anchoring conductive polymeric monomers on …i anchoring conductive polymeric monomers on...

9
i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†, Kai Huang‡, , George Bepete‡, Maria Luiza M. Rocco § , Alain Pénicaud‡, Aldo J. G. Zarbin†, Elisa S. Orth†* Department of Chemistry, Universidade Federal do Parana (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil Université Bordeaux 1, CNRS Centre de Recherche Paul Pascal, 115 avenue du dr. A. Schweitzer, 33600 Pessac, France. §Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21.941-909, Rio de Janeiro, RJ, Brazil Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Upload: others

Post on 18-May-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

i

Anchoring conductive polymeric monomers on

single-walled-carbon nanotubides: towards

covalently linked nanocomposites

Naiane Naidek†, Kai Huang‡,∥, George Bepete‡, Maria Luiza M. Rocco§, Alain Pénicaud‡,

Aldo J. G. Zarbin†, Elisa S. Orth†*

†Department of Chemistry, Universidade Federal do Parana (UFPR), CP 19081, CEP

81531-990, Curitiba, PR, Brazil

‡Université Bordeaux 1, CNRS Centre de Recherche Paul Pascal, 115 avenue du dr. A.

Schweitzer, 33600 Pessac, France.

§Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21.941-909, Rio de

Janeiro, RJ, Brazil

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Page 2: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

ii

SUPPORTING INFORMATION

1. Characterization I

Table S1. Surface chemical composition of the functionalized and polymerized

nanocomposites, atomic percentage obtained by XPS. III

Figure S1 – Raman spectra of the functionalized SWCNTs. IV

Table S2. Raman bands of Ppy. VI

Figure S2. TGA of the samples of the raw and functionalized SWCNTs in air. VI

Figure S3. DTG curves of the samples of the raw and functionalized SWCNTs

in air. VII

Figure S2 - SEM images of the covalently linked nanocomposites and the non-

covalently linked nanocomposites of SWCNT and Ppy. VIII

Page 3: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

iii

1. Characterization

The XPS chemical composition is presented on Table S1, with the percentage of each

element present on the samples.

Table S1. Surface chemical composition of the functionalized and polymerized

nanocomposites, atomic percentage obtained by XPS.

Sample C 1s N 1s O 1s S 2p Cl 2p Si 2p*

cov

ale

nt

SWCNT-Ox (%) 75.2

0

21.4

0

0 3.4

SWCNT-BPI (%) 88.7

2.4

5.4

2.0

0 0.9

SWCNT-BATI (%) 80.8

0 15.1

1.7

0 2.4

SWCNT-BTI (%) 83.2

0.9

11.6

2.0

0 1.6

Poly-SWCNT-BPI (%) 69.3 11.8 17.2 0 1.6 0

non

-cov

ale

nt

SWCNT-Ox-Ppy (%) 70.8

11.2

14.8

0

1.8

1.6

* The amount of Si is attributed to the substrate used in the analysis.

Figure S1 present the Raman spectra for the pristine, oxidized and functionalized

SWCNT. The features Raman bands of SWCNT are evidenced on the spectra, with the

presence of G-band, G+-band and D-band. The representative deconvolution is on the inset

and the normal distribution of ID/IG is presented with the respective obtained values.

Page 4: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

iv

500 1000 1500 2000 2500 3000 3500 4000

1200 1500 1800

D

633 nm

SWCNTIn

ten

sit

y

Wavenumber (cm-1)

D'

G-

G+

0,10 0,15 0,20 0,25 0,30 0,35 0,400

1

2

3

4

5

6 SWCNT-Área

ID/IG

Co

un

t

500 1000 1500 2000 2500 3000

1000 1500 2000

633 nm

SWCNT-Ox

Inte

ns

ity

Wavenumber (cm-1

)

D'D

G-

G+

0,15 0,20 0,25 0,30 0,35 0,40 0,450

1

2

3

4

5

6

Co

un

t

ID/I

G

A

SWCNTox-Área

500 1000 1500 2000 2500 3000 3500

1000 1500 2000

633 nm

Inte

ns

ity

Wavenumber (cm-1)

