Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

Download Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

Post on 02-Jul-2016




2 download


  • te




    s. T-sc

    achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially oper-

    Landber Stgies, in

    8.45 million tons of OFMSW were collected. These organic wastesconsisted of 4.15 million tons of source-sorted organic householdresidues and 4.3 million tons of compostable solid wastes fromgardens and parks (Statistisches Bundesamt, 2008a). There exist1742 biological treatment plants and 45 mechanicalbiological

    able waste. The majority of this amount (approx. 5.9 million tons)was treated in composting plants and generated compost predom-inantly from source-sorted OFMSW as well as garden and parkwastes (BGK, 2007).

    One important parameter of OFMSW for a successful compost-ing process is its moisture content since the microbial decomposi-tion of organic matter mainly occurs in the thin liquid lm aroundthe surface of the particles (Krogmann and Krner, 2000). To sup-port growth and activity of microorganisms that are involved inthe composting process, OFMSW should have a moisture contentwithin the range of 4060%. A moisture content below 40% will

    * Corresponding author. Address: Institut fr Ingenieurbiologie und Biotechno-logie des Abwassers, Universitt Karlsruhe (TH), Am Fasanengarten, Geb. 50.31, 4.OG, 76131 Karlsruhe, Germany. Tel.: +49 (0) 721 608 2297; fax: +49 (0) 721 6087704.

    Waste Management 30 (2010) 18281833

    Contents lists availab

    Waste Man

    elsE-mail address: (J. Winter).treatment and nal treatment methods. According to the EuropeanLandll Directive, it is compulsory for the member states to reducethe amount of biodegradable solid waste that is deposited on san-itary landlls. The target is that by the year 2020 only less than 35%of the total biodegradable solid waste that was produced in 1995will be deposited on sanitary landlls.

    Separation of municipal waste into a recyclable fraction, resid-ual waste fraction and a source-sorted organic fraction (OFMSW)is a common practice of waste management in German cities in or-der to meet the obligations of the Landll Directive. In 2006 around

    eral technologies and methodologies have been applied in order tooptimize the composting process and to improve the quality ofcompost. Already in 1995 around 28% of the composting plantsin Germany were categorized as technically advanced (Gruneklee,1997). In 2006, a total number of 485 OFMSW treatment plantsparticipated in the State Commission for Delivery Terms and Qual-ity Assurance (Ger.: RAL-Reichsausschu fr Lieferbedingungen undGtesicherung) of compost, fermentation products and humus(Ger.: RAL-Gtesicherungen fr Kompost, Grprodukte und AS-Hu-mus). These plants altogether treated 7.8 million tons of biodegrad-1. Introduction

    The introduction of the Europeanhas stimulated European Union Memable solid waste management strate0956-053X/$ - see front matter 2009 Elsevier Ltd.doi:10.1016/j.wasman.2009.09.019ated at an organic loading rate of 10.7 kg COD m3 d1. The loading was increased to nally 27.7 kgCOD m3 d1, corresponding to a reduction of the hydraulic retention time from initially 20 to nally7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination)of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane pro-duction of the reactor increased from 2.6 m3 m3reactor d

    1 to 7.1 m3 m3reactor d1.

    The results indicated that press water from the organic fraction of municipal solid waste was a suit-able substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

    2009 Elsevier Ltd. All rights reserved.

    ll Directive (EC, 1999)ates to develop sustain-cluding collection, pre-

    treatment plants throughout Germany, including compostingplants and anaerobic digesters (Statistisches Bundesamt, 2008b).Germany is categorized as an advanced composting country sinceit has installed a wide range of composting plants from simplewindrow systems to highly sophisticated technical processes. Sev-A high methane productivity of 270 m3 CH4 ton1 CODadded or 490 m

