wigner functional method in quantum field theorymuller/talks/yitp_080813.pdf · wigner functional...

Post on 22-Jul-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Wigner Functional Methodin

Quantum Field Theory

Berndt MüllerYIPQS Molecule: “Entropy Production”

YITP Kyoto - 13 August 2008

Based on: S. Mrówczyński & BM, PRD 50, 7542 (1994)

An impossible dream?

2

Simulations of real-time dynamics of quantum fields far off equilibrium have used a variety of approximation schemes:

Boltzmann equations for (quasi-)particle excitations:

Good in dilute systems, but loss of coherence and off-shell effects.

Classical nonlinear (lattice) field equations:

Good for highly occupied modes, but loss of all quantum effects.

Real-time Green function techniques:

Practical for homogeneous or low-dimensional systems only.

Is it possible to devise a scheme which encompasses the classical field and particle limit (useful for phenomenology), yet includes essential quantum effects, such as the uncertainty relation, phases, or correlations, yet can be treated by similar methods similar to those that have already been developed?

W (q, p; t) =!

du e!ipu!q +12u| !(t) |q " 1

2u#

W (q, p) = W (q, p)!!dqdp

2!W (q, p) = Tr " = 1

!W

!t= ! p

m

!W

!q! i

!

!!V

!q

"q +

i!2

!

!p

#! !V

!q

"q ! i!

2!

!p

#$W

!!0!" ! p

m

!W

!q+

!V

!q

!W

!p

Wigner function

3

Reminder - Usual definition of Wigner function for a point particle:

Properties:

Equation of motion (for H = p²/m + V) :

Tr !2 = Tr ! = 1 !!

dqdp

2"W (q, p)2 =

!dqdp

2"W (q, p) = 1

!P,a(q) =!

2"/! eiPq!!(q!a)2

W (q, p) = 2 exp!!2!(q ! a)2 ! 1

2!(p! P )2

"

!(q " a)2# =1

4!!(p " P )2# = !

(!(!q)2"!(!P )2"1/2 =12

Wave packets

4

Consider a Gaussian wavepacket:

The Wigner transform is:

Pure quantum state:

Δ→∞: Good position

Δ→0: Good momentum

Minumum uncertainty wavepacket

Wigner functional

5

W [!(x),"(x); t] =!

D!(x) exp"!i

!dx "(x)!(x)

#"!(x) +

12!(x)| "(t) |!(x) ! 1

2!(x)#

W [!(p),"(p); t] =!

D!(p) exp"!i

! !

0dp

#""(p)!(p) + "(p)!"(p)

$%"!(p) +

12!(p)| "(t) |!(p) ! 1

2!(p)#

Wigner functional = Adaptation to QFT. Start with a scalar quantum field Φ.

Momentum space representation:

Adapt quantum phase space formulation (Wigner function) to the field representation of quantum field theory in order make the classical field limit more transparent.

Position space representation:

! D!2!

exp"±i

!dx !(x)"(x)

#= #("(x))

Z ! Tr ! =!

D!(x)"!(x)| ! |!(x)# =!

D!(x)D"(x)

2"W [!,"; t]

!O(!, ")" =1Z

Tr!!(t)O(!, ")

"=

1Z

#D!(x)

D"(x)2"

O(!,") W [!,"; t]

Basics

6

Using it is obvious that

W [!(x),"(x); t] =!

D!(x) exp"!i

!dx "(x)!(x)

#"!(x) +

12!(x)| "(t) |!(x) ! 1

2!(x)#

implies

Similarly, by inserting complete sets of states and partial integrations:

Wigner functional expression corresponds to symmetrized quantum operators.

i! !

!t"(t) = [H, "(t)] H =

12

!dx

"!2(x) +

#!"(x)

$2 + m2"2(x)" LI(x)%

!

!tW [!,"; t] =

!D" exp

"! i

!

!dx "(x)"(x)

#"! +

12"| [H, #] |!! 1

2"#

$ G! + G! + Gm + GI

Gm =m2

2

!dx

!D! exp

"! i

!

!dx !(x)!(x)

#

"$%

"(x) +12!(x)

&2 !%"(x)! 1

2!(x)&2

' (" + 1

2!| " |"! 12!

