3P

1 4

1 5

LLLL

L

Page 6: Andrzej Pownuk, The University of Texas at El Paso

Interval equations

ax bExample

[1,2] [1,4]x

?x

b

xa

Page 7: Andrzej Pownuk, The University of Texas at El Paso

http://en.wikipedia.org/wiki/Interval_finite_element

Interval FEM

Page 8: Andrzej Pownuk, The University of Texas at El Paso

Differences between intervals and uniformly distributed random variables

p pp

p

Interval

Random variable1

p p

1

Page 9: Andrzej Pownuk, The University of Texas at El Paso

Differences between intervals and uniformly distributed random variables

1 ... , ,m i ii i

p p n p p p p

width n n p p n width p p

Intervals

Random variables

2 2n i

i

n n p

width n n width p p

Page 10: Andrzej Pownuk, The University of Texas at El Paso

Differences between intervals and uniformly distributed random variables

int int( ) ( )

( ) ( )rand rand

width n n widthn

width n n width

p p

p p

Example n=100

int int( ) ( )100 10

( ) ( )rand rand

width n n width

width n n width

p p

p p

Page 11: Andrzej Pownuk, The University of Texas at El Paso

Partial safety factors for materials

- design value - characteristic value

ud

m

SS

dS

cS

Page 12: Andrzej Pownuk, The University of Texas at El Paso

Partial safety factor for materials, account for (i) the possibility of unfavourable deviation of

material strength from the characteristic value. (ii) the possibility of unfavourable variation of

member sizes. (iii) the possibility of unfavourable reduction in

member strength due to fabrication and tolerances. (iv) uncertainty in the calculation of strength of

the members.

Page 13: Andrzej Pownuk, The University of Texas at El Paso

Partial safety factors for loads

d f cF F

- design value - characteristic value

dF

cF

Page 14: Andrzej Pownuk, The University of Texas at El Paso

Limit state is a function of safety factors

L Q TR D L Q T

, 0iL

0L Q TR D L Q T

Page 15: Andrzej Pownuk, The University of Texas at El Paso

Calibration of safety factors

0iL

0f fP P

fP - probability of failure

Page 16: Andrzej Pownuk, The University of Texas at El Paso

Probability of failure = = (number of safe cases)/(number of all

cases)

Probability of failure

structure fail often=

structure is not safe

( ) 0

f X

g x

P f x dx

Page 17: Andrzej Pownuk, The University of Texas at El Paso

Probabilistic methods

How often the stucture fail?

Non-probabilistic methods (worst case design)

How big force the structure is able to survive?

Probabilistic vs nonprobabilistic methods

Page 18: Andrzej Pownuk, The University of Texas at El Paso

Probabilistic design

( , ) 0

( , ) 0 ,f

g x

P P g x f x dx

0f fP P

Page 19: Andrzej Pownuk, The University of Texas at El Paso

Elishakoff I., 2000, Possible limitations of probabilistic methods in engineering. Applied Mechanics Reviews, Vol.53, No.2,pp.19-25

Does God play dice?

Page 20: Andrzej Pownuk, The University of Texas at El Paso

1:09

20/

153

More complicated safety conditions

lim it s ta te

uncerta in lim it s tate

1

2

crisp sta te

uncerta in sta te

Page 21: Andrzej Pownuk, The University of Texas at El Paso

21/

53

Uncertain parameters

Set valued random variable

Upper and lower probability

nRhh :

AhPAPl :

AhPABel :

Page 22: Andrzej Pownuk, The University of Texas at El Paso

Design under uncertainty

0( )Pl P

Page 23: Andrzej Pownuk, The University of Texas at El Paso

1:09 23/153

Uncertain parameters

Nested family of random sets

Nhhh ...21

}:{ hxPxF x

xF

1h

2h

3h

1F

2F

3F

0x

0xF

Page 24: Andrzej Pownuk, The University of Texas at El Paso

Uncertain parameters Fuzzy sets

0F

0F1F

1F

1

0

xF

F

F x

xy Fxfyx

Ff

:sup

Extension principle

Page 25: Andrzej Pownuk, The University of Texas at El Paso

Design with fuzzy parameters

( , ) 0Fg x

: ( , ) 0,g x x x

max :

Page 26: Andrzej Pownuk, The University of Texas at El Paso

http://andrzej.pownuk.com/fuzzy.htm

Fuzzy approach (the use of grades)is similar to the concept of safety factor.

