anatoly v. titov

47
Heavy-atom molecules as key objects to study nonconservation of time- reversal symmetry (EDM of electron) Anatoly V. Titov PNPI QChem Group: B.P. Konstantinov PNPI RAS, St.-Petersburg State University, St.-Petersburg, RUSSIA A.N. Petrov, L.V. Skripnikov and N.S. Mosyagin [qchem.pnpi.spb.ru]

Upload: meara

Post on 12-Jan-2016

84 views

Category:

Documents


2 download

DESCRIPTION

Heavy-atom molecules as key objects to study nonconservation of time-reversal symmetry ( EDM of electron ). [qchem.pnpi.spb.ru]. PNPI QChem Group:. Anatoly V. Titov. A.N. Petrov, L . V . Skripnikov and N.S. Mosyagin. B.P. Konstantinov PNPI RAS, St.-Petersburg State University, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Anatoly V. Titov

Heavy-atom molecules as key objects to study nonconservation of time-reversal symmetry (EDM of electron)

Anatoly V. TitovPNPI

QChem

Group:

B.P. Konstantinov PNPI RAS,St.-Petersburg State University,

St.-Petersburg, RUSSIA

A.N. Petrov, L.V. Skripnikov and N.S. Mosyagin

[qchem.pnpi.spb.ru]

Page 2: Anatoly V. Titov

Outline

• Why measure electric dipole moment (EDM) of the electron?

• Milestones in studying PNC effects

• Current status of the electron EDM (eEDM) search

• How to measure eEDM– Recent experiments with heavy-atom molecules & solids

• Electronic structure modeling for eEDM studies– Why heavy-atom systems and why relativistic effects are important– Semi-empirical; RECP / one-center restoration; four-component

• Recent calculations of electronic properties in heavy-atom molecules for the eEDM experiments– …

Page 3: Anatoly V. Titov

Nonzero EDMs can exist only due to the both space Parity, P, and Time reversal, T, symmetries violated (P,T-odd interactions)

[L. Landau, Pis’ma ZhETP 32, 405 (1957)]:

Why measure EDMs?• EDM is the electric dipole moment of an

elementary particle.

• Dipole moment d is a polar vector (P-odd, where P is the space parity);

P T

D Sd S~r pr ~

The only vector for a particle at rest is its spin,therefore, d should be directed along to S,(moreover, d = deS similar to magnetic moment, where de is a fixed real number once the coordinate system is chosen)!

Therefore, for P-even and / or T-even world d should be zero!

• Spin S is a T-odd pseudo-vector (P-even axial vector), where T is the time-reversal symmetry.

Page 4: Anatoly V. Titov

(1)ed d

(2)EDMH E

: , : (3)P P E E

: , : (4)T T E E

EDM EDMP,T: H H (5)

Hamiltonian for an EDM in electric field:

~

/2

Page 5: Anatoly V. Titov

Experimental limiton the electron EDM:

|de| < 1.610-27 ecm[B. Regan, E. Commins, C. Schmidt, D. DeMille, PRL 88, 071805 (2002)]

Physics model |de| (e·cm)

Standard Model <10-38

Left-right symmetry 10-26-10-28

Multi-Higgs 10-27-10-28

Technicolor ~10-29

Supersymmetry ~10-25, 10-27 …

Status

Estimated with the KL

0 (T-odd!) decay exptl data

Page 6: Anatoly V. Titov

1

2 2B dE

2

2 2B dE

1 2

4dE

B EH d ���������������������������� ����������������������������

1

2:For S

Statistical sensitivity:1

N uncorrelated systems measured for time ~ :T 1

~2 2

dE TN

Single system with coherence time :

Basic detection scheme of an EDM (for a neutral system with S=1/2, magnetic moment and EDM d)

T ~ m

The wavepackete -iE t | + e -iE t |can be prepared usingthe electronic spinresonance method

Page 7: Anatoly V. Titov

P,T-odd effects in heavy-atom molecules:

1965: Sandars suggests to use heavy atoms to search for EDMs (In the nonrelativistic case Eeff is zero in accord to the Schiff theorem; relativistic eEDM enhancement Eeff /Eextα2Z3 [V.Flambaum, Sov.J.Nucl.Phys. 24 (1976)] ) EDMs of charged particles e-, p etc. can be studied !