SWCNT-BATI

D'D

G-

G+

0,3 0,4 0,5 0,6 0,7 0,80

1

2

3

4

5

Co

un

t

ID/IG

area

SWCNT-BATI-Area

Page 5: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

v

500 1000 1500 2000 2500 3000 3500

1000 1500 2000

633 nmIn

ten

sit

y

Wavenumber (cm-1)

SWCNT-BPI

D'

G-

G+

D

0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,800

1

2

3

4

5

6

7

Co

un

t

ID/IG

B

SWCNT-BPI-Area

500 1000 1500 2000 2500 3000 3500

1000 1500 2000

633 nm

Inte

ns

ity

Wavenumber (cm-1)

SWCNT-BTI

D'

G-

G+

D

0,30 0,35 0,40 0,45 0,50 0,550

2

4

6

8

10

Co

un

t

ID/IG

B

SWCNT-BTI-Area

Figure S1. Representative Raman spectra of the samples with excitation at 633 nm a)

showing the ID/IG value increases from SWCNT<SWCNTox<BTI<BATI<BPI. Insets:

representative deconvolution of the bands. The spectra are normalized by the G+ band.

Detailed information related to the Raman spectroscopy of the Ppy is presented on

Table S2.

Page 6: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

vi

Table S2. Raman bands of Ppy.

Band position (cm-1

)

1581 C=C stretching (carbon skeleton)

1385 antisymmetric C-N stretching

1324 C-C stretching of the neutral species

1235 antisymmetric C-H (plane) bending

1080 C-H (plane) bending of oxidized species

1045 C-H (plane) bending of neutral species

970 cationic ring deformation of Ppy

928 ring deformation associated to dication

TGA and DTG analyses are presented on Figure S2 and S3, complementing the

characterization of the functionalized SWCNT samples.

200 400 600 800 10000

20

40

60

80

100 SWCNT-Ox

SWCNT

Mass (

%)

Temperature (°C)

200 400 600 800 1000

0

20

40

60

80

100

SWCNT-BPI

SWCNT-BATI

SWCNT-BTI

Mass (

%)

Temperature (°C)

Figure S2. TGA of the samples of the raw and functionalized SWCNTs in air.

Page 7: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

vii

200 400 600 800 1000

-0,2

0,0

0,2

0,4

0,6

0,8

Temperature (°C)

DT

G

0

20

40

60

80

100SWCNT

Mass (

%)

200 400 600 800 1000-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4 SWCNT-Ox

Temperature (°C)

DT

G

0

20

40

60

80

100

Mass (

%)

200 400 600 800 1000

0,0

0,2

0,4

0,6

0,8

1,0

Temperature (°C)

DT

G

SWCNT-BATI

0

20

40

60

80

100

Mass (

%)

200 400 600 800 1000-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Temperature (°C)

DT

G

SWCNT-BPI

0

20

40

60

80

100

Ma

ss

(%

)

200 400 600 800 1000-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2 SWCNT-BTI

Temperature (°C)

DT

G

0

20

40

60

80

100

Mass (

%)

Figure S3. DTG curves of the samples of the raw and functionalized SWCNTs in air.

More detailed information about the morphology of the covalently and non-covalent

linked polymerized nanocomposites are shown in the Figure S2. The SEM images, shows

Page 8: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

viii

the polymer wrapping the SWCNT-BPI and the SWCNT-Ox on the covalent and non-

covalent nanocomposites. Isolated globular structure of Ppy are observed on the SWCNT-

Ox-Ppy sample, evidencing a heterogeneous morphology.

Page 9: Anchoring conductive polymeric monomers on …i Anchoring conductive polymeric monomers on single-walled-carbon nanotubides: towards covalently linked nanocomposites Naiane Naidek†,

ix

Figure S2. SEM images of the SWCNT, functionalized SWCNT, Ppy and covalently and

non-covalently linked nanocomposites.