Because of that fuzzy approach is very important.

Fuzzy sets and probability

Page 27: Andrzej Pownuk, The University of Texas at El Paso

Alpha cut method

max : , F x x F F

, max : ( , ) R c p p c R

Page 28: Andrzej Pownuk, The University of Texas at El Paso

Interval risk curve for different uncertainty

Page 29: Andrzej Pownuk, The University of Texas at El Paso

Interval risk curve for different uncertainty

Page 30: Andrzej Pownuk, The University of Texas at El Paso

Interval risk curve for different uncertainty

Page 31: Andrzej Pownuk, The University of Texas at El Paso

Bayesian inference (subjective probability)

||

P E H P HP H E

P E

P H - is called the prior probability of H that was inferred before new evidence, E, became available

|P E H - is called the conditional probability of seeing the evidence E if the hypothesis H happens to be true. It is also called a likelihood function when it is considered as a function of H for fixed E.

P E - marginal probability

|P H E - is called the posterior probability of H given E.

Page 32: Andrzej Pownuk, The University of Texas at El Paso

Cox's theorem

Cox's theorem, named after the physicist Richard Threlkeld Cox, is a derivation of the laws of probability theory from a certain set of postulates. This derivation justifies the so-called "logical" interpretation of probability. As the laws of probability derived by Cox's theorem are applicable to any proposition, logical probability is a type of Bayesian probability. Other forms of Bayesianism, such as the subjective interpretation, are given other justifications.

Page 33: Andrzej Pownuk, The University of Texas at El Paso

Rough sets, soft sets(sets with features)

First described by Zdzisław I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. In the standard version of rough set theory (Pawlak 1991), the lower- and upper-approximation sets are crisp sets, but in other variations, the approximating sets may be fuzzy sets.

Page 34: Andrzej Pownuk, The University of Texas at El Paso

Interval and set valued parameters

Page 35: Andrzej Pownuk, The University of Texas at El Paso

Interval parameters

,p p p

( , ) 0g p

: ( , ) 0,g p p θ p

Design with the interval parameters

Page 36: Andrzej Pownuk, The University of Texas at El Paso

R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs N. J., 1966

Neumaier A., 1990, Interval methods for systems of equations, Cambridge University Press, New York

Ben-Haim Y., Elishakoff I., 1990, Convex Models of Uncertainty in Applied Mechanics. Elsevier Science Publishers, New York

Buckley J.J., Qy Y., 1990, On using a-cuts to evaluate fuzzy equations. Fuzzy Sets and Systems, Vol.38,pp.309-312

Important papers

Page 37: Andrzej Pownuk, The University of Texas at El Paso

Köylüoglu H.U., A.S. Çakmak, and S. R. K. Nielsen (1995). “Interval Algebra to Deal with Pattern Loading of Structural Uncertainties,” ASCE Journal of Engineering Mechanics, 11, 1149–1157

Important papers

Page 38: Andrzej Pownuk, The University of Texas at El Paso

Rump S.M., 1994, Verification methods for dense and sparse systems of equations. J. Herzberger, ed., Topics in Validated Computations. Elsevier Science B.V.,pp.63-135

Important papers

Page 39: Andrzej Pownuk, The University of Texas at El Paso

Muhanna in the paper Muhanna R.L., Mullen R.L., Uncertainty in Mechanics Problems - Interval - Based Approach. Journal of Engineering Mechanics, Vol.127, No.6, 2001, 557-556

E.Popova, On the Solution of Parametrised Linear Systems. W. Kraemer, J. Wolff von Gudenberg (Eds.): Scientific Computing,Validated Numerics, Interval Methods. Kluwer Acad. Publishers, 2001, pp. 127-138.

