andrey tarasov thermal analysis 121026
Embed Size (px)
TRANSCRIPT
-
ThermalAnalysis:methods,principles,applica5on
AndreyTarasovLectureonThermalanalysis
26.16.2012Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Main definitions
Heat Capacity
Heat
Thermal conductivity
=aCp =[J/s/m/K]=[W/m/K]
a thermal diffusivity, m2/s
C=Q/T, [J/mol/K]
2
-
Deni5onofTAGroupofphysicalchemicalmethodswhichdealwithstudyingmaterialsand processes under condi5ons of programmed changing's of thesurroundingtemperature.
r, - polar coordinates z - applicate Thermal conductivity , J/(cm*s*K) Cp Thermal capacity, J/(g*K) density, g/(cm3) Q heat of the process (reaction) degree of conversion
Differential Heat equation
Main Thermo-physical properties of materials
Property/Characteris5cMathema5calexpression Unit Method
Thermalconduc5vity (T)=aCp(T)(T) W/(m*K) LFA
Thermallinearexpansion
=1/r*(dr/dT) %/K DIL
Enthalpy dQ/dt=mCp(dT/dt) J/g DSC
Weight/Composi5on/Conversion
=(mo-mi)/mo % TG
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
a thermal diffusivity, cm2/s
3
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Thermal conductivity, thermal diffusivity
4
-
Laser Flash Method (LFA)
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
(T)=aCp(T)(T)
5
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Dilatometry (DIL)
DIL Measurement Information
Linear thermal expansion Determination of coefficient of thermal expansion Sintering temperatures Softening points Phase transitions
=1/r*(dr/dT)
SiN thermal shrinkage
thermal expansion coefficient r sample length
5
-
PrincipleofcombinedthermocoupleRegistra5onthetemperatureoftheobjectandtemperaturedierencebetweensampleandreference
ConsequenceDependingontheengineeringdesign,measuringcellconstruc5onandthewayofdatarepresenta5on,varietyofmethodshasbeenarisen:DTG,DTA,DSC,STAetc.
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Basic Principles and Terminology
6
-
InACThermoLab
TA(Thermalanalysis)TSvs.tTG(Thermogravimetricanalysis)mvs.T
DSC(Dieren5alScanningCalorimetry):VoltagetokeepT=TSTR=0vs.T
DTA(Dieren5alThermalAnalysis)T=TSTRvs.T
DDTA(Deriva5veDTA)dT/dtvs.T
RDTA(ReverseDieren5alThermalAnalysis)dt/dTvs.T
STASimultaneousThermalAnalysis:TGDSC;EVAEvolvedgasanalysis:MS,FTIR,GC
Calvet TA
Hyphenated techniques
DSC-TG
TG
DTA-TG
Basic Principles and Terminology
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Calvet-DSC
7
-
Type Composi+on Temperaturerange,K Outputvoltage(0C),mVTmin Tmax
T Cu/constantan 3 670 20
J Fe/constantan 70 870 34
E chromel/constantan 970 45
K chromel/alumel 220 1270 41
S Pt/PtRh(10) 270 1570 13
R Pt/PtRh(13) 220 1570 12
C W/WRe(26) 2670 39
N Nicrosil/Nisil 1200 39Constantan - 58% Cu, 42% Ni
Chromel 89% Ni, 10% Cr, 1%Fe
Alumel 94% Ni, 2% Al, 1,5% Si, 2,5 % Mn
Nicrosil/Nisil Ni, Cr, Silicon/Ni, Silicon
CuNi disk sensor on Ag plate.
Cu/Constantan disk sensor on Si(X) waffer.
sensor sensor
Pt-PtRh(10) diskshaped thermocouple
Basic Principles and Terminology
Thermocouples
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 8
-
TG DSC (Heat flux)
STA SMP - Measurement signal FB - Buoyancy force , f(T) mA - Mass of adsorbed gas, f(T) mSC - Mass of sample container mS - Mass of sample , f(T) VA - Volume of adsorbed gas , f(T) VSC - Volume of sample container VS - Volume of sample, f(T)
gas - Density of gas, f(T)
SMP g = ((mSC + mS + mA) - (VSC + VS + VA) gas) g
FB
Basic Principles and Terminology
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 9
-
sensor sensor
sample reference
Basic Principles and Terminology
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 10
-
General Theory (Heat equation for inert material)
b heating rate, K/min a -Temperature conductivity coefficient, cm2/s Thermal conductivity , J/(cm*s*K) Cp Thermal capacity, J/(g*K) density, g/(cm3)
r, - polar coordinates
Temperature lag
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 11
-
General Theory (Temperature field in active sample)
Temperatureandreac5onextenteldforendothermicprocess
Temperatureandreac5onextenteldforexothermicprocesses
Exothermic Q>0, H
-
Pb(S) Pb(L), H298= 5 kJ/mol
Setup baseline (zero line)
Baseline interpolated
Endothermic peak
CuO(S)+H2(g) CuO(s)+H2O(g) , H298= -86 kJ/mol
DSC TG
Measurements may have a significant change in weight due to changes in gas density and viscosity.