1967: Sandars: in polar heavy-atom molecules Emol /Eext >> 1.

He initiated the search for the P,T-odd effects on 205TlF and estimated the these effects semiempirically (Eeff 20 kV/cm on a valence proton).

1991: The last series of the 205TlF experiments is finished by Hinds group at Yale (USA) and the best limitation on the proton EDM, dp=(-4 ± 6)x10-23 ecm, is obtained.

2002: Petrov et al. recalculated it with RCC as dp=(-1.7 ± 2.8)x10-23

ecm.

Page 8: Anatoly V. Titov

P,T-odd effects in heavy-atom molecules (cont.): 1978: Labzowsky: ideas to use diatomic radicals CuO, CuS, CuSe due to

additional enhancement of P-odd, because of the closeness of levels of opposite parity in -doublets having a 2Π1/2 ground state, Emol /Eext 105.

1978: Sushkov & Flambaum, and in 1979 Gorshkov, Labzowsky & Moskalev: ideas to use diatomic radicals (-doublets) to search for P,T-odd effects including EDM of electron due to additional enhancement.

1984: Sushkov, Flambaum & Khriplovich; Flambaum & Khriplovich, 1985 : Kozlov suggest to use diatomics with a 2Σ1/2 ground state.

Many new molecules, molecular cation and solids are considered up-to-date for the eEDM search, mainly by Novosibirsk & SPb groups.

2002: The last series of the 205Tl beam experiment is finished at Berkeley (USA) and the best to-date limitation on de, |de| < 1.610-27 ecm, is obtained

2002: The first results are obtained by Hinds group on the 174YbF molecular beam at Sassex (UK) for the electron EDM, de=(-0.2 ± 3.2)x10-26 ecm;

2010 (???): some new limitation on de is obtained on YbF.

Page 9: Anatoly V. Titov

Heavy-atom polar molecules and cations: YbF-radical beam (E.Hinds: Imperial college, London,UK);

ThO* beam [& PbO* in optic cell ] (ACME collaboration: D.DeMille:Yale Uni.; J.Doyle & G.Gabrielse: Harvard);

PbF radicals in a Stark trap (N.Shafer-Ray: Oklahoma);

HfF+ (& ThF+, PtH+ …) trapped cations (E.Cornell: JILA, Boulder);

WC (3Δ1 – ground state) molecular beam (A.E.Leanhard: Michigan U.)

Solids:

Gd-Ga Garnet (S. Lamoreaux: LANL ; C.-Y. Liu: Indiana)

Gd-Iron Garnet (L. Hunter: Amherst),

Eu0.5Ba0.5TiO3 (perovskite, ferroelectric structure)

(S. Lamoreaux: Yale Uni; J.Haase: Leipzig Uni; O.Sushkov: UNSW).

Experiments on the electron EDM Search

Nuclear EDM / Schiff moment: Liquid Xe experiment (M.Romalis: Princeton Uni.)

??? RaO (Flambaum 2008: 500 times enhancement compared to TlF)

titov
WC = tungsten carbide
Page 10: Anatoly V. Titov

• HP,T-odd = Wd de (Je n),where de=| de |, (Jen)= is projection of the electron momentum on the molecular axis (n); Wd || / Elab characterizes the eEDM enhancement.

• The value of Wd || can be considered as some effective electric field on the electron, Eeff Wd ||.It is non-zero only due to the relativistic effects!

• This field is strongly localized near the heavy nuclei, so the only one-electron-states with small je contribute to Wd:

What should be calculated ?

221 )()2/1( , ~ Zjr jnljj

For point nucleus:

Page 11: Anatoly V. Titov

Calculations of PNC effectsin heavy-atom molecules:

First ab initio nonrelativistic calculations of P,T-parity nonconservation effects in TlF followed by the relativistic scaling were performed by Hinds & Sandars in 1980 and by Coveney & Sandars in 1983 (Oxford, UK).

A series of semiempirical calculations was performed since 1978 by Kozlov & Labzowskii (St.Petersburg); Sushkov, Flambaum & Khriplovich (Novosibirsk) for many heavy-atom molecules.

Two-step (RECP / one-center-restoration) relativistic calculations at SPbSU, PNPI: RECP = Relativistic Effective Core Potential method without correlations: on PbF & HgF (1985-1991); with correlations: on YbF (1996,1998), BaF (1997), TlF (2002),

PbO* (2004), HI+ (2005), liquid Xe & HfF+ (2006+); PtH+(2009)

First Dirac-Fock calculations on TlF (1997) and YbF (1998) are performed by Parpia (USA) and by Quiney et al. (EU).