Important papers

Page 40: Andrzej Pownuk, The University of Texas at El Paso

I. Skalna, A Method for Outer Interval Solution of Systems of Linear Equations Depending Linearly on Interval Parameters, Reliable Computing, Volume 12, Number 2, April, 2006, Pages 107-120

Important papers

Page 41: Andrzej Pownuk, The University of Texas at El Paso

Akpan U.O., Koko T.S., Orisamolu I.R., Gallant B.K., Practical fuzzy finite element analysis of structures, Finite Elements in Analysis and Design, 38 (2000) 93-111

McWilliam, Stewart, 2001 Anti-optimisation of uncertain structures using interval analysis Computers and Structures Volume: 79, Issue: 4, February, 2001, pp. 421-430

Important papers

Page 42: Andrzej Pownuk, The University of Texas at El Paso

Pownuk A., Numerical solutions of fuzzy partial differential equation and its application in computational mechanics, FuzzyPartial Differential Equations and Relational Equations: Reservoir Characterization and Modeling (M. Nikravesh, L. Zadeh and V. Korotkikh, eds.), Studies in Fuzziness and Soft Computing, Physica-Verlag, 2004, pp.308-347

Important papers

Page 43: Andrzej Pownuk, The University of Texas at El Paso

Neumaier A., Clouds, fuzzy sets and probability intervals, Reliable Computing 10: 249–272, 2004

http://andrzej.pownuk.com/IntervalEquations.htm

Important papers

Page 45: Andrzej Pownuk, The University of Texas at El Paso

Interval equations

ax bExample

[1,2] [1,4]x

?x

b

xa

Page 46: Andrzej Pownuk, The University of Texas at El Paso

Algebraic solution

[1,2] [1,4]x

[1,2]x because

[1,2][1,2] [1,4]

Page 47: Andrzej Pownuk, The University of Texas at El Paso

Algebraic solution

[1,4] [1,4]x

[1,1] 1x because

[1,4] 1 [1,4]

Page 48: Andrzej Pownuk, The University of Texas at El Paso

Algebraic solution

[1,8] [1,4]x

?x

Page 49: Andrzej Pownuk, The University of Texas at El Paso

United solution set

[1,2] [1,4]x

1,4

2

x

because

{ : , [1,2], [1,4]}x ax b a b x

Page 50: Andrzej Pownuk, The University of Texas at El Paso

United solution set

[1,2]

[-1,1]

[1,2][2,4]

[2,4][1,2]

2

1

x

x

1

2

3

3

3

3

)( BA ,hu ll

)( BA ,

Page 51: Andrzej Pownuk, The University of Texas at El Paso

Different solution sets

, : , ,x A b Ax b

A b A b

United solution set

, : , ,x A b Ax b

A b A b

, : , ,x A b Ax b

A b A b

Tolerable solution set

Controllable solution set

Page 52: Andrzej Pownuk, The University of Texas at El Paso

Other solution sets

Page 53: Andrzej Pownuk, The University of Texas at El Paso

Parametric solution sets

http://www.ippt.gov.pl/~kros/pccmm99/10PSS.html

Page 54: Andrzej Pownuk, The University of Texas at El Paso
Page 55: Andrzej Pownuk, The University of Texas at El Paso
Page 56: Andrzej Pownuk, The University of Texas at El Paso

Derivative

( ) ( ), ( )f x f x f x

'( ) min '( ), '( ) ,max '( ), '( )f x f x f x f x f x

What is the definition of the solution of differential equation?

Page 57: Andrzej Pownuk, The University of Texas at El Paso

Differentiation of the interval function

( )f x

( )f x

v ,x f x f x

v' min ' , ' ,max ' , 'x f x f x f x f x

Page 58: Andrzej Pownuk, The University of Texas at El Paso

What is the definition of the solution of differential equation?

Dubois D., Prade H., 1987, On Several Definition of the Differentiation of Fuzzy Mapping, Fuzzy Sets and Systems, Vol.24, pp.117-120

How about integral equations?

Page 59: Andrzej Pownuk, The University of Texas at El Paso

Other problems Modal interval arithmetic Affine arithmetic Constrain interval arithmetic Ellipsoidal arithmetic Convex models (equations with the ellipsoidal parameters) General set valued arithmetic Fuzzy relational equations …. Etc.

Page 60: Andrzej Pownuk, The University of Texas at El Paso

Methods of solutions

Page 61: Andrzej Pownuk, The University of Texas at El Paso

What does everyone have in mind?

