Anaerobic digestion of native cellulosic wastes

Download Anaerobic digestion of native cellulosic wastes

Post on 10-Jul-2016

215 views

Category:

Documents

0 download

TRANSCRIPT

  • MIRCEN Journal, 1986, 2, 349-358

    Anaerobic digestion cellulosic wastes

    of native

    A. Bhadra, J. M. Scharer & M. Moo-Young Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

    Received 16 April 1985; revised and accepted 18 March 1986

    Introduction

    The world-wide significance of cellulose as a potential energy source is appreciated by recognizing that photosynthesis produces 2 106 tonnes of dry biomass containing 50% cellulose each year (Reese etal. 1972). The energy equivalent of this cellulose is approximately 6 times the current global energy consumption. Most of this cellulose, however, occurs as a cellulose-lignin matrix in lignocellulosic materials. The inherent recalcitrant nature of lignocellulosic materials imposes formidable problems with respect to economical bioconversion of this resource to gaseous and liquid fuels. To date, the bioconversion of native lignocellulosic materials to methane (a gaseous fuel) has been the most popular route on a global scale. The process, known as anaerobic digestion, offers several advantages over alternative bioconversion strategies. These advantages reflect the technological simplicity of the system. Most anaerobic digestions can be performed with elective microbial cultures with no particular attempt to exclude contaminants. Thus, no pro-sterilization or aseptic conditions are necessary. Besides cellulose, the mixed microbial culture can use hemicelluloses, starches, proteins, and lipids of raw materials as substrates. The product gas containing 50-80% methane can be used directly as fuel with minimal post- fermentation treatment. Usually, low levels of hydrogen sulphide, an undesirable constituent, can be readily removed with iron shavings. During the process, energy- intensive unit operations such as continuous mixing and aeration are not required. The liquid effluent is characteristically low in both animal and plant pathogens. This effluent can be used as a soil conditioner and fertilizer.

    Microbial activity

    From a biochemical point of view, the bioconversion of native cellulosic materials consists of three stages. Cellulose is first hydrolyzed to soluble sugars by a cellulase enzyme complex. These sugars, in turn, are degraded by two major groups of micro- organisms to a variety of small, dissolved molecules of which volatile fatty acids comprise the dominant fraction. These groups of micro-organisms are referred to as acidogenic (acid forming) and acetogenic (acetic acid-forming). In the third stage,

    ~) Oxford University Press 1986

  • 350 A. Bhadra, J. M. Scharer & M. Moo-Young

    acetic acid, hydrogen, and carbon dioxide are converted to methane by methanogenic (methane forming) bacteria.

    The acid-forming bacterial population consists of cellulolytic and non-cellulolytic organisms. The interaction between these two groups of organisms in acidogenesis is very complex. Biosynthesis and extracellular cellulase activities are constrained by the presence of non-cellulolytic bacteria which compete with the cellulolytic bacteria for the soluble products of hydrolysis. According to Bryant (1973), non-cellulolytic organisms may provide some essential nutrients such as vitamins, growth factors and branched chain fatty acids for the cellulolytic species. Cellulose and glucose inhibit enzyme activity but their effect on cellulase biosynthesis is not well understood (Scharer & Moo-Young 1979). The combined action of cellulolytic and non- cellulolytic flora results in hydrolysis of cellulose to solubilized saccharides and their conversion to volatile fatty acids, carbon dioxide and hydrogen.

    The microbiology of methanogenic bacteria has been systematically studied only in the past two decades. Altogether, about a dozen species of methanogenic bacteria have been isolated and maintained in pure cultures. They include short rods and curved rods (Methanobacterium), cocci (Methanococcus), spiral organisms (Methano- spirillum), and sarcinas (Methanosarcina). The biochemical mechanism of methane formation from either organic acids or carbon dioxide and hydrogen is not well known. The electron transport mechanism or the intermediates of the postulated sequential steps are yet to be proven experimentally (Stadtman 1967; Tzeng et al. 1975a). The presence of coenzyme M (2-mercapto ethane sulphonic acid), which affects methyl group transfer in methanogens has been established by many workers. Recently, several species of Methanobacterium have been found to possess a low molecular weight, fluorescent cofactor, co enzyme F420, which is believed to assist in low potential electron transport in a NADP-linked reversible oxidoreductase system (Tzeng et al. 1975a, b; Cheeseman et al. 1972).