    3 CH4 ton1 VSadded wasAnaerobic digestion of pressed off leachaof municipal solid waste

    Satoto E. Nayono a,b, Josef Winter b,*, Claudia GallertaDepartment of Civil Engineering, Yogyakarta State University, Campus UNY Karangmab Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karls

    a r t i c l e i n f o

    Article history:Received 25 February 2009Accepted 14 September 2009Available online 13 October 2009

    a b s t r a c t

    A highly polluted liquid (pmunicipal solid waste in ainvestigated in batch assayobic digestion, a laboratory

    journal homepage: www.All rights reserved.from the organic fraction

    Yogyakarta 55281, Indonesia, Am Fasanengarten, 76131 Karlsruhe, Germany

    s water) was obtained from the pressing facility for the organic fraction ofmposting plant. Methane productivity of the squeezed-off leachate waso assess the technical feasibility of press water as a substrate for anaer-ale glass column reactor was operated semi-continuously at 37 C.

    le at ScienceDirect


    evier .com/ locate/wasman

  • severely inhibit the microbial activity, whereas a moisture contentabove 60% will lead to anaerobiosis and may cause emission of badodor. Each fraction of OFMSW has a different moisture content.Previous research (e.g. Rodriguez Iglesias et al., 2000; Hansenet al., 2003; Nordberg and Edstrm, 2005; Bolzonella et al., 2005)reported that raw OFMSW had a relatively high moisture contentof more than 60%, which was too high for composting. For compostproduction the respective OFMSW must either be mixed withstructured support material (which must be sieved off after com-posting) or dewatered by pressing off surplus water to reach 55%or less moisture content. The leachate from pressing will later becalled press water, which has a high content of suspended and sol-ubilised organic material.

    Aerobic degradation of compounds from the liquid fraction ofOFMSW to CO2 and water normally requires less time but an aer-ation system, that consumes much energy. Bad odor and greenhouse gasses may be emitted if the system is not covered for off-

    water as a substrate of anaerobic digestion for recovery of its en-ergy potential and to reduce handling problems.

    press water are generated. The daily production of press water inthis composting plant is approximately 40 m3.

    The anaerobic sludge inoculum was obtained from the efuentof a full-scale wet anaerobic digestion plant treating source-sortedOFMSW from a city in Germany. Before using the digester efuentas inoculum for batch assays and the semi-continuous reactor, theanaerobic sludge was sieved to remove coarse material such asleaves, branches, bones and nutshells.

    2.2. Experimental set-up

    Methane production of press water was investigated in tripli-cate assays in Schott-bottles of one liter volume. The test was per-formed by adding 2.5 mL press water to 247.5 mL of inoculum,making the total volume of the assay 250 mL (corresponding toan addition of 0.53 g of chemical oxygen demand, COD, or 0.29 gof volatile solids, VS). In control assays methane production from





    S.E. Nayono et al. /Waste Management 30 (2010) 18281833 18292. Materials and methods

    2.1. Press water sample and inoculum

    Press water samples were obtained from a municipal compost-ing plant. In this composting plant, the source-sorted OFMSW fromseven municipalities is prepared for compost production. A press-ing method with mash-separator technique is employed to reducethe moisture content of the OFMSW. A general overview of the pro-cesses involved in the composting plant is presented in Fig. 1.Using the mash separation for the

  • and Nordmann (1977). Biogas composition (methane and carbondioxide) and VFA were analysed by gas chromatography accordingto Gallert and Winter (1997). The sand content of the press waterwas analysed by washing with water (up-ow velocity approx.0.01 m s1). The heavy metals content was analysed using a ameatomic absorption spectrometer (Varian-Spectra AA 220FS, Mul-grave, Australia).

    3. Results and discussion

    3.1. Characteristics of press water

    The parameters of the composition of press water are presentedin Table 1. Approximately half of the total COD was soluble, as wasfound earlier for another source of OFMSW (Gallert and Winter,1997). This may indicate that hydrolysis must have started already

    strains. They showed the presence of the following heavy metals

    Methanobacterium wolfei (Winter et al., 1984). Although the pres-

    Table 2Heavy metal concentration in press water comparison of inhibitory and toxicityconcentrations for anaerobic digestion.