Page 62: Andrzej Pownuk, The University of Texas at El Paso

Taylor expansion

1 10 0 1 10 01

,..., ,..., ...m m m mm

y yy p p y p p p p p p

p p

0 10 0,..., my y p p

11

... mm

y yy p p

p p

0 0, ,y y y y y y y

Page 63: Andrzej Pownuk, The University of Texas at El Paso

General optimization methods Gradient descent Interior point method Sequential quadratic programming Genetic algorithms …

Page 64: Andrzej Pownuk, The University of Texas at El Paso

Interval methodsand reliable computing

Page 65: Andrzej Pownuk, The University of Texas at El Paso

System of linear interval equations Endpoint combination method Interval Gauss elimination Interval Gauss-Seidel method Linear programming method Rohn method

Jiri Rohn, "A Handbook of Results on Interval Linear Problems“,2006http://www.cs.cas.cz/~rohn/publist/handbook.zip

Page 66: Andrzej Pownuk, The University of Texas at El Paso

Oettli and Prager (1964)

W. Oettli, W. Prager. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6: 405-409, 1964.

( )x mid x rad rad x rad

A,b A b A b

,A b A b

Page 67: Andrzej Pownuk, The University of Texas at El Paso

Linear programming method

H.U. Koyluoglu, A. Çakmak, S.R.K. Nielsen. Interval mapping in structural mechanics. In: Spanos, ed. Computational Stochastic Mechanics. 125-133. Balkema, Rotterdam 1995.

min

( )

( )

0

i

s

s

x

mid D rad x b

mid D rad x b

x

A A

A A

max

( )

( )

0

i

s

s

x

mid D rad x b

mid D rad x b

x

A A

A A

Page 68: Andrzej Pownuk, The University of Texas at El Paso

Rohn’s method

rc r c

r r

A mid D rad D

b mid D rad

A A

b b

1, 1,1,...,1T

r J

rc rcconv conv

A,b A ,b

: , ,rc rc rc rconv conv x A x b r c J

A ,b

22 2 2n n n 2

2n nRohn’s method Combinatoric solution

Page 69: Andrzej Pownuk, The University of Texas at El Paso

Rohn sign-accord method (RSA) For every Select recommended

Solve If then register x and go to

next r Otherwise find Set and go to step 1.

c J 1

rc sign mid b A

rc rA x b

r J

sign x c

min : j jk j sign x c

k kc c

Page 70: Andrzej Pownuk, The University of Texas at El Paso

SoftwareVERSOFT: Verification software in MATLAB / INTLAB

http://uivtx.cs.cas.cz/~rohn/matlab/index.html

-Real data only: Linear systems (rectangular) -Verified description of all solutions of a system of linear equations -Verified description of all linear squares solutions of a system of linear equations -Verified nonnegative solution of a system of linear inequalities-VERLINPROG for verified nonnegative solution of a system of linear equations -Real data only: Matrix equations (rectangular)-See VERMATREQN for verified solution of the matrix equation A*X*B+C*X*D=F (in particular, of the Sylvester or Lyapunov equation)

Etc.

Page 71: Andrzej Pownuk, The University of Texas at El Paso

Muhanna and Mullen

Page 72: Andrzej Pownuk, The University of Texas at El Paso

Fixed point theory

Find the solution of Ax = b◦ Transform into fixed point equation g(x) = x

g (x) = x – R (Ax – b) = Rb+ (I – RA) x (R nonsingular)◦ Brouwer’s fixed point theorem

If Rb + (I – RA) X int (X) then x X, Ax = b

Page 73: Andrzej Pownuk, The University of Texas at El Paso

Fixed point theory

Solve AX=b◦ Brouwer’s fixed point theorem w/

Krawczyk’s operatorIf R b + (I – RA) X int (X) then (A, b) X

◦ Iteration Xn+1= R b + (I – RA) εXn (for n = 0, 1, 2,…) Stopping criteria: Xn+1 int( Xn ) Enclosure: (A, b) Xn+1

Page 74: Andrzej Pownuk, The University of Texas at El Paso

Dependency problem

pu

u

kk

kkk 0

2

1

22

221

Page 75: Andrzej Pownuk, The University of Texas at El Paso

Dependency problem

k1 = [0.9, 1.1], k2 = [1.8, 2.2], p = 1.0

]11.1,91.0[]1.1,9.0[

11

11

ku

)tionoverestima(

]04.2 ,12.1[]2.2 ,8.1[]1.1 ,9.0[

]2.2 ,8.1[]1.1 ,9.0[2

21

21

kk

kku

solution)exact (

]67.136.1[]2.2 ,8.1[

1

]1.1 ,9.0[

111'

