white dwarf cooling: electron-phonon coupling and …mdt26/tti_talks/qmcitaa_13/... · white dwarf...

Post on 28-Jul-2018

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

White dwarf cooling: electron-phonon couplingand the metallization of solid helium

Bartomeu Monserrat

University of Cambridge

QMC in the Apuan Alps VIII31 July 2013

Outline

White dwarf stars overview

Theoretical backgroundAnharmonic energyPhonon expectation values

Results

Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013 1 / 43

Outline

White dwarf stars overview

Theoretical backgroundAnharmonic energyPhonon expectation values

Results

Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013 2 / 43

Star formation

g

T

I Virial theorem: K = −1/2Vg.

I Energy expressions:

K ∝ NkBT and Vg ∝ −GM2

R

I Temperature increases as the stargravitationally collapses.

B. Monserrat – QMC Apuan Alps VIII – July 2013 3 / 43

Main sequence star

g

H→He

I Thermonuclear reactions: hydrogenburning.

I Gravitation balanced by nuclearreactions.

I Main sequence star (e.g. the Sun).

B. Monserrat – QMC Apuan Alps VIII – July 2013 4 / 43

White dwarf formation

g

DEG

I Burning material exhausted.

I Gravitational contraction resumes.

I High density leads to degenerateelectron gas (DEG).

I White dwarf star balanced by DEG.

I Complications: mass loss (redgiant), further burning cycles, . . .

B. Monserrat – QMC Apuan Alps VIII – July 2013 5 / 43

White dwarf structure

g

DEG

I Degenerate core: He or C/O.

I Atmosphere: H, He and traces ofother elements.

I Atmosphere represents10−4 – 10−2 of the total mass.

I Atmosphere stratification due tostrong gravity.

I Weak energy sources:crystallization, . . .

I Energy transport: conduction,radiation and convection.

B. Monserrat – QMC Apuan Alps VIII – July 2013 6 / 43

White dwarf cooling

0 2 4 6 8 10 12 14 16 18 20Time (10

9 years)

0

2

4

6

8

10T

eff (

103 K

)

B. Monserrat – QMC Apuan Alps VIII – July 2013 7 / 43

White dwarf cooling

0 2 4 6 8 10 12 14 16 18 20Time (10

9 years)

0

2

4

6

8

10T

eff (

103 K

)

Age

of t

he U

nive

rse

Black dwarf

B. Monserrat – QMC Apuan Alps VIII – July 2013 8 / 43

White dwarf cooling: metallization of solid helium (I)

Degenerateelectron gas

Helium

Degenerate electron gas: isothermal

Core to surface: temperature gradient

B. Monserrat – QMC Apuan Alps VIII – July 2013 9 / 43

Helium phase diagramP

ress

ure

(T

Pa)

Temperature (K)

10-2

10-1

100

101

102

102

103

104

105

106

Solid 4He

Fluid 4HeHe

0

He+

He++Metallization

B. Monserrat – QMC Apuan Alps VIII – July 2013 10 / 43

White dwarf cooling: metallization of solid helium (II)

e−e− e−

γ γ γ

Degenerateelectron gas

Insulating Helium

Metallic Helium

Degenerate electron gas: isothermal

Core to surface: temperature gradient

B. Monserrat – QMC Apuan Alps VIII – July 2013 11 / 43

Metallization pressure

I DFT: 17 TPa at zero temperature.

I DMC and GW : 25.7 TPa at zero temperature.

I Electron-phonon coupling: ?

B. Monserrat – QMC Apuan Alps VIII – July 2013 12 / 43

Outline

White dwarf stars overview

Theoretical backgroundAnharmonic energyPhonon expectation values

Results

Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013 13 / 43

Harmonic approximation

I Vibrational Hamiltonian in rα (or uα):

Hvib = −1

2

∑Rp,α

1

mα∇2pα +

1

2

∑Rp,α;Rp′ ,β

upαΦpα;p′βup′β

I Normal mode analysis: upα −→ qks

upα;i =1√

N0mα

∑k,s

qkseik·Rpwks;iα

qks =1√N0

∑Rp,α,i

√mα upα;ie

−ik·Rpw−ks;iα

I Vibrational Hamiltonian in qks:

Hvib =∑k,s

(−1

2

∂2

∂q2ks

+1

2ω2ksq

2ks

)B. Monserrat – QMC Apuan Alps VIII – July 2013 14 / 43

Principal axes approximation to the BO energy surface

V (qks) = V (0)+∑k,s

Vks(qks)+1

2

∑k,s

∑k′,s′

′Vks;k′s′(qks, qk′s′)+· · ·

I Static lattice DFT total energy

I DFT total energy along frozen independent phonon

I DFT total energy along frozen coupled phonons

B. Monserrat – QMC Apuan Alps VIII – July 2013 15 / 43

Vibrational self-consistent field equations

I Phonon Schrodinger equation:∑k,s

−1

2

∂2

∂q2ks

+ V (qks)

Φ(qks) = EΦ(qks)

I Ground state ansatz: Φ(qks) =∏

k,s φks(qks)

I Self-consistent equations:(−1

2

∂2

∂q2ks

+ V ks(qks)

)φks(qks) = λksφks(qks)

V ks(qks) =

⟨∏k′,s′

′φk′s′(qk′s′)

∣∣∣∣∣∣V (qk′′s′′)

∣∣∣∣∣∣∏k′,s′

′φk′s′(qk′s′)

B. Monserrat – QMC Apuan Alps VIII – July 2013 16 / 43

Vibrational self-consistent field equations (II)

I Approximate vibrational excited states:

|ΦS(Q)〉 =∏k,s

|φSksks (qks)〉

where S is a vector with elements Sks.