In 2006, correlation four-component calculation of BaF and YbF are performed by Indian group (Nayak & Chaudhuri).

… PtH+, ThO & ThF+ (2008) are performed “semi-ab-initio” by Meyer & Bohn (JILA, Boulder, USA).

Page 12: Anatoly V. Titov

• Effective Hamiltonian(s):Generalized RECP / NOCR methods (SPbSU-PNPI): A.V. Titov & N.S. Mosyagin, IJQC 71, 359 (1999);

A.V. Titov et al., PTCP B15, 253 (2006).

• Correlation Methods:RCC: U.Kaldor, E.Eliav, A. Landau, Tel-Aviv Uni., Israel; SODCI: R.Buenker et al., Uni. of Wuppertal, Germany);

Developments: A.V. Titov et al., IJQC 81, 409 (2001); T.A. Isaev et al, JPB 33, 5139 (2000);

A.N.Petrov et al., PRA , 72, 022505 (2005).

• Basis Sets: GC-basis: N.S.Mosyagin et al., JPB, 33 (2000); T.A. Isaev et al, JPB, 33 (2000);

ANO basis sets for light atoms.

Methods of calculations

Page 13: Anatoly V. Titov

Что делает псевдопотенциал (ПП)Задачей метода ПП является сведение расчета электронной структуры системы к явному рассмотрению в расчете только валентных электронов, т.е.

– исключение химически неактивных (остовных) электронов из расчета при сохранении достаточно точного описания электронной структуры и взаимодействий в валентной области;

– обеспечение «ортогональности» (принципа Паули) по отношению к занятым (но явно исключенным) остовным состояниям, т.е. предотвращение «провала» валентных электронов в эти состояния;

– эффективный учет релятивистских эффектов (scalar + SO + Breit);

– сглаживание псевдоспиноров для минимизации размеров атомных базисов и вычислительных издержек в зависимости от задачи:

«large-core» ПП (наиболее экономичные, плохая точность) «small-core» ПП (менее экономичные, хорошая точность) корреляционный псевдопотенциал возможность восстановления электронной структуры в остовах.

При универсальности метода ПП он является наиболее гибким в расчетах электронной структуры.

Page 14: Anatoly V. Titov

Radial parts of large components of spinors 5s1/2 and 6s1/2 and of corresponding pseudospinors for the Thallium atom.

Page 15: Anatoly V. Titov

«Согласованные-по-форме» ПП

Наиболее важные особенности СФ ПП являются следствием двух естественных ограничений при его построении:

требования «жесткости» ПП в остове (r<Rc) (с учетом свойства жесткости исходного атомного потенциала по сравнению с амплитудами взаимодействий в валентной области и валентными (орбитальными) энергиями);

требования «физичности» ПП в валентной области (r>Rc) (т.е. взаимодействия, смоделированные посредством ПП

должны с высокой точностью отслеживать исходные атомные потенциалы в валентной области).

как валентные, так и виртуальные псевдоорбитали будут с высокой точность отслеживать исходные атомные орбитали в валентной области вместе с их орбитальными энергиями даже при введении возмущения в валентной области (хим.связь, внешние поля и т.п.);

точность расчетов с ПП становится прогнозируемой и управляемой, а процедура восстановления орбиталей в остове – обоснованной.

Page 16: Anatoly V. Titov

Radial parts of the 7s1/2 spinor (all-electron Dirac-Fock) and pseudospinor 32-electron GRECP/SCF) of Uranium for the state averaged over the nonrelativistic 5f26d17s2 configuration and their difference multiplied by 1000.