212 ,

kku

Page 76: Andrzej Pownuk, The University of Texas at El Paso

Dependency problem

Two k1: the same physical quantity Interval arithmetic: treat two k1 as two

independent interval quantities having same bounds

21

21

kk

kku

2

Page 77: Andrzej Pownuk, The University of Texas at El Paso

Naïve interval finite element Replace floating point arithmetic by interval

arithmetic Over-pessimistic result due to dependency

1

0

]2.2,8.1[]8.1,2.2[

]8.1,2.2[]3.3,7.2[

2

1

u

u

]5.137 ,5.134[

]112 ,110[

2

1

u

u

Naïve solution Exact solution

]67.1 ,36.1[

]11.1 ,91.0[

2

1

u

u

Page 78: Andrzej Pownuk, The University of Texas at El Paso

Dependency problem How to reduce overestimation?

◦ Manipulate the expression to reduce multiple occurrence

◦ Trace the sources of dependency

pu

u

kk

kkk 0

2

1

22

221

Page 79: Andrzej Pownuk, The University of Texas at El Paso

Present formulation

Element-by-Element◦ K: diagonal matrix, singular

p

L2, E2, A2L1, E1, A1

p

Page 80: Andrzej Pownuk, The University of Texas at El Paso

Present formulation

Element-by-element method◦ Element stiffness:

◦ System stiffness:

)( iii IK dK

1

1

1

11

1

11

1

11

1

11

1

1

1

1

1

1

1

1

1 0

0

10

01

α

αEE

EE

K11

11

L

AE

L

AEL

AE

L

AE

L

A

L

AL

A

L

A

)( dK IK

Page 81: Andrzej Pownuk, The University of Texas at El Paso

Present formulation

Lagrange Multiplier method◦ With the constraints: CU – t = 0◦ Lagrange multipliers: λ

000

p

λ

uK

C

C

t

pu

C

CK TT

Page 82: Andrzej Pownuk, The University of Texas at El Paso

Present formulation

System equation: Ax = b

rewrite as:

00

p

λ

uK

C

CT

000

0

00

0

0

p

λ

udk

C

Ck T

bxD )( SA

Page 83: Andrzej Pownuk, The University of Texas at El Paso

Present formulation x = [u, λ]T, u is the displacement vector Calculate element forces

◦ Conventional FEM: F=k u ( overestimation)◦ Present formulation: Ku = P – CT λ

λ= Lx, p = NbP – CT λ = p – CT L(x*n+1 + x0)P – CT λ = Nb – CT L(Rb – RS Mn δ)P – CT λ = (N – CT LR)b + CTLRS Mn δ

Page 86: Andrzej Pownuk, The University of Texas at El Paso

Click here

Page 87: Andrzej Pownuk, The University of Texas at El Paso

Web application

http://andrzej.pownuk.com/

Click here

Page 88: Andrzej Pownuk, The University of Texas at El Paso

Truss structure with interval parameters

Page 89: Andrzej Pownuk, The University of Texas at El Paso

Monotonicity of the solution Monotone solution

Non-monotone solution

1 1 2

2 2

1 1

1 1

pu p

u p

1 11 2 2

, 2 2

p ppu u

42 0u p

2 21 2

,u p u p

Page 90: Andrzej Pownuk, The University of Texas at El Paso

Interval solution for monotone functions(gradient descent method)

0up

If then ,min maxp pp p

0up

If then ,min maxp pp p

max( ), ( )minu u p u u p

Page 91: Andrzej Pownuk, The University of Texas at El Paso

Monotonicity of the solution

Page 92: Andrzej Pownuk, The University of Texas at El Paso

Plane stress

Page 93: Andrzej Pownuk, The University of Texas at El Paso

Interval solutionVerification of the results by using search method with 3 intermediate points

Page 94: Andrzej Pownuk, The University of Texas at El Paso

Interval solution

Page 95: Andrzej Pownuk, The University of Texas at El Paso

Interval solution

Page 96: Andrzej Pownuk, The University of Texas at El Paso

Interval solution

Page 97: Andrzej Pownuk, The University of Texas at El Paso

Interval solution

Page 98: Andrzej Pownuk, The University of Texas at El Paso

2D problem with the interal parameters and interval functions parameters

Page 99: Andrzej Pownuk, The University of Texas at El Paso
Page 100: Andrzej Pownuk, The University of Texas at El Paso

