analisis sismico de presas

45
Introducción al análisis sísmico de presas 1. Introducción 2. Análisis pseudo-estático 2.1 Ejemplo de aplicación 3. Análisis dinámico 4. Análisis pseudo-dinámicos 3.1 Ejemplo de aplicación 5. Códigos de análisis dinámico y ejemplos 6. Ejemplos 6.1 Presas de Entrepeñas, Bolarque y Buendia 6.2 Presa de Zorita 6.3 Presa de Belesar 7. Bibliografía

Upload: mapasabc

Post on 08-Dec-2014

230 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Analisis Sismico de Presas

Introducción al análisis sísmico de presas

1. Introducción2. Análisis pseudo-estático

2.1 Ejemplo de aplicación3. Análisis dinámico4. Análisis pseudo-dinámicos

3.1 Ejemplo de aplicación5. Códigos de análisis dinámico y ejemplos6. Ejemplos

6.1 Presas de Entrepeñas, Bolarque y Buendia6.2 Presa de Zorita6.3 Presa de Belesar

7. Bibliografía

Page 2: Analisis Sismico de Presas

La acción sísmica es un problema de excitación por la baseEn el caso de las presas el problema es especialmente complejo al producirse una interacciónpresa-fluido-cimentación

Introducción al análisis sísmico de presas 1. Introducción

Acciones dinámicas:- Fuerzas sísmicas horizontales y verticales en presa- Fuerzas hidrodinámicas en el fluido- Posibilidad de excitación múltiple por la base- Efectos sísmicos sobre sedimentos y terreno- Disipación de energía mediante mecanismos diferentes:

histéresis del hormigón, radiación de ondas y absorción

Salvo en el caso de métodos muy simplificados (pseudo estáticos), las soluciones son numéricas, la más habitual esmediante el método de elementos finitos

Page 3: Analisis Sismico de Presas

T1EM = 0.26 s, T1ELL = 0.30 s

T1EM = 0.29 s, T1ELL = 0.31 s

Introducción al análisis sísmico de presas 1. Introducción

Presa de gravedad T1 = 0.25 s, T2 = 0.11 s, T3 = 0.079 s

Page 4: Analisis Sismico de Presas

Presa bóveda T1 = 0.31 s, T2 = 0.28 s, T3 = 0.22 s

Introducción al análisis sísmico de presas 1. Introducción

Page 5: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 1. Introducción

Norma NCSE-02Clasificación de las construcciones:

Page 6: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 1. Introducción

Reglamento técnico sobre seguridad de presas y embalses: Clasificación de las presas

+ Grandes presas: Aquellas que cumplen al menos una de las siguientes condiciones- Altura superior a 15 m desde la parte más baja de cimentación hasta coronación.- Altura entre 10 y 15 m, con longitud de coronación mayor de 500 m, capacidad de embalse

superior a 1000000 m3, o capacidad de desagüe superior a 2000 m3/s.- Todas las que tengan condiciones especiales de cimentación o sean no habituales

+ En función del riesgo derivado de su rotura o funcionamiento incorrecto:- Categoría A: puede afectar gravemente a núcleos urbanos o servicios esenciales, o producir

daños materiales o medioambientales muy importantes.- Categoría B: Daños materiales o medioambientales importantes, afectando a un número

reducido de viviendas- Categoría C: Daños materiales moderados e incidentalmente vidas humanas

+ Estudio sísmico:

- En presas de categoría A se analizará la respuesta sísmica para el seísmo indicado por lanorma, y para otro seísmo extremo razonablemente superior.

- En zonas de sismicidad elevada, y para presas de categoría A, se realizarán estudios sismotectónicos, para determinar los sismos de proyecto.

- Se consideraran los efectos producidos por la sismicidad inducida por el embalse.

