an inverse eigenvalue problem for jacobi matrices · 2010. 11. 25. · a jacobi matrix inverse...

12
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2011, Article ID 571781, 11 pages doi:10.1155/2011/571781 Research Article An Inverse Eigenvalue Problem for Jacobi Matrices Zhengsheng Wang 1 and Baojiang Zhong 2 1 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 School of Computer Science and Technology, Soochow University, Suzhou 215006, China Correspondence should be addressed to Zhengsheng Wang, [email protected] Received 25 November 2010; Revised 26 February 2011; Accepted 1 April 2011 Academic Editor: Jaromir Horacek Copyright q 2011 Z. Wang and B. Zhong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A kind of inverse eigenvalue problem is proposed which is the reconstruction of a Jacobi matrix by given four or five eigenvalues and corresponding eigenvectors. The solvability of the problem is discussed, and some sucient conditions for existence of the solution of this problem are proposed. Furthermore, a numerical algorithm and two examples are presented. 1. Introduction An n × n matrix J is called a Jacobi matrix if it is of the following form: J a 1 b 1 b 1 a 2 b 2 b 2 a 3 b 3 . . . . . . . . . b n2 a n1 b n1 b n1 a n , b i > 0. 1.1 A Jacobi matrix inverse eigenvalue problem, roughly speaking, is how to determine the elements of Jacobi matrix from given eigen data. This kind of problem has great value for many applications, including vibration theory and structural design, for example, the vibrating rod model 1, 2. In recent years, some new results have been obtained on the

Upload: others

Post on 18-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2011, Article ID 571781, 11 pagesdoi:10.1155/2011/571781

    Research ArticleAn Inverse Eigenvalue Problem for Jacobi Matrices

    Zhengsheng Wang1 and Baojiang Zhong2

    1 Department of Mathematics, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China

    2 School of Computer Science and Technology, Soochow University, Suzhou 215006, China

    Correspondence should be addressed to Zhengsheng Wang, [email protected]

    Received 25 November 2010; Revised 26 February 2011; Accepted 1 April 2011

    Academic Editor: Jaromir Horacek

    Copyright q 2011 Z. Wang and B. Zhong. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

    A kind of inverse eigenvalue problem is proposed which is the reconstruction of a Jacobi matrixby given four or five eigenvalues and corresponding eigenvectors. The solvability of the problemis discussed, and some sufficient conditions for existence of the solution of this problem areproposed. Furthermore, a numerical algorithm and two examples are presented.

    1. Introduction

    An n × n matrix J is called a Jacobi matrix if it is of the following form:

    J �

    ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    a1 b1

    b1 a2 b2

    b2 a3 b3

    . . . . . . . . .

    bn−2 an−1 bn−1

    bn−1 an

    ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    , bi > 0. �1.1�

    A Jacobi matrix inverse eigenvalue problem, roughly speaking, is how to determinethe elements of Jacobi matrix from given eigen data. This kind of problem has great valuefor many applications, including vibration theory and structural design, for example, thevibrating rod model �1, 2�. In recent years, some new results have been obtained on the

  • 2 Mathematical Problems in Engineering

    construction of a Jacobi matrix �3, 4�. However, the problem of constructing a Jacobi matrixfrom its four or five eigenpairs has not been considered yet. The problem is as follows.

    Problem 1. Given four different real scalars λ, μ, ξ, and η �supposed λ > μ > ξ > η�and four real orthogonal vectors of size nx � �x1, x2, . . . , xn�

    T , y � �y1, y2, . . . , yn�T , m �

    �m1, m2, . . . , mn�T , r � �r1, r2, . . . , rn�T , finding a Jacobi matrix J of size n such that�λ, x�, �μ, y�, �ξ,m�, and �η, r� are its four eigenpairs.