Scripting languageanalysis_type linear_static_functional_derivative

parameter 1 [210E9,212E9] # Eparameter 2 [0.2,0.4] # Poisson numberparameter 3 0.1 # thicknessparameter 4 [-3,-1] sensitivity # fy

point 1 x 0 y 0point 2 x 1 y 0 point 3 x 1 y 1 point 4 x 0 y 1 point 5 x -1 y 0point 6 x -1 y 1 rectangle 1 points 1 2 3 4 parameters 1 2 3rectangle 2 points 5 1 4 6 parameters 1 2 3

load constant_distributed_in_y_local_direction geometrical_object 1 fy 4load constant_distributed_in_y_local_direction geometrical_object 2 fy 4

boundary_condition fixed point 1 uxboundary_condition fixed point 1 uyboundary_condition fixed point 2 uxboundary_condition fixed point 2 uyboundary_condition fixed point 5 uxboundary_condition fixed point 5 uy

#Mesh

Page 101: Andrzej Pownuk, The University of Texas at El Paso

Shape optimization

min

0

,

u u

C

min

,

u u

or

Page 102: Andrzej Pownuk, The University of Texas at El Paso

Interval set

A B A B

, : Ω

Page 103: Andrzej Pownuk, The University of Texas at El Paso

Set dependent functions

C

xd

xd

Center of gravity

2I y d

Moment of inertia

Solution of PDE

*

for int

for

uu q x

t

u u x

Page 104: Andrzej Pownuk, The University of Texas at El Paso

Topological derivative

00lim lim

T

duu u d D x

dffd

Page 105: Andrzej Pownuk, The University of Texas at El Paso

Topological derivativeExamples

( ) ( )

f L x d ( )dfL x

d

C

xd

xd

2C

x xddx

dd

Page 106: Andrzej Pownuk, The University of Texas at El Paso

Extreme values of montone functions

2( ) , 1, 2f x x x

( )2 [2,4]

df xx

dx

21 1f f x

22 4f f x

( ) , 1, 4f x f f

Page 107: Andrzej Pownuk, The University of Texas at El Paso

Topological derivative and monotonicity

, 0f f df

f f

Page 108: Andrzej Pownuk, The University of Texas at El Paso

Parametric representation

00

lim lim

duu u d

dffd

Page 109: Andrzej Pownuk, The University of Texas at El Paso

Results which are independent of parameterization

2

f L x d

2 | |f f L x d L x

Page 110: Andrzej Pownuk, The University of Texas at El Paso

Results which are dependent on parameterization

0 1,x x R

0

1 0

( )x x

fx x

1

1 1 1 012

01 1 1 1 0

1

( )lim

( ) ( )x

dff x x f x x xdxdf

dd x x x x xdx

1 0x x

Page 111: Andrzej Pownuk, The University of Texas at El Paso

Results which are dependent on parameterization

0

1 0

( )x x

fx x

0

0 0 0 0 12

00 0 0 1 0

0

( )lim

( ) ( )x

dff x x f x dx x xdf

dd x x x x xdx

1 0x x

01

1 0

dfdfdxdx

d ddx dx

Page 112: Andrzej Pownuk, The University of Texas at El Paso

Computational method

( )K p u Q p

( )f p p

( )

Q p K puK p u

p p p

( )pf p

p p

Formulation of the problem

Calculation of the derivative

Page 113: Andrzej Pownuk, The University of Texas at El Paso

Computational methodu

u p

p

1i i If , 0du then

If , 0du then 1i i

for x

Page 114: Andrzej Pownuk, The University of Texas at El Paso

Coordinates of the nodes are the interval numbers.

Loads, material parameters (E, ) can be also the interval numbers.

Data for Calculations

[ , ]i i i

x x x

[ , ], [ , ], [ , ]P P E E EP

Page 115: Andrzej Pownuk, The University of Texas at El Paso

Interval solution

( ) ( , ), ( ) ( , )min maxu x u x u x u x

( ) { ( , ) : [ , ]}x u x u

Page 116: Andrzej Pownuk, The University of Texas at El Paso

Interval von Mises stress

Page 117: Andrzej Pownuk, The University of Texas at El Paso

Truss structure with the uncertain geometry

Page 118: Andrzej Pownuk, The University of Texas at El Paso

Conclusions Currend civil engineering codes are based

on worst case design concept, because of that it is possible to use presented approach in the framework of existing law.

Using presented method it is possible to solve engineering problems with interval parameters (interval parameters, functions, sets).