Page 7: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 2. Análisis pseudo-estático

2 Análisis pseudo-estático: Acciones sísmicasSólo es aplicable en presas de gravedad y con el fin de obtener estimaciones previas de la acciónsísmica sobre la presa.Se basa en considerar la presa como un sólido rígido 2D (aproximado en presas de gravedad, pero noválido en presas arco o bóveda), y el fluido del embalse incompresibleLa acción sísmica sobre la presa se asimila a una acción horizontal y otra vertical, con la resultantepasando por el CDG de la sección considerada.Se considera la acción dinámica producida por el agua del embalse mediante el método simplificadode Westergaard (1933), basado en la hipótesis de paramento vertical aguas arriba.

Se trata de un método de “masas añadidas”

Page 8: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 2. Análisis pseudo-estático

2 Análisis pseudo-estático: Acciones sísmicas

Presión hidrodinámica de Westergaard: 2( ) ( / )=w wp y C Hy T mα

( ) ( )( )

w

w

p y presión hidrodinámica a profundidad y mH máximo nivel de agua en embalse m

aceleración máxima del sismo considerado como fracción de gC Presión adimensional de Westergaardα

0.817 7 /81 0.72

304.8( 1 )

wCH

TCon T periodo de oscilación de la presa T s a falta de mas información

= ≈⎛ ⎞− ⎜ ⎟⎝ ⎠

Esta sobrepresión dinámica equivale a un empuje Ew , en T por metro lineal de presa,de valor:

Con la resultante situada a 2/5 de la base de la presa:

22 ( )3

=w wE C H Tα

0.4=we H

La presión hidráulica por metro de altura p (1 T/m3) esta incluida en la formula:2( ) ( / )=w wp y C p Hy T mα

Page 9: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 2. Análisis pseudo-estático

2.1. Ejemplo de aplicación del análisis pseudo-estático

Vallarino, Ed. 1998, Cuadro 6.12 adaptado a la NCSE-02.Análisis de estabilidad para una presa de gravedad simplificada con la geometría y parámetros de la figura. Hipótesis de sólido rígido, deformación plana y variación lineal de tensiones:

h = 100 m, γ = 2.4 T/m3, α = 0.5, tgϕ = 0.9, Cw = 0.851

Coeficientes de seguridad para situación accidental:K1 = 1.2, K2 = 1.4

V resultante de fuerzas verticalesH resultante de fuerzas horizontalesMo momento resultante en O (+ horario)

Estabilidad al vuelco:

Estabilidad al deslizamiento:

02

6 0( )

= − >AMV

mh mhσ

1 2

≤ +V tg c mhH

K Kϕ

Se estudian los casos: 0.04 , 1.3, : 1 0.0420.16 , 1.3, : 1 0.183

= = = ⇒ == = = ⇒ =

b c

b c

a g Roca compacta tipo I C a ga g Roca compacta tipo I C a g

ρρ

Page 10: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 2. Análisis pseudo-estático

2.1. Ejemplo de aplicación del análisis pseudo-estático

m σA(t/m2) c(t/m2)0.78 -3.7 14.40.81 7.3 6.00.84 21.1 -0.87 31.7 -0.90 41.2 -0.96 57.7 -1.02 71.4 -

m σA(t/m2) c(t/m2)0.78 -102.4 158.60.81 -88.1 149.00.84 -70.1 136.50.87 -56.3 126.60.90 -43.8 117.30.96 -22.0 100.51.02 -3.9 85.71.04 1.5 81.21.06 6.6 76.81.10 16.1 68.51.20 35.9 50.2

0.042 0.183= =c ca g a g

22 2

22 2

2 3 22

0

1 1 ( 0.7 )22 2

1 1 40.7 (1 )2 2 2 3

2 / 2 4(1 ( 0.7 )3 6 3 2

⎧⎧ ⎧ = − −= = ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪= = → = + +⎨ ⎨ ⎨

⎪ ⎪ ⎪⎪ ⎪ ⎪== = + + + − + +⎪ ⎪ ⎪⎩ ⎩ ⎩

cs c

s c c w c

w w c c w c c

mhV aH mh a P mh

hV mh a S mh H m a C a

E h h mE C h a M m a C a a

γ α γγ γ

γ α γ

γ γ α γ

En cada caso se calcula la tensión σA, y la cohesión necesaria para que no haya deslizamiento, Considerando distintos valores del talud m.