    Anaerobic digestion process

    It is possible to separate the acid forming and methane forming stages and to culture each group of bacteria in isolated environments. The majority of conventional anaerobic bioreactors, however, consist of a single stage. Although optimum growth conditions for each baterial group are rarely achieved in a one-stage system, a balanced population can be maintained by making use of the syntrophic relationships amongst the various organisms. Methanogens growing in the same vessel as the acid- forming bacteria help in controlling the acid level as well as the pH.

    Single-stage processes

    Single-stage anaerobic digesters have been used for methane generation from industrial effluents, sewage sludge and agricultural wastes. Animal wastes are particularly suitable as feedstock. Animal manure production and its characteristics are summarized in Table 1. These manures can be digested directly, but the digestible carbon to nitrogen (C : N) ratio in most manures is sub-optimal for maximum biogas productivity. Animal manures contain excess nitrogen. Optimum C:N ratios of 21 :1 to 35:1 can be achieved by supplementing the digestion feed with lignocellulosic wastes such as cornstover, straw, rice husk, etc. For example, the

  • Digestion of cellulosic wastes 351

    Table 1 Manure production and characteristics per 1000 kg live weight*

    Item Units Dairy Beef Swine Poultry

    Cow Heifer Yearling Feeder Feeder Breeder Layer Broiler

    Raw waste (RW) kg/day 81.9 74.0 89.9 59.9 65.0 50.0 52.9 70.9 Faeces/urine ratio kg/kg 2.2 1.2 1.8 2.4 1.2 1.2 -- -- Density kg/m 3 1005 1003 1010 1010 1010 1010 1050 1050 Total solids (TS) kg/day 10.4 9.3 11.5 6,8 6.0 4.9 13.4 17.0

    % RW 12.7 10.8 12.6 ll.6 9.2 8,6 25.2 25.2 Volatile solids kg/day 8.4 -- -- 6.0 4.9 3.1 9.5 11.9

    % TS 82.5 -- -- 85.0 80.0 75.0 70.0 70.0 BOD5 % TS 16.5 -- -- 23.0 33.0 30.0 27.0 --

    *Compiled from publication ASAE D384, ASAE Agricultural Sanitation and Waste Management Committee (1976).

    addition of cornstover to swine manure (1 : 3 mass ratio) enhanced gas productivities by 63% in the case of thermophilic operation (55~ and 65% in the case of mesophitic operation (39~ (Fujita et al. 1980).

    The operating characteristics of single-stage anaerobic digesters with animal manure as feedstock are summarized in Table 2. In general, lower operating temperatures require longer retention times of the solids. At loading rates of up to c. 5 kg volatile solids (VS)/m3/d at mesophilic conditions and 15 kg VS/m3/d at thermophilic conditions, the biogas productivity of (m 3 of gas/m 3 volume/day) increases linearly with loading. In general, biogas productivities range from 0.5-1.5 m3/m3/day at mesophilic conditions (20-40~ and from 1.0-2.5 m 3 biogas/m3/day at thermophilic conditions (40-60~ For most operating conditions, 30-50% of the volatile solids fed to the digester is converted to gas. The composition of the gaseous products does not depend on the operating temperature. For most feedstocks, the liquid effluent can be sprayed on farm land as a source of fertilizer or recycled as a diluent of the raw waste.

    Two-stage processes

    Recent advances in anaerobic bioconversion of native cellulosic wastes involve two- stage operation. In these systems, cellulolytic and acidogenic bacteria are physically separated from acetogenic and methanogenic species. By separating these microbial functions, each stage can be engineered to maintain optimum conditions. In this way, the methanogenic bacteria, which are the most sensitive to unfavourable environmental conditions, are protected against shock loads and pulses of inhibitory compounds.