    Parameters Press water (mg L1) Inhibitory (mg L1)a Toxic (mg L1)a

    Total Soluble

    Iron 1249 291.0 n.a. n.a.Zinc 59.6 42.0 150400 250600Nickel 96.4 13.4 10300 301000Cobalt 22.2 12.8 n.a n.aCopper 29.4 15.2 40250 170300Cadmium 1.9 1.3 - 20600Lead 15.0 15.0 300340 340Chromium 13.1 9.8 100300 200500Manganese 202.6 134.0 n.a. n.a.

    a Konzeli-Katsiri and Kartsonas (1986).

    1830 S.E. Nayono et al. /Waste Management 30 (2010) 18281833during collection, weighing and interim storage and may have pro-ceeded with high hydrolysis rates after the pressing procedure dueto the small particle size in the suspension, obtained by the appliedmash-separator technique. Palmowski and Mller (2000) reportedthat size reduction of materials with high bre content will im-prove degradability up to 50% and biogas productivity by 20%.The authors assumed that size reduction did not only increase sur-face areas for biodegradation in a more easy and rapid way but alsosupported hydrolysis of suspended solid compounds in the longterm. In line with the high soluble COD content of press waterthere was an accelerated acidication process, indicated by thepresence of relatively high concentrations of total VFA(9.51 g L1) with acetic acid as the predominant organic acid.

    The sand content of press water was analyzed using a gentlewashing method since, due to the consistency and the grayish darkcolor of the press water, sedimentation in Imhoff cones did notlead to a clearly visible layering. The sand content is an importantparameter since the sand might settle in the less turbulent zones ofanaerobic digesters, independently of the agitation system. This re-duces the working volume and the nominal HRT of the reactor.Even if uidization could be maintained properly, sand wouldcause abrasion of pipe bends or moving mechanical equipmentsuch as pump impellers, which consequently would increase main-tenance costs.

    Table 2 presents some important heavy metal concentrations inthe press water. Many heavy metal ions are essential for anaerobicdigestion as modulators of enzymes which are required for properenergy metabolism of organisms that drive anaerobic reaction se-quences (Oleszkiewicz and Sharma, 1990). Takashima and Speece(1989) investigated heavy metals in cells of ten methanogenic

    Table 1Main characteristics of press water.

    Parameter Unit Value

    pH 4.3Density ton m3 1.02Chemical oxygen demand g L1 213.4Soluble COD g L1 100.1Total solids g L1 168.4Volatile solids g L1 117.7Ashes g L1 50.7Total Kjeldahl nitrogen g L1 4.10TKNsoluble g L1 1.52Ammonia nitrogen g L1 0.72Acetic acid g L1 8.56Propionic acid g L1 0.16Butyric acid g L1 0.21Valeric acid g L1 0.58Sand sediment Wet volume mL L1 3.0Dry weight g L1 4.40Volatile fraction g L1 0.05ence of heavy metals in organic matter may cause stimulationfor anaerobic digestion, it was also observed that heavy metals inhigher concentration may cause inhibition or even exert toxic ef-fects. Aquino and Stuckey (2007) collected data from several pub-lications and concluded that the action of heavy metals asnutrients or toxicants was affected by many factors, such as thetotal metal concentration, the environmental conditions (pH andredox potential), the kinetics of precipitation, complexation andadsorption. Stronach et al. (1986) considered already that onlythe soluble part of metals was bioavailable and thus relevant forthe anaerobic bacteria. From Table 2, it can be seen that almostall of the essential metals (except for molybdenum, which wasnot measured) were available in the press water. With the excep-tion of iron and nickel, the heavy metal concentrations (both, totaland soluble) were relatively low and far from inhibitory or toxicamounts.

    3.2. Potential methane production of press water

    Results of methane production from press water in batch exper-iments are presented in Fig. 2. The maximum methane productionrate was achieved during the rst two days of the digestion (ca.(in falling concentration): Fe ZnP Ni > Co = Mo > Cu. A properdosage of heavy metals is required for anaerobic processes. Nickelions at a concentration of 5 mg L1 for instance stimulated meth-ane production by Methanobacterium thermoautotrophicum (Oles-zkiewicz and Sharma, 1990) and tungstate was required byFig. 2. Methane production from press water. Curves represent methane produc-tion from press water only and were obtained by subtracting methane productionin assays with and without press water addition.