Shift of the baseline could appear due to change in thermal resistance of the setup. Position is depending on measuring-history.
General Theory
Blank measurement (zero line)
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 13
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Heat of the process is determined as follows:
S availablesurfaceforheatexchangemsamplemassTgeneratedtemperaturedierence
K(T) instrumentconstantradradia5onenergybetweenovenandsamples samplethermalconduc5vity
General Theory
A DSCpeakarea
Heat balance (T) heattransfercoecientc measuringcellheatcapacityMmassofthemeasuringcellTgeneratedtemperaturedierencenormalizedconversion
14
-
Standard Mel+ngPoint,C HeatofFusion,J/g
In 156,6 28,6
Sn 231,9 60,1
Bi 271,4 53,1
Pb 327,5 23,0
Zn 419,5 107,5
Al 660,0 397,0
AlSi 577880
Ag 961,8 104,6
Au 1064,2
Unalloeydsteels 11471536
Ni 1455,0 290,4
Pd 1554,8 157,3
General Theory
Calibration Standards
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 15
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
1. ExperimentalDTAcurve2. DTAcurvecorrectedtoheattransfercondi5ons3. TruebaselineofDTAcurve4. Interpolatedbaseline;5. Experimentalbaseline;6. Experimentalbaselinealerprocess,shiledbecauseof
thermalcapacitychanges.
General Theory (DTA equation)
hea/ngrate,K/min
16
-
DSC Artifacts
General Theory
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 17
-
General Theory
Gradient T
Baseline
Calibration, KDTA,
3 major aspects of correct DSC measurement:
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 18
-
General Theory
Baseline definition.
3 Tangential Area-Proportional Baseline This baseline is used when the melting process is accompanied by a notable Cp change and a sloping baseline exists.
2 Sigmoidal Baseline This baseline is used when the melting process is accompanied by a notable Cp change.
1 Linear Baseline It should be used for measurements in which no significant Cp changes are observed during melting. The linear baseline is generally used.
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 19
-
Au(S) Au(L), H298= 12,6 kJ/mol In(S) In(L), H298= 3.3 kJ/mol
sigmoidal linear
tangential Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
General Theory
CuO/ZnAl2O4+H2 Cu/ZnAl2O4+H2O
20
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
DSC peak Correction
General Theory
In(S) In(L), H298= 3.3 kJ/mol
Issues by uncorrected data
1. Temperature on the peak point does not correspond to the melting temperature (but from physical point of view the sample temperature should be equal to melting point)
2. After peak maximum the signal diminishes slowly. (Although it is known that the sample is completely molten)
21
-
Bad thermal contact Long melting time Broad, low peak
Good Thermal contact Short melting time Sharp peak
The slope of the peak left side is depended on thermal resistance Peak area is the same and equals melting enthalpy.
General Theory
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 22
-
small
f(t) evolved heat F(t) measured signal g(t) response function
g(t)=exp(-t/)
The peak right side is depended on instrument time constant.
1 < 2
big
General Theory
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 23
-
Original signal Time constant correction Full correction
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
General Theory
DSC peak Correction
24
-
Theproper5esofthesystemsamplesensorstronglyinuencetheexperimentalTAcurves
Informa5onobtaineddependsonprocedureNotfundamentalproperty
FeaturesofTASetup
a)Reac5onAtmosphereb)Sizeandshapeoftheovenc)Sampleholdermateriald)Sampleholdergeometrye)Hea5ngratef)Thermocouple(wirediameter)g)Thermocoupleloca5onh)Response5me
Characteris5csofthesample
a) Par5clesizeb) Thermalconduc5vityc) Thermalcapacityd) Packingdensityofpar5cles(powder,pill,tablet)e) Sampleexpansionandshrinkingf) Samplemassg) Inertllerh) Degreeofcrystallinity
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
General Theory
25
-
Dehydration of CaC2O4nH2O in an open crucible in a dry air flow (red curve) and in a static atmosphere (green curve).