Page 17: Anatoly V. Titov

Nonvariational One-Center Restoration (NOCR)of electronic structure in cores of heavy-atoms in a molecule:

[A.Titov, PhD Thesis (1985)]

Page 18: Anatoly V. Titov

Advantages & disadvantages of GRECP / NOCR scheme:

[A.Titov, PhD Thesis (1985)] Удается естественным образом разделить задачу на две части – атомную (с большим числом электронов и численными функциями) и молекулярную (с минимальным числом электронов и гауссовыми функциями);

«Естественное» представление в расчете остовных функций как спиноров, а валентных – как спин-орбиталей – за счет «приближенного» учета их орто-гональности в ПП-расчете, что невозможно в полноэлектронном расчете;

Выполнение молекулярного расчета в спин-орбитальном базисе дает очень большую экономию ресурсов, позволяет существенно повысить точность;

Хотя молекулярные псевдоорбитали не ортогональны (строго!) к остовным, но при их восстановлении также восстанавливается и их точная ортогональность; при этом восстановленные валентные функции уже являются не спин-орбиталями, но спинорами!

Спин-орбитальным взаимодействием в валентном расчете с ПП часто можно пренебречь (или учесть приближенно), и «включить» его только при восстановлении в остовах, что очень важно в расчетах сложных соединений;

Не учитывается поляризация (релаксация) остова, кот. обычно невелика; она может быть учтена в «вариационной» схеме восстановления.

Page 19: Anatoly V. Titov

First two-step calculations of 199HgF and 207PbF

Page 20: Anatoly V. Titov

Iodine (Z=53): [Kr] 4s24p64d10 5s25p5 + H+: 1s0 [ outer core ] [valence] [valence]

HI+ ground state: 23/2;configuration: […] 2 1/2

2 3/21 (derived from 5p5)

Highest doubly occupied -orbital is bonding and most “mixed”: 5p0(I) +1s(H)

is not highest-by-energy among the occupied orbitals, but it gives 77% to the molecule-frame dipole moment.

HI+ model:

Page 21: Anatoly V. Titov

HI+:

<Basis sets>: I:[5s5p3d2f] + H:[4s3p2d]

Page 22: Anatoly V. Titov

HI+:

<Basis sets>: I:[5s5p3d2f] + H:[4s3p2d]

Page 23: Anatoly V. Titov

Calculations of PNC effectsin heavy-atom molecules (continued):

Old (2006) (2008)

(1 GV/cm = 0.24210241 Hz/e∙cm)

PtH+ 28 (2009) 73

60 (2010)

??

[См. постер А. Петрова]

[См. постер К. Бакланова]

Page 24: Anatoly V. Titov

Eu++: 4s24p6 4d10 5s2 5p64f7

Вклады в K от матричных элементов s-p, p-d, d-f :

  s p d f

s - -3.3 0 0

p   - 0.3 0

d     - -1.6

f       -

= -4.6

Неэмпирический расчёт Eu++

во внешнем электрическом поле[См. постер Л.Скрипникова]

Page 25: Anatoly V. Titov

Thanks to: L.Labzowskii – initiator & supervisor of the PNC study

at SPbSU & PNPI

M. Kozlov (PNPI)

Yu.Yu. Dmitriev, A. Mitrushchenkov (SPbSU)

I. Khriplovich, O. Sushkov & V. Flambaum (Novosibirsk & Sydney, Australia)

D. DeMille (Yale, USA)

E. Cornell (Boulder, USA)

E. Eliav & U. Kaldor (Tel Aviv, Israel)

R. Buenker & A. Alekseyev (Wuppertal, Germany)

A. Zaitsevskii (Kurchatovskii institute, Moscow)

Page 26: Anatoly V. Titov

The eEDM experiments on heavy-atom molecules (and solids ?) are of key importance for modern theory of fundamental interactions and symmetries – window for a new physics beyond the Standard model.

High-accuracy calculations of prospective heavy-atom systems are of increasing interest for the eEDM experiment.

The two-step method – RECP / one-center-restoration – has better flexibility than the four-component approaches and good prospects for further improvement of accuracy

Accuracy is limited by present possibilities of correlation methods rather than by basis set limitations, RECP and other approximations.

Extension of the method to study more complicated systems (solids etc.) is simple (in contrast to four-component ones); applicability to study other physical-chemical properties is straightforward.

Further development of accurate effective Hamiltonians, correlation methods and new basis sets is highly desirable for actinides/lanthanides!

Concluding remarks:

[A.V.Titov et al., PTCP B15, 253 (2006)]

Page 27: Anatoly V. Titov

The end.