Page 11: Analisis Sismico de Presas

Es la base del análisis dinámico lineal por superposición modalHipótesis de separación de variables

N

i ii 1

(t)

(t) q (t)=

+ + =

= ∑

Mu Cu Ku F

u

&& &

φ

Suponiendo que las funciones temporales son armónicas con la forma: ( ) cos seni i iq t A t B tω ω= +

( )2 0 1,...,= =K - Mi i i Nω φ

Considerando el caso de vibración libre no amortiguada, se obtiene:

Problema de autovalores cuya solución son los N modos de vibración (autovectores), y las N frecuencias naturales asociadas (autovalores)

Hay tantos modos de vibración como GDL dinámicos tiene la estructura.El primer modo de vibración se denomina fundamental y tiene el periodo más alto.

Introducción al análisis sísmico de presas 3. Análisis dinámico

Modos de vibración

Modo 1: φ1 Modo 2: : φ21 2 n...ω < ω < < ω

Page 12: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 3. Análisis dinámicoEcuaciones dinámicas desacopladas: Superposición modal

Formulación en el caso de acciones sísmicas( ) ( )+ + = − =&& & &&g effmy cy ky mu t F t 22 ( )+ + = −&& & &&n n gy y y u tζω ω1 GDL

N GDL ( ) ( )+ + = − =&& & &&g effu t tmu cu ku m l F

l vector de influencia: desplazamiento de las masas al producirseuna aplicación estática de un movimiento unitario del terreno

N

i ii 1

(t) q (t)=

= ∑u φAplicando superposición modal en II se obtiene:

(I)(II)

2 ( ) 1,...,+ + = −Γ =

Γ = =mm

&& & &&n n n n n n n g

Tn n

n Tn n n

u t n N

Lcon factor de participación modalM

ζ ω ω

φφ φ

2q q q

l n n nq (t) y (t)= Γ

Contribuciones del modo n a la respuesta: n n n n n n

in n n n

en n n n

(t) q (t) y (t) desplazamiento(t) (t) q (t) fuerza deinercia(t) A (t) fuerza estática equivalente

= = Γ= − = −= −Γ

uf m u mf m

&&&&

φ φφ

φl l

Propiedad fundamental de los factores de participación modal: N

2 2n tot n tot

n 1m masa total de la estructura. Factor de participación en masa del modo n : / m

=

Γ = Γ∑Se recomienda que la suma de factores de participación de masa acumulada para losmodos considerados sea del 80% al 90% de la masa total de la estructura.

Page 13: Analisis Sismico de Presas

Matrices de amortiguamiento• Clásicas (diagonalizables en el análisis modal)

Matriz de amortiguamiento de Rayleigh:

Los parámetros α y β se calculan de tal forma que la estructura tenga el factor de amortiguamientodeseado (normalmente ζ = 0.05 en hormigón)

α β= +C M K

• No Clásicas (no diagonalizables para el análisis modal)Aparecen en problemas de interacción suelo-estructura y/o suelo-fluido.

Introducción al análisis sísmico de presas 3. Análisis dinámicoFormulación del problema dinámico mediante el MEF

Factores de amortiguamiento:• Estructura ζ = 0.05• Terreno ζ = 0.10• Agua ζ = 0

Cada submatriz se monta mediante el amortiguamientode Rayleigh, pero el resultado final es una matriz nodiagonalizable.

Page 14: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Se calcula la distribución de fuerzas estáticas asociadas al primer modo de vibración y se resuelve la estructura mediante un análisis estático.Referencia: Advanced Dam Engineering. Ed. R.B. Jansen (1988)

Earthquake Response Analysis of Concrete Dams. A.K. Chopra.