24n224+n23+1/22+21stage 2stage 3stage
Influence of external gas flow Setup:NetzschSTAJupiter
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 26
-
Influence of external atmosphere Setup:NetzschSTAJupiter
TG
Dr. Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 27
-
Influence of external atmosphere
Ar, 100ml/min
Vacuum 10-4 bar
k1
DSCTGsampleholder,Sampleweight:10mg
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
M=CuxZn1-x
28
-
Influence of sample mass
k1
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 29
-
Influence of heating rate
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Independent processes
Ea1
-
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
Subsequent processes
Influence of heating rate
La(OH)3LaOOH+H2O LaOOHLa2O3+H2O
31
-
Competitive process processes
Influence of heating rate
Ea1
-
Influence of the pan material Setup:NetzschSTAJupiter
Al Pt Al2O3 Ni Cu Quartz
PyrolisisofFluoropolymer:TFEVDF,{C2F4}n{C2H2F2}m,F42inAlanAupans
10Kpm,Ar,100ml/min
in Al
in Au
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 33
-
Setup:NetzschSTAJupiter
Interac5onofTaandNbwithFluoropolymer:TFEVDF,{C2F4}n{C2H2F2}m,F42
Strong exothermic reactions
M
-strong heat evolution, narrow T
-2 stages by interaction -sharp weight loss due to reaction between two solid interfaces.
Mass loss: reflects the available metal surface which is in contact with polymer.
with A. Alikhanjan, and I. Arkhangelsky (2009)
Ta-F42
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 34
-
Exothermic
Endothermic (due to water traces)
Setup:NetzschSTAJupiter
Two effects coinsides resulting in endothermic effect.
Strong exothermic reactions
35 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
Measurementininert.Isthesystemoxygenfree?Setup:NetzschSTAJupiter
O2tracesof0.25ppm
CuC2O40.5H2OCu+2CO2
DSCTGsampleholder,Al2O3pan,Ar100ml/minSample:CuC2O40.5H2OWeight:9.1mg
Cu+1/2O2CuO
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 36
-
Setup:NetzschSTAJupiter
Ni+1/2O2NiO
@RTO2tracesof1.7ppm
DSCTGsampleholder,Al2O3pan,Ar100ml/minSample:Ni/MgAl2O4Weight:14.1mg
Measurementininert.Isthesystemoxygenfree?
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 37
-
Setup:RubothermMSB
TGsampleholder,Al2O3pan,Ar250ml/minSample:CuC2O40.5H2OWeight:301.8mg
O2tracesof7ppm
Measurementininert.Isthesystemoxygenfree?
CuC2O40.5H2OCu+2CO2
Cu+1/2O2CuO
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 38
-
=f/Hfo
Hfo = 99.3J/g
Hfo enthalpy of polymer with 100% degree of crystallinity
Determina5onofcrystallinitydegree
TFEVDF,{C2F4}n{C2H2F2}m,F42
X-degree of crystallinity
39 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
TA-MS Coupling systems
Skimmer coupling system
40 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
Capillary coupling system
41 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
TA-MS Coupling systems
-
Main Problems of TA-MS coupling system
Pressure reduction 103mbar 10-5mbar
Condensation and secondary reactions Unfalsified gas transfer Different viscosity Demixing
Attribution of a fragment to a chemical process Pyrolysis or evaporation MS fragmentation or sample behavior
Overlapping of thermal processes hydrolysis and oxidation due to rest water and oxygen background in the feed.
Kaiserberger (1999)
Disadvantages: shock sensitive, no direct MS inlet.
42 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
(PulseTA) Adsorption of Methanol on -AlF3
TA-MS curves for a PulseTA experiment on pretreated (2 h, 250 C; vacuum)
Sample:AlF3Sampleweight:43.81mgm=0.15mg,N270ml/min
M. Feist et. al. 2010
Determining Lewis acidity
43 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
PTA curves of NiO/MgAl2O4 after reduction, isothermal at 45C with O2 injections, Interupted by a H2 pulse
O(chemisorbed)/Ni(reduced)=0.22
** Assuming O/Ni=2, dNi=9nm in agreement with TEM Sample:Ni/MgAl2O4Sampleweight:30.8mgm=1.14mg,Ar100ml/min
(PulseTA) Titration of Ni surface with O2
44 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
Resources
J. Sestak, Thermophysical properties of solids (Academia, Prague, 1984)
G. Hhne, W. Hemminger, H.-J.Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, 1996)
E. Moukhina, J. Therm Anal. Calorim. (2012) 109: 1203-1214
http://www.netzsch.com
45 Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12
-
Acknowledgments
Dr. Elena Moukhina, Netzsch Gertebau GmbH, Selb
Dr. Jan Hanss, Netzsch Gertebau GmbH, Selb
Dr. Michael Feist, HU Berlin
Prof. Igor Arkhangelsky, MSU Moscow
Dr. Alexander Dunaev, MSU Moscow
thermal analysis
Andrey Tarasov, Thermal analysis, Lecture series heterogeneous catalysis, FHI MPG, 26.10.12 46
-
Thank you!
47