)

Gm = i!m2

!dx !(x)

!

!"(x)W [!,"; t]

Equation of motion - I

7

!!

!t+

"dx

#!(x)

"

""(x)!

$m2"(x)!"2"(x)

% "

"!(x)+KI(x)

&'W [",!; t] = 0

!

!tW [!,"; t] = !

!dx

""H

""(x)"

"!(x)! "H

"!(x)"

""(x)+ O

"!2 "3

""3

##W [!,"; t]

Equation of motion - II

8

KI(x) ! " i

!LI

!!(x) +

i!2

!

!"(x)

"+

i

!LI

!!(x)" i!

2!

!"(x)

"

LI(!) = ! !

4!!4 !" KI =

!

6

!!!3(x)

"

""(x)+

!2

4!(x)

"3

""3(x)

"

Other terms are derived similarly, final result is:

with

Standard example: Φ⁴ theory:

Thus, evolution of W is described by a classical transport equation with quantum corrections:

H0 =! !

0

dp

2!

"!†(p)!(p) + (p2 + m2)"†(p)"(p)

#! =

1Z

e!!H0

!W! [!,"] = C exp"!1

2!

# !

"!

dp

2"#!(p)

$"#(p)"(p) + E2(p)!#(p)!(p)

%&

!!(p) =2

!E(p)th

!E(p)2

C ! exp!" !

"!

dp

2!ln th

"E(p)2

#

! ! 0 : !!(p)! 1.

W! [!(x),"(x)] = C ! exp!!1

2!

"dx dx! #(x! x!)

#"(x)"(x!) +"!(x)"!(x!) + m2!(x)!(x!)

$%

Free field at T ≠ 0

9

Densitymatrix: with

Momentum space Wigner functional (ħ = 1):

with

(classical limit)

Coordinate space form contains “nonlocal” Hamiltonian:

!!†(p)!(p)" =1

2 E(p) th!E(p)2

# 12 E(p)

!"†(p)"(p)" =E(p)

2 th!E(p)2

# E(p)2

!!!†(p)!(p)" !"†(p)"(p)" =

12 th!E(p)

2

# 12

Fluctuations

10

Thermal quantum fluctuations are larger than classical fluctuations:

implying the uncertainty relation:

Z[j(x)] !!D!

D"2!

W [!,"] exp"

"

!dx !(x)j(x)

#

=!D!

D"2!

exp$""

!dx dx!

%H(x, x!)" #(x" x!)!(x)j(x!)

&'

!!(x)!(y)" =1!2

1Z[j]

"2Z[j]"j(y)"j(x)

!!!!!j(x)=0

Z0[j(x)] = N exp!!

2

"dx dx! j(x)G(x! x!)j(x!)

#

G(x) =!

dp

2!

e!ipx

!!(p)"p2 + m2

# m"0!" 14!|x|

sh(2!|x|/")ch(2!|x|/")! 1

Generating functional

11

Perturbation theory is based on generating functional

Two point function:

Free field:

with

! = a†(p)|0!"0|a(p)

W1[!(p),"(p)] = C

!2

|"(p)|2 + E(p)2!(p)|2

E(p)! 1

"exp

!! |"(p)|2 + E(p)2!(p)|2

E(p)

"

! = (1 ! f(p))|0"#0| + f(p)a†(p)|0"#0|a(p)

Wf [!(p),"(p)] = C

!1 + 2f(p)

"|"(p)|2 + E(p)2!(p)|2

E(p)! 1

#$exp

"! |"(p)|2 + E(p)2!(p)|2

E(p)

#

" C ! exp"! |"(p)|2 + E(p)2!(p)|2

[1 + 2f(p)]E(p)

#

Particles

12

Consider one-particle state:

Wigner functional:

Partially occupied state:

Wigner functional:

Agrees with thermal expression for f(p) = (e-βE(p)-1)-1.

m2(t) = m2 !(!t)! µ2 !(t)

H(t) =p2

2+

m(t)2

2x2

Roll-over transition

13

Decay of an unstable “vacuum state” is a common problem e.g. in cosmology (end of inflation) or condensed matter physics (phase transitions). Paradigm case: “roll-over”.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)

with

Wigner function

14

t = 0

t = 2t = 1

t = 0.5

p

x

H(t) =! !