4. Análisis pseudo-dinámico

Planteamiento en el caso de embalse vacío y terreno rígido:

t g g

u(x, t) (x)q(t)u (x, t) u (t) u(x, t) u (t) (x)q(t)

= φ= + = + φ

Principio de los trabajos virtuales:

i d

h h

i t g0 0

h

10

i 1 g 1h2

10

2d

W = W W 0

W Au (x, t) u(x, t)dx = - A u (t) (x)q(t) (x) q(t)dx

L A (x)dxDefiniendo : W L u (t) q(t) M q(t) q(t)

M A (x)dx

W EIu (x, t) u dx = EIu (x, t)( )

δ δ + δ =

⎡ ⎤δ = − ρ δ ρ + φ φ δ⎣ ⎦

⎧= ρ φ⎪

⎪ → δ = − δ − δ⎨⎪ = ρ φ⎪⎩

′′ ′′ ′′ ′′δ = − δ − φ

∫ ∫

&&&& &&

&&&&

h h

10 0

1 g 1 1

2 11 1 1 g n g 1 g

1

q(t) q(t)dx = -K q(t) q(t)

En total : W 0 ( L u (t) M q(t) K q(t)) q(t) 0

LLuego : M q(t) K q(t) L u (t) q(t) q(t) u (t) u (t)M

δ δ

δ = → − − − δ =

+ = − ⇒ + ω = − = −Γ

∫ ∫&&&&

&& &&&& && &&

Page 15: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Aplicación a la presa del ejemplo 2.1:

h = 100 m, γ = 2.4 T/m3, α = 0.5, tgϕ = 0.9, Cw = 0.851

T1 = 0.25 s A/g = 0.45 frente a 0.183 del método pseudoestático

0.16 , 1.3, : 1 0.183= = = ⇒ =b ca g Roca compacta tipo I C a gρ

Se toma m = 0.78, E = 2.1e7 Kpa

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

T (s)

A/g

PSA = AT1T2T3T10

Espectro de diseño NCSE-02:

• Embalse vacío y fundación rígida:

Chopra (1988): 1( )( ) 0.38 0.26( )

= =s

h mT s sE MPa

MEF: T1= 0.25 s

Distribución de aceleraciones (fuerzas de inercia)

Pseudo-estático Pseudo-dinámico

Page 16: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Aplicación a la presa del ejemplo 2.1:

Se divide la presa en 10 secciones horizontales de 10 m de altura, y se calculan los distintos Parámetros (Chopra, 1988):

1

21

0 11 1

11

0

( )( ) 0.38 0.26 , 0.05( )

1 ( ) ( )( ) ( , )

1 ( ) ( )

= = =

⎧=⎪

⎪ → =⎨⎪ =⎪⎩

s

h

h

h mT s sE MPa

M w y y dyg L w yf A T fuerza lateral equivalente

M gL w y y dy

g

ζ

φζ

φ

Las fuerzas equivalentes obtenidas se aplican en el modelo de elementos finitos sobre la cara de aguas arriba en las posiciones correspondientes. El análisis estático de la estructura sometida aestas cargas es la respuesta dinámica máxima.

Es posible incorporar nuevos modos de vibración a los resultados siguiendo el mismo procedimiento.

El procedimiento de análisis incorpora mediante tablas y gráficos los efectos de consideración delagua embalsada, la interacción presa terreno y el efecto de absorción de ondas de los sedimentos.Las presiones hidródinamicas obtenidas difieren bastante de las de la formula de Westergaard, enmayor medida cuanto más flexible es la presa.