    Problem 2. Given five different real scalars λ, μ, ν, ξ, and η �supposed λ > μ > ν > ξ >η� and five real orthogonal vectors of size nx � �x1, x2, . . . , xn�T , y � �y1, y2, . . . , yn�T , z ��z1, z2, . . . , zn�T , m � �m1, m2, . . . , mn�T , r � �r1, r2, . . . , rn�T , finding a Jacobi matrix J of size nsuch that �λ, x�, �μ, y�, �ν, z�, �ξ, m�, and �η, r� are its five eigenpairs.

    In Sections 2 and 3, the sufficient conditions for the existence and uniqueness ofthe solution of Problems 1 and 2 are derived, respectively. Numerical algorithms and twonumerical examples are given in Section 4. We give conclusion and remarks in Section 5.

    2. The Solvability Conditions of Problem 1

    Lemma 2.1 �see �5, 6��. Given two different real scalars λ, μ �supposed λ > μ� and two realorthognal vectors of size n, x � �x1, x2, . . . , xn�T , y � �y1, y2, . . . , yn�T , there is a unique Jacobimatrix J such that �λ, x�, �μ, y� are its two eigenpairs if the following condition is satisfied:

    dkDk

    > 0, �k � 1, 2, . . . , n − 1�, �2.1�

    where

    dk �k∑i�1

    xiyi, �k � 1, 2, . . . , n�,

    Dk �

    ∣∣∣∣∣xk xk1

    yk yk1

    ∣∣∣∣∣/� 0, �k � 1, 2, . . . , n − 1�.

    �2.2�

    And the elements of matrix J are

    bk �

    (λ − μ)dkDk

    , �k � 1, 2, . . . , n − 1�,

    a1 � λ − b1x2x1

    ,

  • Mathematical Problems in Engineering 3

    an � λ − bn−1xn−1xn

    ,

    ak �

    ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�.

    �2.3�

    FromLemma 2.1, we can see that under some conditions two eigenpairs can determinea unique Jacobi matrix. Therefore, for Problem 1, we only prove that the Jacobi matricesdetermined by �λ, x�, �μ, y� and �ξ,m�, �η, r� are the same.

    The following theorem gives a sufficient condition for the uniqueness of the solutionof Problem 1.

    Theorem 2.2. Problem 1 has a unique solution if the following conditions are satisfied:

    �i� �λ − μ�d�1�k/D

    �1�k

    � �λ − ξ�d�2�k/D

    �2�k

    � �λ − η�d�3�k/D

    �3�k

    > 0;

    �ii� if xk � 0, then �λ − μ�d�1�j /D�1�j � �μ − ξ�d

    �4�j /D

    �4�j � �μ − η�d

    �5�j /D

    �5�j , j � k, k − 1,

    where

    d�1�k

    �k∑i�1

    xiyi, d�2�k

    �k∑i�1

    ximi, d�3�k

    �k∑i�1

    xiri,

    d�4�k

    �k∑i�1

    yimi, d�5�k

    �k∑i�1

    yiri, d�6�k

    �k∑i�1

    miri,

    �k � 1, 2, . . . , n�, �2.4�

    D�1�k �

    ∣∣∣∣∣yk yk1

    xk xk1

    ∣∣∣∣∣, D�2�k �

    ∣∣∣∣∣mk mk1

    xk xk1

    ∣∣∣∣∣, D�3�k �

    ∣∣∣∣∣rk rk1

    xk xk1

    ∣∣∣∣∣,

    D�4�k

    ∣∣∣∣∣mk mk1

    yk yk1

    ∣∣∣∣∣, D�5�k

    ∣∣∣∣∣rk rk1

    yk yk1

    ∣∣∣∣∣, D�6�k

    ∣∣∣∣∣rk rk1

    mk mk1

    ∣∣∣∣∣,

    �k � 1, 2, . . . , n − 1�.