Page 28: Anatoly V. Titov

Gadolinium Gallium Garnet (Gd3Ga5O12)

• Gd3+ in GGG - 4f75d06s0 (7 unpaired electrons)

• Atomic enhancement factor = -4.91.6

• Langevin paramagnet• Dielectric constant ~ 12• Low electrical conductivity

and high dielectric strength• Volume resistivity = 1016 -cm

• Dielectric strength = 10 MV/cm for amorphous sample

Garnet Structure:

{A3}[B2](C3)O12

–A {dodecahedron}: M3

•Ca, Mn, Fe, R (La,..Gd,..Lu)

–B [octahedron],C (tetrahedron):•Fe, Ga, …

Page 29: Anatoly V. Titov

Methods of calculations: GRECP & NOCR

Page 30: Anatoly V. Titov

Why use molecular ions?

• Ions are easy to trap (in RF quadruple trap);

• Potential for long spin coherence times (ion-ion repulsion);

• Can get Eeff/Elab= 109 (for Ω>1/2 have closely spaced levels of opposite parity fully polarized with E ~ 10 V/cm);

• Rotating external electric field can be used for eEDM measurements keeping the cold ions in the trap.

[R.Stutz & E.Cornell, Bull.Am.Phys.Soc. 49, 46 (2004)]

Page 31: Anatoly V. Titov
Page 32: Anatoly V. Titov
Page 33: Anatoly V. Titov

Mass-spectrometry:

Page 34: Anatoly V. Titov
Page 35: Anatoly V. Titov

HfF+ modelProposal: HfH+: [L.Sinclair et al., Bull.Am.Phys.Soc. 450, 134 (2005)]; HfF+ & ThF+: [E.Cornell & A.Leanhardt, private communication].

Calculation: HfF+: [A.N.Petrov et al., PRA 76, 030501(R) (2007)+ …]

HfF+ working state - 31; config.: […] 12 2

1 1,

Hf

2+: […4f14 ]5s25p6 5d1 6s1 + F– : 1s2 2s2 2p6 [outer core] [ valence ] [core] [ valence ]

1st question: which state is the ground one, 31 or 11 (config.: […] 1

2 22 )?!

(and if 31 is not the ground one, how to populate it?)

2nd question: which is effective field on e-, Eeff ?

3rd question: which transitions to excited states (3, 1) can be used to measure the EDM signals?

30-.0+,1,2 , 32,3

, 2 1

Page 36: Anatoly V. Titov

Our SODCI calculations

with HfF+

Page 37: Anatoly V. Titov
Page 38: Anatoly V. Titov
Page 39: Anatoly V. Titov

HfF+

Page 40: Anatoly V. Titov
Page 41: Anatoly V. Titov
Page 42: Anatoly V. Titov
Page 43: Anatoly V. Titov
Page 44: Anatoly V. Titov

Hf: [Xe 4f14] 5s25p6 5d26s2 F: 1s2 2s22p5 [inner core] [outer core] [ valence ]

HfF+ valence (4e) configuration:

σ12σ2

2 (1Σ+) σ1

2σ21δ1 (3Δ1,

3Δ2, 3Δ3,

1Δ2) σ1

2σ21π1 (3Π2,

3Π1, 3Π0+, 3Π0ˉ,

1Π1)

σ1 ≈ 2pz σ2 ≈ 6s

δ, π ≈ 5d

Page 45: Anatoly V. Titov

Our SODCI calculations with HfF+

• Effective electric field on e- : Eint = 2.51010 V/cm (5.81024 Hz/e∙cm);• Hyperfine constants: A|| [177Hf] = -1239 MHz ; A|| [19F] = -58 MHz ;

• The ground state is 11 and 31 is the long-lived (1/2~0.5 sec) lying only about 2000 cm-1 higher [calc-n by Skripnikov L., Dec.2008];

• Spectroscopic constants and curves, electric dipole moments (molecule-frame and transition), radiative lifetimes are calculated for ten lowest states. Errors for energetic properties are about 500 cm-1;

• 4f14 relaxation is shown to be not important for these studies.

The GRECP (with 60 e- in core) and basis set for Hf (Z=72) is generated and used in 10e- & 20e-SODCI calculations;

basis sets: Hf: (12s,16p,16d,10f,10g) / [6s,5p,5d,3f,1g] our GC basis;

F: (14s,9p,4d,3f) / [4s,3p,2d,1f] ANO basis set. Up to 12×106 selected SAFs are used in SODCI calculations.

Page 46: Anatoly V. Titov
Page 47: Anatoly V. Titov