Page 17: Analisis Sismico de Presas

Resultados sísmicos de la presa con embalse vacío y cimentación rígida

FREQUENCY FREQUENCY FREQUENCY PERIOD NUMBER (RAD/SEC) (CYCLES/SEC) (SECONDS) 1 0.2493125E+02 0.3967931E+01 0.2520205E+00 2 0.5658222E+02 0.9005340E+01 0.1110452E+00 3 0.6683110E+02 0.1063650E+02 0.9401589E-01 4 0.9679310E+02 0.1540510E+02 0.6491357E-01 5 0.1409135E+03 0.2242709E+02 0.4458894E-01 6 0.1464944E+03 0.2331530E+02 0.4289029E-01 7 0.1783869E+03 0.2839116E+02 0.3522223E-01 8 0.1830408E+03 0.2913185E+02 0.3432669E-01 9 0.1966440E+03 0.3129686E+02 0.3195208E-01 10 0.2150860E+03 0.3423200E+02 0.2921243E-01

Análisis de frecuencias y modos de vibración con cosmos/m

INDIVIDUAL MODAL MASS CUMULATIVE EFFECTIVE MASS --------------------- -------------------------- TOTAL MASS TOTAL MASS MODE Mx My Mz Cum. Mx Cum. My Cum. Mz No. ---- ---- ---- ------- ------- ------- MASS MASS MASS MASS MASS MASS 1 0.402 0.240E-01 0.00 0.402 0.240E-01 0.00 2 0.289 0.870E-02 0.00 0.690 0.327E-01 0.00 3 0.128E-01 0.596 0.00 0.703 0.629 0.00 4 0.988E-01 0.208E-01 0.00 0.802 0.650 0.00 5 0.558E-01 0.460E-04 0.00 0.858 0.650 0.00 6 0.198E-02 0.122 0.00 0.860 0.772 0.00 7 0.620E-03 0.649E-02 0.00 0.860 0.779 0.00 8 0.111E-01 0.230E-01 0.00 0.871 0.802 0.00 9 0.183E-01 0.282E-02 0.00 0.890 0.805 0.00 10 0.120E-05 0.755E-02 0.00 0.890 0.812 0.00 TOTAL EFFECTIVE MASS -------------------- = 0.890 0.812 0.000 TOTAL MASS

Participación de masas:

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 18: Analisis Sismico de Presas

Resultados sísmicos de la presa con embalse vacío y cimentación rígida

Análisis pseudo-dinámico o espectral con 1 modo de vibración:

Tensión vertical (Kpa) Tensión principal máxima (Kpa)

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 19: Analisis Sismico de Presas

Resultados sísmicos de la presa con embalse vacío y cimentación rígida

Análisis espectral con 10 modos de vibración:

Tensión vertical (Kpa) Tensión principal máxima (Kpa)

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 20: Analisis Sismico de Presas

Efecto de la cimentación flexible (Chopra, 1988)

1 1 1

1 13

( ) ( / ) ( ) 1.13 0.26 0.31 , 0.05

1 ( / , ) 0.09

= = = =

= + =

%

%

f f

f f suelof

T s R E E T s x s s

E ER

ζ

ζ ζ ζ ζ

Efecto de cimentación flexible y embalse lleno (Chopra, 1988)

1 1 1

1 13

( ) ( / , ) ( , ) ( ) 13 1.13 0.26 0.4 , 0.05

1 ( / , ) 0.1

= = = =

= + + =

%

%

w w f f

w w fr f

T s R h h R E E T s x x s s

h hR R

α ζ

ζ ζ ζ α ζ

α - Coeficiente de absorción de las ondas verticales del agua embalsada por sedimentos

Se definen expresiones para la presión hidrodinámica en función de los parámetrosanteriores y gráficas. Respecto a la presión de Westergaard varía tanto el valor como ladistribución de presiones.

La presión hidrodinámica modifica el valor de L1 y f1 con un nuevo término.