0

dp

2!

"!†(p)!(p) + (m2(t) + p2) "†(p)"(p)

#

m2(t) = m2 !(!t)! µ2 !(t)

H(t > 0) =! µ

0

dp

2!

"!†(p)!(p)! "2

!(p) "†(p)"(p)#

+! "

µ

dp

2!

"!†(p)!(p) + "2

+(p) "†(p)"(p)#

!±(p) !!±(p2 " µ2) is always real

!W [!,", t < 0] = C exp"!1

2!

# !

"!

dp

2"#!(p)

$"#(p)"(p) + E2(p)!#(p)!(p)

%&

Roll-over in QFT

15

Initial state (not necessarily vacuum):

Hamiltonian for t > 0:

!(p, t) = !(p) ch(!!(p)t)! 1!!(p)

"(p) sh(!!(p)t)

"(p, t) = "(p) ch(!!(p)t)! !!(p) !(p) sh(!!(p)t)

!(p, t) = !(p) cos(!+(p)t)! 1!+(p)

"(p) sin(!+(p)t)

"(p, t) = "(p) cos(!+(p)t) + !+(p) !(p) sin(!+(p)t)

0 < p < µ

p > µ

W [!(p),"(p); t] = W [!(p,!t),"(p,!t); 0]

!W [!,"; t] = C exp"!1

2!

# !

"!

dp

2"#!(p)

$"#(p,!t)"(p,!t) + E2(p)!#(p,!t)!(p,!t)

%&

d

dt!(p, t)± !2

±(p) "(p, t) = 0

d

dt"(p, t) = !(p, t)

!(p, 0) = !(p),

"(p, 0) = "(p)

Solution

16

Classical field trajectories:

with

!W [!; t] !" D!

2!!W [!,"; t] = C !exp

#""

2

""0

dp2! #"(p) !(p, t) !#(p)!(p)

$

!(p, t) = !(µ! p)E2(p)"2

!(p)"2!(p) ch2("!(p)t) + E2(p) sh2("!(p)t)

+!(p! µ)E2(p)"2

+(p)"2

+(p) cos2("+(p)t) + E2(p) sin2("+(p)t)

!!†(p)!(p)"t = !!†(p)!(p)"0!ch2(!!(p)t) +

E2(p)!2!(p)

sh2(!!(p)t)"

G(x, t) =!

dp

2!

e!ipx

!!(p) "(p, t)t"#!" #mµ

64 th (#m/2)

"1 +

µ2

m2

#(!µt)!3/2 exp

$2µt! µx2

4t

%

Field correlator

17

Distribution of field amplitudes:

with

Field fluctuations:

Field correlation function:

!

4!!4(x) ! !

4"!2(x)# !2(x)

!!2(x)" =1Z

!D!(x)

D"(x)2!

!2(x) W [!,"; t]

m2! = m2 +

!

2!!2(x)"

m2! = m2 +

!

2G(0)

= m2ren +

!

2

! "

#"

dp

2"

"p2 + m2

!

exp##"

p2 + m2!$! 1

1p2 + m2

!

Mean field approximation

18

Reduce nonlinear interactions by means of expectation values:

Self-consistentequation for m*:

!Kc + !2Kq) W = 0

KcWc = 0

W = Wc + !2Wq

KcWq = !KqWc +O(!2)

Wq(q, p; t) =!

dt!dq!dp! Gc(q, q!, p, p!; t, t!) KqWc(q!, p!; t!)

KcGc(q, q!, p, p!; t, t!) ! !Gc

!t+

!H

!p

!Gc

!q" !H

!q

!Gc

!p= "(t" t!) "(q " q!) "(p" p!)

Gc(q, q!, p, p!; t, t!) = !(t! t!) "!q ! q(t)! q! + q(t!)

""!p! p(t)! p! + p(t!)

"

Semi-classical approx.

19

with

Transport equation:

Thus:

Classical Green function satisfies:

Solution is simply:

H =g2

a

!"

l

12Ea

l Eal +

4g4

Re"

p

(1! trUp)

#

ag2H ! H, t/a! t, g2E ! E, g2!! !