    �2.5�

    Proof. According to Lemma 2.1, under certain condition, �λ, x� and �μ, y�, �λ, x� and �ξ,m�,�λ, x� and �η, r� can determine one unique Jacobi matrix, denoted J, J ′, J ′′, respectively. Their

  • 4 Mathematical Problems in Engineering

    elements are as follows:

    bk �

    (λ − μ)d�1�

    k

    D�1�k

    , �k � 1, 2, . . . , n − 1�,

    a1 � λ − b1x2x1

    ,

    an � λ − bn−1xn−1xn

    ,

    ak �

    ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�,

    �2.6�

    b′k ��λ − ξ�d�2�k

    D�2�k

    , �k � 1, 2, . . . , n − 1�,

    a′1 � λ −b1x2x1

    ,

    a′n � λ −bn−1xn−1

    xn,

    a′k �

    ⎧⎪⎪⎪⎨⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    ξ − �bk−1mk−1 bkmk1�mk

    , xk � 0,

    �k � 2, 3, . . . , n − 1�,

    �2.7�

    b′′k �

    (λ − η)d�3�

    k

    D�3�k

    , �k � 1, 2, . . . , n − 1�,

    a′′1 � λ −b1x2x1

    ,

    a′′n � λ −bn−1xn−1

    xn,

    a′′k �

    ⎧⎪⎪⎪⎨⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    η − �bk−1rk−1 bkrk1�rk

    , xk � 0,

    �k � 2, 3, . . . , n − 1�.

    �2.8�

    From the conditions, we have

    bk � b′k � b′′k > 0, k � 1, 2, . . . , n − 1. �2.9�

  • Mathematical Problems in Engineering 5

    If xk /� 0, we have ak � a′k � a′′k; if xk � 0,

    (λ − μ)d�1�

    k

    D�1�k

    (μ − ξ)d�4�

    k

    D�4�k

    ,

    (λ − μ)d�1�

    k−1D

    �1�k−1

    (μ − ξ)d�4�

    k−1D

    �4�k−1

    ,

    (λ − μ)d�1�kD

    �1�k

    (μ − η)d�4�kD

    �4�k

    ,

    (λ − μ)d�1�

    k−1D

    �1�k−1

    (μ − η)d�4�

    k−1D

    �4�k−1

    .

    �2.10�

    Since �2.6�, we have

    bkD�4�k

    �(μ − ξ)d�4�

    k,

    bk−1D�4�k−1 �

    (μ − ξ)d�4�

    k−1.�2.11�

    That is,

    (μ − ξ)ykmk bk−1D�4�k−1 − bkD

    �4�k � 0. �2.12�

    Since D�i�k /� 0 and xk � 0, we have yk /� 0, mk /� 0.D

    �4�k−1 � mk−1yk −mkyk−1, D

    �4�k

    � mkyk1 −mk1yk replacingD�4�k−1, D�4�k

    in �2.12�, then wehave

    μ −(bk−1yk−1 bkyk1

    )

    yk� ξ − �bk−1mk−1 bkmk1�

    mk. �2.13�

    Thus, if xk � 0, we also have ak � a′k. In the same way, we have ak � a′′k. Then, ak � a′k � a

    ′′k.

    Therefore,

    J � J ′ � J ′′ �2.14�

    with four eigenpairs �λ, x�, �μ, y�, �ξ,m�, and �η, r�.

  • 6 Mathematical Problems in Engineering

    3. The Solvability Conditions of Problem 2

    Lemma 3.1 �see �7��. Given three different real scalars λ, μ, ν (supposed λ > μ > ν) and threereal orthogonal vectors of size nx � �x1, x2, . . . , xn�

    T , y � �y1, y2, . . . , yn�T , z � �z1, z2, . . . , zn�

    T ,there is a unique Jacobi matrix J such that �λ, x�, �μ, y�, �ν, z� are its three eigenpairs if the followingconditions are satisfied:

    �i� �λ − μ�d�1�k/D

    �1�k

    � �λ − ν�d�2�k/D

    �2�k

    > 0;