Presa triangularIntroducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 21: Analisis Sismico de Presas

Parámetros del análisis pseudo-dinámico (Chopra 1988)

Modo de vibración primero

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 22: Analisis Sismico de Presas

Ejemplo de aplicación del análisis pseudo-dinámico (Chopra 1988)Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 23: Analisis Sismico de Presas

Análisis de presas arco (Chopra 1988)

Los métodos pseudo-dinámicos son complejos de aplicar y dan peores resultados que en presasde gravedad.Se recurre a programas de EF simulando la interacción presa-fluido-terreno

Introducción al análisis sísmico de presas 4. Análisis pseudo-dinámico

Page 24: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 5. CódigosCódigos

EAGD-84 Análisis sísmico de presas de gravedadEAGD-Slide Estabilidad sísmica de presas de gravedadEACD-3D-94 Análisis sísmico de presas tridimensionales

Page 25: Analisis Sismico de Presas

Introducción al análisis sísmico de presas 5. Análisis espectral y temporal

Comparación del análisis sísmico espectral y temporal lineal de una presa de gravedad con embalse vacío, y cimentación rígida.

H = 87 m, E = 2.5·107 KN/m2 ν = 0.2 γ = 2.45 T/m3 ξ = 0.05

Carga dinámica: Componente NS del terremoto de El Centro (1940).

Frecuencias naturales:

FREQUENCY FREQUENCY FREQUENCY PERIOD NUMBER (RAD/SEC) (CYCLES/SEC) (SECONDS) 1 .2492610E+02 .3967112E+01 .2520726E+00 2 .5727264E+02 .9115224E+01 .1097066E+00 3 .7989485E+02 .1271566E+02 .7864318E-01 4 .1022408E+03 .1627214E+02 .6145475E-01 5 .1548120E+03 .2463910E+02 .4058590E-01

Factores de participación de masas: INDIVIDUAL MODAL MASS CUMULATIVE EFFECTIVE MASS --------------------- -------------------------- TOTAL MASS TOTAL MASS MODE Mx My Mz Cum. Mx Cum. My Cum. Mz 1 .353 .133E-01 .000 .353 .133E-01 .000 2 .233 .543E-02 .000 .586 .187E-01 .000 3 .520E-01 .591 .000 .638 .610 .000 4 .120 .456E-01 .000 .758 .655 .000 5 .738E-01 .521E-03 .000 .832 .656 .000

TOTAL EFFECTIVE MASS-------------------- = .832 .656 .000

TOTAL MASS

Page 26: Analisis Sismico de Presas

Análisis temporal Resultados: Uxmax = –3.33 cm, Uymax = –0.88 cm, P1 = 37.6 kg/cm2, P3 = –36 kg/cm2

Aceleración absoluta horizontal (m/sg2) del nudo 62

Tensión vertical Sy en el elemento 5 (aguas arriba)

Tensión principal máxima en t = 2.52 sg (KN/m2)

Introducción al análisis sísmico de presas 5. Análisis espectral y temporal

Page 27: Analisis Sismico de Presas

Análisis espectral Resultados: Uxmax = –3.33 cm, Uymax = –0.88 cm, P1 = 37.6 kg/cm2, P3 = –36 kg/cm2

Espectro de pseudo aceleraciones del acelerograma completo

Movimientos horizontales máximos (m) Tensiones principales máximas (KN/m2)

Introducción al análisis sísmico de presas 5. Análisis espectral y temporal

Page 28: Analisis Sismico de Presas

l

Fhd

±Fhs

αH

H Fvg ± Fvs

Cl

Fhe

• Análisis de seguridad estática y dinámica de presas de gravedad, contrafuertes y bóvedaPresas de Entrepeñas, Zorita, Buendia, Bolarque y Belesar

Estudios sísmicos: EAGD-84 y EACD-96Estudios térmicos y sísmicos de elementos secundarios: Cosmos/mAnálisis de la seguridad al vuelco y al deslizamiento