    Research by us and other workers (Khan et aL 1983; Baccay & Hashimoto 1984; Koster 1984; Bhadra et al. 1985) has shown that the anaerobic hydrolysis of cellulose can be improved upon by the introduction of two-stage processes. The hydrolysis of cellulose is considerd the rate-limiting step in the first stage, since the dissolved sugars are rapidly converted to acids. Volatile acids production from cellulose and lignocellulosic materials are shown in Table 3. Volatile fatty acid yields have been reported to be 0.7-0.8 g/g cellulose with pure cellulosic preparations. However, when

  • 352 A. Bhadra , J. M. Scharer & M. Moo-Young

    -~ =

    ~9

    @

    =

    9

    ~D

    9

    ~9

    @

    r e , 9

    g-.

    e~

    t,.r

    I cQ me)

    er

    I I I I I

    r

    t t~

    t t~

    ~. ~ o

    ~ eq rq

    L I I

    t t~

    I ~ I I I

    9 ~- tt')

    I I t t~

    U~ I '~ ~ ,..~ r.~ l "~

    j t . :~

    J ? t t~

    ~r~ r I

    t 'q

    i t 'q t".l I

    ~ r .4-

    I

    t-- t ~ t- -t - - eZez

    eq )

    I I r~

    I

  • Digestion of cellulosic wastes 353

    lignocellulosic substances are digested, the acid yield is considerably less because of the reduced hydrolytic activity. The optimal pH for acid production from lignocellu- ~osics is 5.5 to 6.0 (Zoetmeyer etal. 1982). This compares with observed optimal pH range of 7.0-7.5 for methane generation from fatty acids.

    In the two-stage concept, methane generation from dissolved organic acids is confined to the second stage of the process. Recent trends in process design involve the separation of the residual solids after the first stage and using the liquid fraction, containing volatile fatty acids and other dissolved substances, as feedstock in the second stage. Several types of high-rate bioreactors, with enriched biomass, have been employed to increase the conversion efficiency and reduce the retention time. The most promising bioreactor configurations are briefly described below on the basis of the techno-economics of the conversion.

    The upflow anaerobic sludge blanket (UASB) process was developed by Lettinga et al. (1980, 1983). In this bioreactor, the feed solution flows through a thick layer of pelletized biomass. Methane generation occurs primarily on the surface of the pellets. Due to adhering gas bubbles, the pellets rise to the liquid surface, where the gas is collected in a funnel-like device. The pellets, stripped of gas, sink back into the sludge blanket. This process requires no external sludge recycle, tolerates some suspended solids loading, and operates at high organic loading. The process efficiency can be as high as 97?/0, One disadvantage of the UASB process is the relatively long start-up time of several months, required to form the bacterial pellets.

    Fluidized bed bioreactors on the other hand, usually contain c. 30% by volume of sand or other fine support materials. In this type of digester, methanogenic and acetogenic bacteria are usually attached to the surface of sand particles. Continuous recirculation of the liquid in the digester results in the suspension of the sand particles. Loading rates as high as 15 kg VS/m3/d can be used under mesophilic conditions (Boening & Larsen 1982). This is approximately three times the loading rate in conventional anaerobic digesters.

    In fixed film bioreactors, porous support materials are used for bacterial attachment. The downflow fixed film reactor was developed by van den Berg & Kennedy (1981, 1982). Suitable support materials include red draintile, potter's clay, Raschig rings, charcoal, activated carbon and variously pre-treated plastic supports. At optimum surface area-to-volume ratios (c. 240 m2/m3), a six-fold increase in biogas productivity in comparison to conventional systems has been observed. The efficiency of acids conversion is 75-95%. Although fixed film bioreactors can be operated in either a downflow or an upflow mode, the downflow mode of operation is generally preferred since channelling and plugging by suspended solids are overcome.

    Currently, two-stage systems, particularly those involving the use of high-rate bioreactors in the second stage of methane production, are mainly at the laboratory and pilot-plant level of development. A few full-scale units have been constructed, but operating data are not yet available. The techno-economic feasibility of two-stage systems will depend on the extent of realization of the improved performance observed under ideal conditions in laboratory and pilot-plant projects.