  • 180 m3 CH4 ton1 VSadded d1). About 90% of the total methane wasreleased in the rst four days. After seven days of digestion therewas no signicant methane production any more. Therefore, itwas decided that after two weeks of digestion methane productionof press water must have reached its nal state. The maximumnet methane production of press water was 270 m3 CH4 ton1

    CODadded, corresponding to 490 m3 CH4 ton1 VSadded.

    3.3. Performance of the semi-continuous reactor

    3.3.1. OLR, biogas production and residual volatile fatty acidsA laboratory-scale semi-continuous reactor was operated for

    about ve months. According to Lissens et al. (2001), a reactorcould be categorized as a wet anaerobic digester with completemixing if the solid content was less than 15% (w/v). Although theraw press water had a TS content of 17% (w/v), immediately afterfeeding to the reactor twice a day and mixing for 1 min the reactorcontent had a maximum solid content of 11%. Thus, the digesteroperated as a wet process.

    Biogas and methane production for increasing OLRs to morethan 25 kg VS m3 d1 during the reactor experiment are shownin Fig. 3. The average biogas yield and its methane content for eachHRT is listed in Table 3. Initially the reactor was fed with an OLR of10.7 kg CODm3 d1. The OLR was increased stepwise to nally27.7 kg COD m3 d1 (from 5.9 kg VS m3 d1 to nally 15.3 kgVS m3 d1). Each increment was performed when the reactorreached steady-state conditions, as judged by a constant COD elim-ination, methane content of the biogas, pH of the digestate and

    The volumetric biogas production of the reactor increased line-arly with the increment of the OLR. The specic biogas or methaneproduction was relatively stable at values between 647 and 696 m3

    biogas ton1 VS d1, equivalent to (438450 m3 CH4 ton1 VS d1).The methane yield of the reactor reached 89.691.8% of the maxi-mum potential methane production of press water after prolongedincubation (490 m3-CH4 ton1 VSadded; Fig. 2). This indicated thatthe initially inoculated population contained all those organismsin sufcient amounts that were required for efcient press waterbiodegradation.

    On day 119 and day 130 there were aeration accidents in thereactor. After clogging of the gas outlet tube by massive productionof foam the upper rubber stopper was lifted off. The recirculation-pump pumped air from the top of the open reactor through thepress water content for 610 h. After the reactor was repaired,the OLR was decreased to 10.7 kg CODm3 d1 by lowering thefeeding rate. It was increased back to 24.4 kg COD m3 d1 in largeincrements. After only 34 days, the biogas production reached itshigh value from before the disturbance.

    Fig. 4 presents acetate and propionate concentrations in theefuent of the press water bioreactor. In the rst week, propionateincreased to more than 2.5 g L1. However, this high propionateconcentration seemed not to inhibit methane production or toinuence the overall anaerobic process. Within a few days the pro-pionate decreased to a non-measurable concentration, indicatingthat the propionate-degraders within the group of acetogenic bac-teria had adapted their activity to the new situation. n-Butyratewas not measurable at any time. It is either not an intermediateor its acetogenic conversion to acetate and hydrogen proceeds


    S.E. Nayono et al. /Waste Management 30 (2010) 18281833 1831concentration of residual VFA in the efuent. The stepwise increaseof the OLR required an increasing press water addition from0.5 L d1 to 1.3 L d1, which corresponded to a reduction of theHRT from 20 to 7.7 days. Until day 98 feeding of press water wasonly fromMonday to Friday (no feeding at the weekends), but fromday 98 onwards the reactor was fed 7 days per week.

    Fig. 3. OLR and daily volumetric biogas and methane production.

    Table 3Average biogas yield and methane content at each HRT.

    HRT (days) OLR [COD] (kg m3 d1) OLR [VS] (kg m3 d1) Biogas

    20.0 10.7 5.9 81.516.7 12.8 7.1 80.814.3 14.9 8.2 76.812.5 17.1 9.4 76.711.1 19.2 10.6 77.810.0 21.3 11.8 75.78.7 24.5 13.5 76.3

    7.7 27.7 15.3 80.3

    a PW = press water.much faster at any time than its generation (Gallert and Winter,2005).