Introducción al análisis sísmico de presas 6. Ejemplos

Page 29: Analisis Sismico de Presas

• Presa de Entrepeñas

Eh

XEt

Y

Z

MODELO Eh Et

Entre1 260 000 260 000 Entre2 260 000 130 000

± 15 °C ± 15 °C

± 15 °C

± 15 °C± 15 °C

± 0 °C

H

± 15 °C

± 15 °C

± 3 °C

± 15 °C

± 0 °C

± 15 °C

H

h

∆T

Análisis termoelástico

Variaciones térmicas Modelo FEM

Introducción al análisis sísmico de presas 6. Ejemplos

Page 30: Analisis Sismico de Presas

• Presa de Entrepeñas

Tensión principal máxima P1 (Kg/cm2) deorigen térmico, para embalse lleno

Frecuencias fundamentales de vibración (Hrz) de la presa

Entre 1 Entre 2 1 3.467 2.906

2 7.037 5.348

3 7.196 6.473

4 11.746 10.102

5 18.859 17.366

6 21.110 20.490

7 27.404 25.945

8 30.478 29.152

9 33.641 32.501

10 36.390 34.455

a) Cargas estáticas

b) Envolvente de cargas estática y sísmica

Valores de P1 (Kg/cm2) para la combinación más desfavorable de tensiones de tracción en embalse lleno ENTRE1 h1 lD

Introducción al análisis sísmico de presas 6. Ejemplos

Page 31: Analisis Sismico de Presas

• Presa de Entrepeñas

Gráfica de la seguridad al deslizamiento

Gráfica de la excentricidad

a) Cargas estáticas

b) Envolvente de cargas estática y sísmica

Valores de P1 (Kg/cm2) para la combinación más desfavorable en tensiones de tracción en embalse vacío ENTRE1 h1 vD

Introducción al análisis sísmico de presas 6. Ejemplos

Page 32: Analisis Sismico de Presas

• Presa de Zorita

Acelerogramas de cálculo

Introducción al análisis sísmico de presas 6. Ejemplos

Page 33: Analisis Sismico de Presas

Envolventes de tracciones y compresiones (Kp/cm2)estáticas y sísmicas

Acción térmica

Introducción al análisis sísmico de presas 6. Ejemplos

Page 34: Analisis Sismico de Presas

Análisis sísmico de las compuertas metálicas y la pasarela

Espectros de respuesta nodal en nudos de apoyo

Presión hidrodinámica

Resultados estáticos y sísmicos

Introducción al análisis sísmico de presas 6. Ejemplos

Page 35: Analisis Sismico de Presas

• Presa de Belesar1.- Análisis estático frente a procesos geoquímicos expansivos2.- Análisis sísmico considerando la interacción presa-terreno-agua embalsada con EACD3D-96

Modelos estructurales

Figure 4. Finite element model of Belesar Dam

Table 2. Mechanical properties of foundation materials (MPa x 145 = psi)

Material E (MPa) ν

1. Rock Foundation 37 000 0.25

2. Rock Foundation 37 000 0.25

3. Rock Foundation 12 500 0.25

Introducción al análisis sísmico de presas 6. Ejemplos

Page 36: Analisis Sismico de Presas

• Presa de BelesarIntroducción al análisis sísmico de presas 6. Ejemplos

Page 37: Analisis Sismico de Presas

• Presa de Belesar

Sección central de la bóveda de Belesar

Introducción al análisis sísmico de presas 6. Ejemplos

Page 38: Analisis Sismico de Presas

• Presa de Belesar Table 1. Altitude of displacement monitoring devices (m x 3.2808 = ft)

Name R0 R1 R2 R3 R4 R5

Elevation (m) 330 312 292 272 252 232

Figure 2. Location of displacement monitoring devices (m x 3.2808 = ft)

a) Displacement (mm) at R0 in location 1 (mm x 0.0394 = in)Figure 3. Historical evolution of dam displacements b) Displacement (mm) at R0 in location 2 (mm x 0.0394 = in)

Introducción al análisis sísmico de presas 6. Ejemplos

Page 39: Analisis Sismico de Presas

• Presa de Belesar

a) Downstream side

b) Upstream side

Figure 6. Total values of strain due to expansion before 1980 (x 10-6)

a) Downstream side

b) Upstream side

Figure 7. Annual rate of strain due to expansion after 1980 (x 10-6)