    Conclusion

    At present, the vast resources of native cellulosic wastes remain under-utilized as feedstock for bioconversion to useful products. Considering its technological

  • 354 A. Bhadra, J. M. Scharer & M. Moo-Young

    .o U

    o

    >

    0 "-:

    ~.~,

    9 .OU~ o~

    3 9

  • Digestion of cellulosic wastes 355

    ~D

    C

    ~ i 1~= =~

    0

    rao ~-,

    .CO ' ,

    0

    5 ~ _ ~.~

    o =z ~z

    r r"-

    0

  • 356 A. Bhadra, J. M. Scharer & M. Moo-Young

    simplicity, anaerobic digestion to gaseous fuels should be considered as an integral part of the overall biomass-use strategy. Although the technical feasibility of anaerobic bioconversion of native cellulose has been demonstrated and significant technological advances have been accomplished, problems relating to low rates of hydrolysis of lignocellulosics, process efficiency, stability and control remain unsolved. Improvements in microbial activity may arise through genetic engineering in the future. More immediate goals would be the commercial development of starter cultures, microbial pellets, and microbial films for use in appropriate high-rise bioreactors. Improvements brought about by process engineering are likely to give higher conversion efficiency at lower hydraulic retention times. At present, physical processes such as contact between bacteria and solids and mass transfer rates have not been optimized. Thus, the full potential of the anaerobic process is yet to be realized.

    References

    BACCAY, R.A. & HASHIMOTO, A.G. 1984 Acidogenic and methanogenic fermentation of causticized straw. Biotechnology & Bioengineering 26, 885-891.

    BHADRA, A., SCHARER, J.M. & Moo-YOUNG, M. 1985 A technoeconomic evaluation of bioprocesses for upgrading some cellulosic waste sludges. Waterloo Centre for Process Development Report, University of Waterloo, Canada.

    BOENING, P.H. & LARSEN, V.F. 1982 Anaerobic fluidized bed whey treatment. Biotechnology & Bioengineering 24, 2539-2556.

    BRYANT, M.P. 1973 Nutritional requirements of predominant rumen celluloytic bacteria. Federation Proceedings 32, 1809-1813.

    CHEESEMAN, P., TOMSWOOD, A. WOLFE, R.S. 1972 Isolation and properties of a fluorescent compound, Factor 420, from Methanobacterium strain M.O.H. Journal of Bacteriology 112, 527-531.

    CONVERSE, J.C. 1975 Dairy manure degradation under mesophilic and thermophilic tempera- tures. ASAE Paper No. 75-4540, American Society of Agricultural Engineers, St. Joseph, Michigan.

    CONVERSE, J.C. 1977 Performance of a large size anaerobic digester for poultry manure. Paper No. 77-0451, American Society of Agricultural Engineers, St. Joseph, Michigan.

    DATrA, R. 1981a Acidogenic fermentation of corn stover. Biotechnology & Bioengineering 23, 61-67.

    DAITA, R. 1981b Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnology & Bioengineering 23, 2167-2170.

    DAI"rA, R. 1981c Production of organic acid esters from biomass - - novel processes and concepts. Biotechnology Symposium Series No. 11,521-532.

    FUJITA, M., SCHARER, J.M. & Moo-YOUNG, M. 1980 Effect of corn stover addition on the anaerobic digestion of swine manure. Agricultural Wastes 2, 177-184.

    FONG, W. 1973 Methane production from animal wastes by anaerobic decomposition. M.Sc. Thesis, University of Manitoba, Winnipeg, Man., Canada.

    GRAMMS, L.D., POLKOWSra, L.B. & WITZEL, S.A. 1971 Anaerobic digestion of farm animal wastes (dairy bull, swine and poultry). Transactions of American Society of Agricultural Engineers 14, 1, 7-13.

    HASnIMOTO, A.G. 1978 Thermophilic anaerobic fermentation of beef cattle residue. Presented at the symposium on Biotechnology in Energy Production and Conservation, Gallinburg, Tennessee, U.S.A.

    HAWKES, D., HORTON, R. & STAFFORD, D.A. 1976 The application of anaerobic digestion to producing methane gas and fertilizer from farm waste. Process Biochemistry 11, 32-36.

    JEFFREY, E.A., BLACKMAN, W.C. ,~ RICKETrS, R.L. 1963 Aerobic and anaerobic digestion characteristics of livestock waste. University of Missouri Engineering Experiment Station Bulletin No. 57.

    JEWELL, W.J. 1976 Bioconversion of agricultural wastes for pollution control and energy

  • Digestion of cellulosic wastes 357

    conservation. Final report, ERDA-NSF-741222A01, Cornell University, Ithaca, New York, U.S.A.