    The concentration of propionate and of acetate increased sud-denly at each stepwise increase of the OLR (Fig. 4). This indicatedthat more propionate and acetate was produced than could be

    uction (m3 m3 PWa d1) Biogas production (m3 ton1 VS d1) CH4 (%)

    696 64.6691 65.8656 67.4656 65.8665 66.8647 67.7652 67.9

    Fig. 4. OLR and residual volatile fatty acids in the efuent.686 67.6

  • degraded by the bacteria of the consortium for a short while, but afast recovery within a few days was possible. These two bottle neckreactions may have been caused by limiting activities of syntrophicpropionate-degraders and aceticlastic methanogens.

    Another sudden increase of both acetate and propionate occu-red after accidental oxygen intrusion into the reactor at day 119.The concentration of acetate increased to more than 2 g L1 andthat of propionate to more than 1.5 g L1. However, by reducingthe OLR for 2 days, these concentrations decreased to their normallow level within 14 days. Biogas and methane production de-creased immediately, but recovered fast (Fig. 3).

    3.3.2. Removal efciency of organic compounds in press waterThe removal efciency of organic compounds was measured

    daily by determining the elimination of COD. When steady-stateconditions at each HRT were reached, based on stable values forpH, low residual fatty acids, stable biogas production and CODelimination, TS and VS of the reactor efuent were also measured(see Fig. 5).

    In the rst weeks of the operation, the reactor apparentlyreached a relatively high COD elimination of more than 75%. Thishigh COD elimination was probably due to a high inoculum-sub-strate ratio. During the time of intermittent feeding from Mondayto Friday, the COD elimination varied from 60% to 70%. The highestCOD elimination was measured on every Monday since there wasno feeding during the weekend. When feeding was supplied for se-

    60% is considered close to the optimum for anaerobic degradation

    Fig. 5. OLR and COD elimination efciency.

    Fig. 6. Total solids and volatile solids elimination at increasing OLR.

    Table 4Energy balance, reactor volume design and potential energy recovery.



    1832 S.E. Nayono et al. /Waste Management 30 (2010) 18281833Parameter Unit V

    Reactor volume design and potential energy recovery:Press water production m3 d1 4Designed HRT Days 1Active reactor volume m3 4Daily methane production m3 d1 2Energy recovered kWh d1 8Potential benet /year 5

    Energy balance in the composting plant (per ton OFMSW delivered):Energy recovered from press water kWh 6Energy for composting kWh 2Energy for AD processes (pre-treatment and pumping) kWh 2

    Energy for AD heating kWh 5.0Surplus energy kWh 10.8of press water, it can be concluded that the OLR of the reactorshould be within the range of 13.522.5 kg CODm3 d1 (7.512.4 kg VS m3 d1). This high OLR values for a still acceptableCOD removal support the conclusion of Hartman and Ahring(2006) that a high-solids anaerobic process appeared to be moreefcient when the reactor was operated at an OLR higher than6 kg VS m3 d1.

    3.4. Potential energy recovery from anaerobic digestion of press water

    Table 4 presents the energy recovery from anaerobic digestionof 40 m3 press water per day that are generated in a compostingplant with a pressing facility. Based on experience, one ton of deliv-ered OFMSW resulted in 0.7 ton of solid state waste and 0.3 ton ofpress water. A HRT of 10 days was suggested for anaerobic diges-tion to prevent massive foaming, which occurred at an OLR higherthan 21.3 kg CODm3 d1 and to stabilize the organic matter re-moval efciency. Finally, at a HRT of 10 days reserve capacitiesfor shock loading or for treatment of an increased amount of presswater in future are available. A rough energy balance with energygain from biogas and energy requirement for substrate pre-treat-ment and maintenance of anaerobic digestion is also presentedin Table 4. Overall, about 15% of the energy of the biogas from presswater may be obtained as surplus energy.