    �ii� if xk � 0, �λ − μ�d�1�j /D�1�j � �μ − ν�d

    �3�j /D

    �3�j , j � k, k − 1, where

    d�1�k �

    k∑i�1

    xiyi, d�2�k �

    k∑i�1

    xizi, d�3�k �

    k∑i�1

    yizi,

    D�1�k

    ∣∣∣∣∣yk yk1

    xk xk1

    ∣∣∣∣∣, D�2�k

    ∣∣∣∣∣zk zk1

    xk xk1

    ∣∣∣∣∣, D�3�k

    ∣∣∣∣∣zk zk1

    yk yk1

    ∣∣∣∣∣,

    �k � 1, 2, . . . , n − 1�. �3.1�

    And the elements of matrix J are

    bk �

    (λ − μ)dkDk

    �k � 1, 2, . . . , n − 1�,

    a1 � λ − b1x2x1

    ,

    an � λ − bn−1xn−1xn

    ,

    ak �

    ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�.

    �3.2�

    From Lemma 3.1, we can see that under some conditions three eigenpairs can determinea unique Jacobi matrix. Therefore, for Problem 2, we only prove that the Jacobi matricesdetermined by �λ, x�, �μ, y�, �ν, z�; �λ, x�, �μ, y�, �ξ,m�, �λ, x�, �μ, y�, �η, r� are the same.

    The following theorem gives a sufficient condition for the uniqueness of the solutionof Problem 2.

  • Mathematical Problems in Engineering 7

    Theorem 3.2. Problem 2 has a unique solution if the following conditions are satisfied:

    �i� �λ − μ�d�1�k /D�1�k � �λ − ν�d

    �2�k /D

    �2�k � �λ − ξ�d

    �3�k /D

    �3�k � �λ − η�d

    �4�k /D

    �4�k > 0;

    �ii� if xk � 0, then �λ − μ�d�1�j /D�1�j � �μ − ν�d

    �5�j /D

    �5�j � �μ − ξ�d

    �6�j /D

    �6�j � �μ −

    η�d�7�j /D�7�j , j � k, k − 1, where

    d�1�k

    �k∑i�1

    xiyi, d�2�k

    �k∑i�1

    xizi, d�3�k

    �k∑i�1

    ximi,

    d�4�k

    �k∑i�1

    xini, d�5�k

    �k∑i�1

    yizi, d�6�k

    �k∑i�1

    yimi,

    d�7�k

    �k∑i�1

    yini, d�8�k

    �k∑i�1

    zimi, d�9�k

    �k∑i�1

    zini,

    d�10�k

    �k∑i�1mini, �k � 1, 2, . . . , n�

    D�1�k

    ∣∣∣∣∣yk yk1

    xk xk1

    ∣∣∣∣∣, D�2�k

    ∣∣∣∣∣zk zk1

    xk xk1

    ∣∣∣∣∣, D�3�k

    ∣∣∣∣∣mk mk1

    xk xk1

    ∣∣∣∣∣,

    D�4�k

    ∣∣∣∣∣nk nk1

    yk yk1

    ∣∣∣∣∣, D�5�k

    ∣∣∣∣∣zk zk1

    yk yk1

    ∣∣∣∣∣, D�6�k

    ∣∣∣∣∣mk mk1

    yk yk1

    ∣∣∣∣∣,

    D�7�k �

    ∣∣∣∣∣nk nk1

    yk yk1

    ∣∣∣∣∣, D�8�k �

    ∣∣∣∣∣mk mk1

    zk zk1

    ∣∣∣∣∣, D�9�k �

    ∣∣∣∣∣nk nk1

    zk zk1

    ∣∣∣∣∣,

    D�10�k �

    ∣∣∣∣∣nk nk1

    mk mk1

    ∣∣∣∣∣, �k � 1, 2, . . . , n − 1�.