    KHAN, A.W., WALL, D. & VAN DEN BERG, L. 1981 Fermentative conversion of cellulose to acetic acid and ceUulolytic enzyme production by a bacterial mixed culture obtained from sewage sludge. Applied & Environmental Mircrobiology 41, 1214-1218.

    KHAN, A.W., MILLER, S.S. & MURRAY, W.D. 1983 Development of a two-phase combination fermenter for the conversion of cellulose to methane. Biotechnology & Bioengineering 25, 1571-1579.

    KOSTER, I.W. 1984 Liquefaction and acidogenesis of tomatoes in an anaerobic two-phase solid waste treatment system. Agricultural Wastes 11,241-252.

    LAPP, H.M. 1978 A study of the feasibility of using methane gas from animal wastes for energy purposes. Agriculture Canada Technical Report Contract No. 0SW5-0527.

    LETFINGA, G., VAN VELSEN, A.F.M., HOLMA, S.W., DE ZEEUW, W. KLAPWIGK, A. 1980 Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology & Bioengineering 22, 699-734.

    LETHNGA, G., ROERSMA, R. & GRIN, P. 1983 Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology & Bioengineering 25, 1701-1723.

    LEW, P.F., SANDERSON, J.E. & WISE, D.L. 1981 Development of a process for production of liquid alkane fuel from biomass. 2nd World Congress of Chemical Engineers, Montreal Quebec.

    PATELUNAS, G.M. 1977 Biological energy recovery using dairy cow wastes. Journal of the Environmental Engineering Division. American Society of Civil Engineers.

    PIGG, D.L. 1977 Commercial size anaerobic digester performance with dairy manure. ASAE Paper No. 77-4055. American Society of Agricultural Engineers, St. Joseph, Michigan.

    REESE, E.T., MANDELLS, M. & WEISS, A.H. 1972 Cellulose as a novel energy source. In Advances in Biochemical Engineering, Vol. 2. ed. Ghose, T.K., Fiechter, A. & Blakebrough, N. pp. 1991-2000, Berlin: Springer Verlag.

    SCHARER, J.M. & Moo-YOUNG, M. 1979 Methane generation by anaerobic digestion of cellulose-containing wastes. In Advances in Biochemical Engineering, Vol. 11. ed. Ghose, T.K., Fiechter, A. & Blakebrough, N. pp. 85-10t, Berlin: Springer Verlag.

    SCHMID, L.A. & LIPPER, RJ[. 1969 Swine wastes: characterization and anaerobic digestion. In Conference on Agricultural Waste Management, pp. 50-57, Cornell University, U.S.A.

    5TADTMAN, T.C. 1967 Methane fermentation. Annual Review of Microbiology 21, 121-142. SUMMERS, R. &; BOUSFIELD, S. 1976 Practical aspects of anaerobic digestion. Process

    Biochemistry l l , 3-6. TAIGANIDES, E.P. 1962 Anaerobic digestion of hog wastes. Journal of Agricultural Engineering

    Research 70, 329-341. THOMAS, K. & EVISON, L.M. 1977 A new approach to anaerobic digestion: process control to

    produce effluents suitable for SCP recovery. In International research symposium on new processes of wastewater treatment and recovery. London, England.

    TZENG, S.F., WOLEE~ R.S. & BRYANT, M.P. 1975a Factor 420-dependent pyridine nucleotide- [inked hydrogenase system of Methanobacterium ruminantium. Journal of Bacteriology 121, 184-191.

    TZENG, S.F., BRYANT, M.P. & WOLFE, R.S. 1975b Factor 420-dependent pyridine nucleotide- linked formate metabolism of Methanobacterium ruminantium. Journal of Bacteriology 121, 192-196.

    VAN VELSEN, A.F.M. 1977 Anaerobic digestion of piggery waste. 1. The influence of detention time and manure concentration. Nethertand Journal of Agricultural Science 25, 151-159.

    VAN DEN BERG, L. & KENNEDY, K.J. 1981 Support materials for stationary fixed film reactors for high-rate methanogenic fermentations. Biotechnology Letters 3, 165-170.