    4. Conclusions

    Part of the water content of the wet organic fraction of munici-pal solid wastes was pressed off as press water to reduce or avoid

    e Remarks

    1 m3 CH4 = 31.46 MJ (at 37 C) 1 MJ = 0.278 kWh Generator efciency = 50% 1 kWh = 0.19 Euro


    35 kWh pro ton OFMSW input (Hartman and Ahring, 2006)40% of energy produced (Murphy and McKeogh, 2004)ven days a week the COD elimination reached stable values be-tween 60% and 65%.

    In Fig. 6 the relationship between solids elimination (TS and VS)and the OLR is presented. Assuming that a VS elimination of 5010% of energy produced-as electricity (Murphy and McKeogh, 2004)

  • addition of structural material for composting of the solid residues.The press water had a high potential for methane production. Itwas fed to a CSTR laboratory column reactor for 5 months. A stablemaximal OLR of 27.7 kg m3 d1 (15.3 kg VS m3 d1) could bereached, which is a relatively high loading compared to otheranaerobic digesters treating OFMSW. More than 387 m3 biogaswere generated per ton of COD added. The methane content ofthe biogas was around 65% and COD elimination was decreasingfrom 70% at an OLR of 17 kg. m3 d1 to 60% at an OLRof >25 kg m3 d1.

    The separation of the surplus moisture from the OFMSW im-proves the composting process and reduces carbon dioxide emis-sion, since a signicant part of the biodegradable organiccompounds is soluble and is separated with the press water. Thebiogas from anaerobic digestion of press water can displace fossilfuel and due to greenhouse gas savings provide an environmentaladvantage.


    Satoto E. Nayono was a recipient of a PhD-Grant from Bundes-

    Gallert, C., Winter, J., 1997. Mesophilic and thermophilic anaerobic digestion ofsource-sorted organic wastes: effect of ammonia on glucose degradation andmethane production. Applied Microbiology Biotechnology 48, 405410.

    Gallert, C., Winter, J., 2005. Bacterial metabolism in wastewater treatment systems.In: Jrdening, H.-J., Winter, J. (Eds.), Environmental Biotechnology Conceptsand Applications. Wiley-VCH, pp. 148.

    Gruneklee, C.E., 1997. Development of composting in Germany. In: Stentiford, E.I.,(Ed.), Organic Recovery and Biological Treatment into the Next Millennium,Orbit 97 Conference Proceedings, Harrogate, UK, pp. 313316.

    Hansen, T.L., Svrd, A0., Angelidaki, I., Schmidt, J.E., Jansen, J., Christensen, T.H., 2003.

    Chemical characteristics and methane potentials of source-sorted and pre-treated organic municipal solid waste. Water Science and Technology 48 (4),205208.

    Hartman, H., Ahring, B.K., 2006. Strategies for the anaerobic digestion of the organicfraction of municipal solid waste: an overview. Water Science and Technology53 (8), 722.

    Konzeli-Katsiri, A., Kartsonas, N., 1986. Inhibitory of anaerobic digestion by heavymetals. In: Bruce, A.M., Konzeli-Katsiri, A., Newman, P.J. (Eds.), AnaerobicDigestion of Sewage Sludge and Organic Agricultural Wastes. Elsevier AppliedScience Publisher, London, UK.

    Krogmann, U., Krner, I., 2000. Technology and strategies of composting. In: Rehm,H.J., Reed, G., Phler, A. and Stadler, P. (Eds.), Biotechnology. In: Klein, J., Winter,J., (Vol. Eds.), vol. 11c, Wiley-VCH, Weinheim, Germany.

    Lissens, G., Vandevivere, P., Baere, L., De Biey, E.M., Verstraete, W., 2001. Anaerobicdigestion for sustainable development solid waste digestors: processperformance and practice for municipal solid waste digestion. Water Science

    S.E. Nayono et al. /Waste Management 30 (2010) 18281833 1833ministerium fr Bildung und Forschung, Bonn within the IPSWaTprogramme. We also thank DFG for nancial support.