    �3.3�

    Proof. According to Lemma 3.1, under certain condition, �λ, x�, �μ, y�, �ν, z�; �λ, x�, �μ, y�,�ξ,m�, �λ, x�, �μ, y�, �η, r� can determine one unique Jacobi matrix, denoted J, J ′, J ′′,respectively. Their elements are as follows:

    bk �

    (λ − μ)d�1�

    k

    D�1�k

    �k � 1, 2, . . . , n − 1�,

    a1 � λ − b1x2x1

    ,

    an � λ − bn−1xn−1xn

    ,

    ak �

    ⎧⎪⎪⎪⎨⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�,

  • 8 Mathematical Problems in Engineering

    b′k�

    (λ − μ)d�1�

    k

    D�1�k

    , �k � 1, 2, . . . , n − 1�,

    a′1 � λ −b1x2x1

    ,

    a′n � λ −bn−1xn−1

    xn,

    a′k�

    ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�,

    b′′k�

    (λ − μ)d�1�kD

    �1�k

    , �k � 1, 2, . . . , n − 1�,

    a′′1 � λ −b1x2x1

    ,

    a′′n � λ −bn−1xn−1

    xn,

    a′′k�

    ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

    λ − �bk−1xk−1 bkxk1�xk

    , xk /� 0,

    μ −(bk−1yk−1 bkyk1

    )

    yk, xk � 0,

    �k � 2, 3, . . . , n − 1�,

    �3.4�

    From conditions �i� and �ii� we have obviously

    bk � b′k � b′′k > 0, k � 1, 2, . . . , n − 1, ak � a′k � a′′k. �3.5�

    Therefore,

    J � J ′ � J ′′ �3.6�

    with five eigenpairs �λ, x�, �μ, y�, �ν, z�, �ξ,m�, and �η, r�.

    4. Numerical Algorithms and Examples

    The process of the proof of the theorem provides us with a recipe for finding the solution ofProblem 1 if it exists.

    From Theorem 2.2, we propose a numerical algorithm for finding the unique solutionof Problem 1 as follows.

  • Mathematical Problems in Engineering 9

    Algorithm 1. Input. The real numbers λ > μ > ξ > η and mutually orthogonal vectorsx, y,m, r.

    Output. The symmetric Jacobi matrix having the eigenpairs �λ, x�, �μ, y�, �ξ,m�, �η, r�:

    �1� compute d�1�k, d

    �2�k, d

    �3�k, d

    �4�k, d

    �5�k, d

    �6�k

    and D�1�k, D

    �2�k, D

    �3�k, D

    �4�k, D

    �5�k, D

    �6�k;

    �2� if any one of D�1�k, D

    �2�k, D

    �3�k, D

    �4�k, D

    �5�k, D

    �6�k

    is zero, the Problem 1 can not be solvedby this method;

    �3� for k � 1, 2, . . . , n − 1.�a� When xk � 0, if

    (λ − μ)d�1�jD

    �1�j

    (μ − ξ)d�4�jD

    �4�j

    (μ − η)d�5�jD

    �5�j

    , j � k, k − 1, �4.1�

    then

    bk �

    (λ − μ)d�1�

    k

    D�1�k

    ,

    ak � μ −(bk−1yk−1 bkyk1

    )

    yk.

    �4.2�

    Otherwise, Problem 1 has no solution.

    �b� When xk /� 0, if

    (λ − μ)d�1�kD

    �1�k

    ��λ − ξ�d�2�k

    D�2�k

    (λ − η)d�3�kD

    �3�k

    > 0, �4.3�

    then

    bk �

    (λ − μ)d�1�kD

    �1�k

    ,

    ak � λ − �bk−1xk−1 bkxk1�xk

    .

    �4.4�

    Otherwise, Problem 1 has no solution;

    �4� an � λ − bn−1xn−1/xn.

    Note that we can also propose a numerical algorithm from Theorem 3.2. Because ofthe limitation of space, we don’t describe it here in detail.

    Now we give two numerical examples here to illustrate that the results obtained inthis paper are correct.