! [(A(x)] =1!N

exp

!"d3x

#

a

$"b(x)

8(Aa(x)"Aa

0(x))2 +i

!E0(x)aAa(x)%&

![Ul] =!

l

!l(Ul) =!

l

1!Nl

exp"

bl

2tr(UlU

!1l0 )" 1

! tr(El0UlU!1l0 )

#

Non-abelian gauge field

20

Idea: Use generalized Gaussian wave packets to represent Wigner function in the link representation of lattice gauge fields [Gong, BM, Biró, Nucl. Phys. A568 (1994) 727].

Lattice (KS) Hamiltonian:

can be scaled to dimensionless variables:

Wave packet ansatz:

Continuum limit:

He! =!

l

"12(1! f(vl)

2vl)E2

l0 + !2 3f(vl)16vl

|bl|2#

+ 4!

p

(1! fp Up0)

f(v) = I2(2v)/I1(2v) and fp =!

l!p

f(vl)

![Ul] =!

l

!l(Ul) =!

l

1!Nl

exp"

bl

2tr(UlU

!1l0 )" 1

! tr(El0UlU!1l0 )

#

Time evolution

21

!

! t2

t1!!|(i! "t " H)|!# = 0 [Ea

l , Abm] = !i!!ab!lm

Semiclassical transport equation for Wigner functional is realized by variationalprinciple for wave packets. ħ then enters in two distinct ways:

and

Variation is performed with respect to parameters: bl (t), Ul0 (t), El0 (t).

Write b = v + iw ; then express H in terms of parameters:

where

Limits: ħ→∞ ⇒ vl → 0 i.e. wave packet covers all SU(2); ħ→0 ⇒ vl → ∞ .

dEal

dt=

i

f(vl)

!

p(l)

(fp!aUp)!

3!8

wl

vlEa

l ,

dUl

dt=

i

2

"1

f(vl)! 1

2vl

#ElUl,

dvl

dt=

3!8

f(vl)f !(vl)

wl

vl,

dwl

dt=

"1

f(vl)! 1

2vl

#E2

l +E2

l

4vl+

2f(vl)

!

p(l)

fpUp !316

!2

"vl +

w2l

vl

#,

! f(vl)f !(vl)

"E2

l

4v2l

+316

!2

"1! w2

l

v2l

##,

dEal

dt= i

!

p(l)

(!aUp) ,dUl

dt= iElUl.

! ! g2! = 4!"s.

Eqs. of motion

22

ħ → 0, vl → ∞ ⇒ classical limit:

Reminder:

Results - 1

23

Run simulation from randomly chosen initial conditions (but identical width bl) until the system thermalizes. Measure T from electric energy distribution and determine maximal Lyapunov exponent. Compare with classical limit. Fit gives:〈v〉≈ 7/ħ.

! T ! "! !v" E

0.1 0.76 0.255 0.01 70 2.130.3 0.64 0.24 0.12 23 2.480.3 0.73 0.3 0.22 22 2.920.3 0.85 0.34 0.2 21 3.310.3 0.85 0.36 0.27 21 3.250.3 0.85 0.34 0.2 22 3.250.3 0.9 0.41 0.37 20 3.740.7 0.5 0.19 0.16 9.0 3.240.7 0.8 0.41 0.54 7.4 4.40

!(T, !) = !c(T )(1 + "!)

Results - 2

24

δλ > 0 and grows with ħ !

Conclusions

25

Wigner functional method provides a practical method to simulate quantum corrections to real-time evolution of fields in quantum field theory. Various approximation methods are available:

• Gaussian wave packets (with dynamical width)• Green function techniques• Mean field approximation

WF method permits smooth interpolation between field eigenstates and particle excitations. This allows for the approximate treatment of quantum coherence and uncertainty relation effects.

WF method has been applied to SU(2) gauge field with “Gaussian” SU(2) wave packets and variational time evolution. Results of a limited exploration suggest that λmax grows with ħ = 4παs.

Generalization to fermions, using techniques of AMD or FMD, possible?

top related