    Aquino, S.F., Stuckey, D.C., 2007. Bioavailability and toxicity of metals nutrientsduring anaerobic digestion. Journal of Environmental Engineering 133 (1), 2835.

    BGK (Bundesgtegemeinschaft Kompost e.V.), 2007. Gtesicherung in Deutschland:Kompostierungs- und Vergrungsanlagen. Humuswirtschaft & Kompost 03/2007. (retrieved: September 2008).

    Baldasano, J.M., Soriano, C., 2000. Emission of greenhouse gases from anaerobicdigestion processes: comparison with other municipal solid waste treatments.Water Science and Technology 41 (3), 275282.

    Bolzonella, D., Fatone, F., Pavan, P., Cecchi, F., 2005. Anaerobic fermentation oforganic municipal solid wastes for the production of soluble organiccompounds. Industrial and Engineering Chemistry Research 44, 34123418.

    DEV (Deutsche Einheitsverfahren),, 1983. Deutsche Einheitsverfahren zur Wasser-,Abwasser und Schlammuntersuchung. (Standard Methods for Water,Wastewater and Sludge Analysis). Verlag Chemie, Weinheim, Germany.

    EC (The Council of the European Union), 1999. Council Directive 1999/31/EC of 26April 1999 on the Landll of Waste. Ofcial Journal of the EuropeanCommunities L 182/1, 16/7/1999, 1999.

    Fricke, K., Santen, H., Wallmann, R., 2005. Comparison of selected aerobic andanaerobic procedures for MSW treatment. Waste Management 25, 799810.and Technology 44 (8), 91102.Murphy, J.D., McKeogh, E., 2004. Technical, economic and environmental analysis of

    energy production from municipal solid waste. Renewable Energy 29, 10431057.

    Nordberg, A0., Edstrm, M., 2005. Co-digestion of energy crops and the source-sorted

    organic fraction of municipal solid waste. Water Science and Technology 52 (12), 217222.

    Oleszkiewicz, J.A., Sharma, V.K., 1990. Stimulation and inhibition of anaerobicprocesses by heavy metals a review. Biological Wastes 31, 4567.

    Palmowski, L.M., Mller, J., 2000. Inuence of size reduction of organic wastes ontheir anaerobic digestion. Water Science and Technology 41 (3), 155162.

    Rodriguez Iglesias, J., Castrilln Pelaez, L., Maranon Maison, E., Sastre Andres, H.,2000. Biomethanization of Municipal Solid Waste in a Pilot Plant. WaterResearch 34 (2), 447454.

    Statistisches Bundesamt, 2008a. Erhebung ber Haushaltsabflle: Ergebnisbericht2006. Statistisches Bundesamt, Wiesbaden, Germany.

    Statistisches Bundesamt, 2008b. Abfallentsorgung 2006, Fachserie 19 Reihe 1.Statistisches Bundesamt, Wiesbaden, Germany.

    Stronach, S.M., Rudd, T., Lester, J.N., 1986. Anaerobic Digestion Processes inWastewater Treatment. Springer Verlag, Berlin, Germany.

    Takashima, M., Speece, R.E., 1989. Mineral nutrient requirements for high ratemethane fermentation of acetate at Low SRT. Research Journal of the WaterPollution Control Federation 61 (1112), 16451650.

    Winter, J., Lerp, C., Zabel, H.-P., Wildenauer, F.X., Knig, H., Schindler, F., 1984.Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic,autotrophic methanogen. Systematic Applied Microbiology 5, 457466.

    Wolf, P., Nordmann, W., 1977. Eine Feldmethode fr die Messung des CSB vonAbwasser. (A eld method for COD analysis in wastewater). KorespondenzAbwasser 24, 277279.

    Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid wasteIntroductionMaterials and methodsPress water sample and inoculumExperimental set-upAnalytical methods

    Results and discussionCharacteristics of press waterPotential methane production of press waterPerformance of the semi-continuous reactorOLR, biogas production and residual volatile fatty acidsRemoval efficiency of organic compounds in press water

    Potential energy recovery from anaerobic digestion of press water



View more >