  • 10 Mathematical Problems in Engineering

    Example 4.1. Given four real numbers λ � 3, μ � 2, ξ � 1, η � 0.2679, and the four vectorsx � �1, 1, 0,−1,−1�T , y � �1, 0,−1, 0, 1�T , m � �1,−1, 0, 1,−1�T , r � �1,−√3, 2,−√3, 1�T , it iseasy to verify that these given data satisfy the conditions of the Theorem 2.2. After calculatingon the microcomputer through making program of Algorithm 1, we have a unique Jacobimatrix:

    J �

    ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

    2 1

    1 2 1

    1 2 1

    1 2 1

    1 2

    ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. �4.5�

    Example 4.2. Given five real numbers λ � 7.543, μ � −3.543, ν � 2, ξ � 4.296, andη � −0.296, and the five vectors: x � �0.1913, 0.3536, 0.4619, 0.5000, 0.4619, 0.3536, 0.1913�T ,y � �0.1913,−0.3536, 0.4619,−0.5000, 0.4619,−0.3536, 0.1913�T , z � �0.5000, 0,−0.5000, 0,0.5000, 0,−0.5000�T , m � �0.4619, 0.3536,−0.1913, 0.5000,−0.1913, 0.3536, 0.4619�T , and r ��0.4619, −0.3536,−0.1913, 0.5000,−0.1913,−0.3536, 0.4619�T , it is easy to verify that these givennumbers can not satisfy the conditions of the Theorem 2.2 but Theorem 3.2. After calculatingon the microcomputer through making program of Theorem 3.2, we have a Jacobi matrix:

    J �

    ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    2 3

    3 2 3

    3 2 3

    3 2 3

    3 2 3

    3 2 3

    3 2

    ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    . �4.6�

    5. Conclusion and Remarks

    As a summary, we have presented some sufficient conditions, as well as simple methods toconstruct a Jacobi matrix from its four or five eigenpairs. Numerical examples have beengiven to illustrate the effectiveness of our results and the proposed method. Also, the idea inthis paper may provide some insights for other banded matrix inverse eigenvalue problems.

    Acknowledgments

    This work is supported by the NUAA Research funding �Grant NS2010202� and theAviation Science Foundation of China �Grant 2009ZH52069�. The authors would like to thankProfessor Hua Dai for his valuable discussions.

  • Mathematical Problems in Engineering 11

    References

    �1� P. Nylen and F. Uhlig, “Inverse eigenvalue problem: existence of special spring-mass systems,” InverseProblems, vol. 13, no. 4, pp. 1071–1081, 1997.

    �2� N. Radwan, “An inverse eigenvalue problem for symmetric and normal matrices,” Linear Algebra andIts Applications, vol. 248, pp. 101–109, 1996.

    �3� Z. S. Wang, “Inverse eigenvalue problem for real symmetric five-diagonal matrix,” NumericalMathematics, vol. 24, no. 4, pp. 366–376, 2002.

    �4� G. M. L. Gladwell, Inverse Problems in Vibration, vol. 119 of Solid Mechanics and Its Applications, KluwerAcademic Publishers, Dordrecht, The Netherlands, 2nd edition, 2004.

    �5� H. Dai, “Inverse eigenvalue problems for Jacobi matrices and symmetric tridiagonal matrices,”Numerical Mathematics, vol. 12, no. 1, pp. 1–13, 1990.

    �6� A. P. Liao, L. Zhang, and X. Y. Hu, “Conditions for the existence of a unique solution for inverseeigenproblems of tridiagonal symmetric matrices,” Journal on Numerical Methods and ComputerApplications, vol. 21, no. 2, pp. 102–111, 2000.

    �7� X. Y. Hu and X. Z. Zhou, “Inverse eigenvalue problems for symmetric tridiagonal matrices,” Journal onNumerical Methods and Computer Applications, vol. 17, pp. 150–156, 1996.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of