    VAN DEN BERG, L. & KENNED'/, K.J. 1982 Comparison of intermittent and continuous loading of stationary fixed film reactors for methane production from wastes. Journal of Chemical Technology and Biotechnology 32, 427-432.

    ZOETMEYER, R.J., VANDEN, H.J.C. & COHEN, A. 1982 pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Research 16, 303-311.

  • 358 A. Bhadra, J. M. Scharer & M. Moo-Young

    Summary

    Anaerobic digestion is an extensively used bioconversion process to produce gaseous fuel from native lignocellulosic materials. It consists essentially of two steps; acidogenesis and methanogenesis. Most conventional anaerobic digesters are single-stage systems. Animal waste, agricultural residues, sewage sludge and industrial effluents are suitable as feedstock. Biogas productivity in single stage digestion ranges from 0.5-1.5 m3/m3/day at mesophilic (20-40~ and 1.0-2.5 m3/m3/day at thermophilic (40-60~ temperatures, and about 30-50% of the volatile solids are converted to biogas. In two-stage systems, acidogenesis is separated from methanogenesis, which improves cellulose hydrolysis and process efficiency. Recent advances in digester design include the introduction of the upflow anaerobic sludge blanket, and fluidized-bed and fixed-film bioreactors, which are operated at much higher loading. Process efficiency can be as high as 97%. An overview of these technologies is presented.

    R6sum6

    Fermentation anadrobie de ddchets cellulosiques naturels La fermentation ana6robie est un proc6d6 de bio-conversion tr6s utilis6 pour produire des carburants gazeux ~ partir de ligno-cellulose. EUe comporte essentiellement deux 6tapes: acidogen6se et m6thanogen6se. La plupart des digesteurs usuels sont des syst6mes ~ un seul 6tage. Les d6chets animaux, les r6sidus agricoles, les boues d'6pandage et certains effluents industriels sont des substrats appropri6s. Dans les fermentations ~ un seul 6tage, la productivit6 en bio-gaz varie entre 0,5 et 1,5 m 3 par m 3 et par jour pour les temp6ratures m6sophiles (20-40~ et de 1,0 ~t 2,5 pour les temp6ratures thermophiles (40-50~ d'autre part environ 30 ~t 50% des solides volatils sont convertis en bio-gaz. Dans les syst~mes h deux 6tages, l'acidogenbse est s6par6e de la m6thanogen6se, ce qui am61iore l'hydrolyse de la cellulose et l'efficacit6 du proc6d6. Les progr6s r6cents concernant la structure des fermenteurs comprennent la circulation du d6p6t ana6robie et la r6alisation de bior6acteurs h lit fluidis6 et film-fix6, ce qui permet d'op6rer avec des charges tr6s sup6rieures. L'efficacit6 peut atteindre 97%. Un aper~u de ces nouvelles technologies est pr6sent6 dans l'article.

    Resumen

    Digesti6n anaerrbica de desechos celulrsicos La digesti6n anaer6bica es un proceso de bioconversi6n muy utilizado para producir gas combustible a partir de materiales de tipo lignocelulrsico. El proceso consta esencialmente de dos etapas acidogrnesis y metaogrhesis. La mayor~a de los digestores de tipo convencional son de una sola etapa. Como material de partida pueden utilizarse residuos d6 ganado, agricolas, lodos de depuradoras y efluentes industriales. La producci6n de biog~s en un digestor de una sola etapa va desde 0.5-1.5 m3/m 3 dia cuando el proceso transcurre a temperaturas mes6filas hasta 1.0-2.5 m3/m 3 dia cuando lo hace a temperaturas term6filas, transform~indose entre un 30 y un 50% de los s61idos vohitiles en biog~s. En los sistemas con dos etapas la acidogrnesis se separa de la metanogrnesis con lo cual se mejora la hidr61isis de la celulosa y por lo tanto la eficiencia del proceso. Entre los recientes adelantos en el disefio de digestores cabe incluir la introducci6n de una manta de flujo ascendente para fangos anaer6bicos y bioreactores con camas fluidas y de l~mina fija que pueden usarse con cargas mayores. La eficiencia del proceso puede llegar entonces hasta 97%. En este trabajo se pasa revista a todas estas nuevas tecnologias.