Introducción al análisis sísmico de presas 6. Ejemplos

Figure 8. Temperature field calculated for the annual rate of strain due to expansion after 1980

Page 40: Analisis Sismico de Presas

• Presa de Belesar

����������

�� �����������

� �

a) Location 1 at Elevation R0 (mm)

����������

�� ����������

b) Location 2 at Elevation R0 (mm)

Figure 9. Comparison between actual data and results from the finite element model (mm x 0.0394 = in)

Introducción al análisis sísmico de presas 6. Ejemplos

Page 41: Analisis Sismico de Presas

• Presa de Belesar

P1 (Kpa) Tensión principal máxima (tracciones)

Resultados estáticos. Se modelizan las expansiones mediante cargas térmicas en el hormigón de la presa, con dos modelos del material: lineal y no lineal

P3 (Kpa) Tensión principal mínima (compresiones)

Introducción al análisis sísmico de presas 6. Ejemplos

0

5

10

15

20

25

30

35

40

45

50

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

ε

σ (MPa)1

2

Figure 5. Constitutive equations of concrete (MPa x 145 = psi)

Page 42: Analisis Sismico de Presas

• Presa de BelesarAnálisis sísmico: modelo estructural

PresaVolumen embalsado

Interfaz con el terreno

Introducción al análisis sísmico de presas 6. Ejemplos

Page 43: Analisis Sismico de Presas

ACELEROGRAMA H1

Zorita

-8,00E-02

-6,00E-02

-4,00E-02

-2,00E-02

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

0 2 4 6 8 10 12 14 16 18

t (s)

Ace

l (a

/g)

• Presa de BelesarAnálisis sísmico: acelerogramas

ACELEROGRAMA S69EKern County ( California )

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12 14 16 18

t (s)

Ace

l (a/

g)

Introducción al análisis sísmico de presas 6. Ejemplos

Page 44: Analisis Sismico de Presas

• Presa de BelesarAnálisis sísmico

Resultados del análisis sísmico (Kpa)

Introducción al análisis sísmico de presas 6. Ejemplos

Page 45: Analisis Sismico de Presas

• Chopra A.K. (1995); Dynamics of structures. Theory and application to earthquake Engineering. Prentice Hall.

• Craig R.R. (1981); Structural Dynamics. An Introduction to Computer Methods. John Wiley.

• Vallarino E. (1998); Tratado Básico de Presas. 4 Ed. Colegio de Ingenieros de Caminos, Canales y Puertos.

• Jansen R.B.(Ed.) (1988); Advanced Dam Engineering. Earthquake Response Analysis of Concrete Dams. A.K. Chopra.• Barbat A.H. y Canet J.M. (1994); Estructuras sometidas a acciones sísmicas, cálculo por ordenador. CIMNE

• Car E. y Oller S. (2000); Estructuras sometidas a acciones dinámicas. Ed. E. Car, F. López y S. Oller. CIMNE.

• Wilson E..L. (2002); Three Dimensional Static and Dynamic Analysis of Structures. A Physical Approach with Emphasis on Earthquake Engineering. Universidad de California en Berkeley.

• NCSE-02 (2002); Norma de construcción sismorresistente. Parte general y de edificación. Ministerio de Fomento.

• EUROCÓDIGO 8 (1998); Disposiciones para el proyecto de estructuras sismorresistentes. Parte 1.1. AENOR

• EAGD-84 (1985). A Computer Program for Earthquake Analysis of Concrete Gravity Dams. Gregory Fenves, Anil K. Chopra. Dpto. Ingeniería Civil, Universidad de California en Berkeley.

• EACD-3D-96 (1996). A Computer Program for Three-Dimensional Earthquake Analysis of Concrete Dams. HanchenTan, Anil K. Chopra, Dpto. Ingeniería Civil, Universidad de California en Berkeley.

7. bibliografía

Introducción al análisis sísmico de presas 7. Bibliografía