I Anharmonic free energy:

F = − 1

βln∑S

e−βES

B. Monserrat – QMC Apuan Alps VIII – July 2013 17 / 43

Diamond independent phonon term (I)

V (qks) = V (0)+∑k,s

Vks(qks)+1

2

∑k,s

∑k′,s′

′Vks;k′s′(qks, qk′s′)+· · ·

-40 -20 0 20 40Mode amplitude (a.u.)

0

0.2

0.4

0.6

0.8

1.0

BO

ene

rgy

(eV

)

HarmonicAnharmonic

B. Monserrat – QMC Apuan Alps VIII – July 2013 18 / 43

Diamond independent phonon term (II)

-40 -20 0 20 40Mode amplitude (a.u.)

Mod

e w

ave

func

tion

(arb

. uni

ts)

HarmonicAnharmonic

B. Monserrat – QMC Apuan Alps VIII – July 2013 19 / 43

Diamond coupled phonons term

V (qks) = V (0)+∑k,s

Vks(qks)+1

2

∑k,s

∑k′,s′

′Vks;k′s′(qks, qk′s′)+· · ·

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

q2 (

a.u

.)

q1 (a.u.)

0

0.5

1

1.5

2

2.5

3

Ener

gy

(eV

)

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

q2 (

a.u

.)

q1 (a.u.)

0

0.5

1

1.5

2

2.5

3

Ener

gy

(eV

)

B. Monserrat – QMC Apuan Alps VIII – July 2013 20 / 43

LiH independent phonon term (I)

V (qks) = V (0)+∑k,s

Vks(qks)+1

2

∑k,s

∑k′,s′

′Vks;k′s′(qks, qk′s′)+· · ·

-60 -40 -20 0 20 40 60Mode amplitude (a.u.)

0

0.2

0.4

0.6

BO

ene

rgy

(eV

)

HarmonicAnharmonic

B. Monserrat – QMC Apuan Alps VIII – July 2013 21 / 43

LiH independent phonon term (II)

-60 -40 -20 0 20 40 60Mode amplitude (a.u.)

Mod

e w

ave

func

tion

(arb

. uni

ts)

HarmonicAnharmonic

B. Monserrat – QMC Apuan Alps VIII – July 2013 22 / 43

LiH coupled phonons term

V (qks) = V (0)+∑k,s

Vks(qks)+1

2

∑k,s

∑k′,s′

′Vks;k′s′(qks, qk′s′)+· · ·

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

q2 (

a.u

.)

q1 (a.u.)

0

0.5

1

1.5

2

2.5

3

3.5

Ener

gy

(eV

)

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

q2 (

a.u

.)

q1 (a.u.)

0

0.5

1

1.5

2

2.5

3

3.5

Ener

gy

(eV

)

B. Monserrat – QMC Apuan Alps VIII – July 2013 23 / 43

Anharmonic ZPE correction

0 200 400 600 800Number of normal modes

0.0

2.5

5.0

7.5

Anh

arm

onic

cor

rect

ion

(meV

/ato

m)

Diamond1H

7Li

2H

7Li

GrapheneGraphane

B. Monserrat – QMC Apuan Alps VIII – July 2013 24 / 43

General phonon expectation value

I Phonon expectation value at inverse temperature β:

〈O(Q)〉Φ,β =1

Z∑S

〈ΦS(Q)|O(Q)|ΦS(Q)〉e−βES

I Evaluation:I Standard theories (Allen-Heine, Gruneisen):

O(Q) = O(0) +∑k,s

aksq2ks

I Principal axes expansion:

O(Q) = O(0)+∑k,s

Oks(qks)+1

2

∑k,s

∑k′,s′

′Oks;k′s′(qks, qk′s′)+· · ·

I Monte Carlo sampling

B. Monserrat – QMC Apuan Alps VIII – July 2013 25 / 43

Band gap renormalization

I Band gap problem (LDA, PBE, . . . ): underestimation of gaps.

I Caused by the lack of a discontinuity in approximatexc-functionals with respect to particle number: correction ∆xc

to band gap.

I Approximate systematic shift in all displaced configurations.

I Error disappears in change in band gap.

B. Monserrat – QMC Apuan Alps VIII – July 2013 26 / 43

Diamond thermal band gap (I)

W Γ X

ε nk (

arb.

uni

ts)

B. Monserrat – QMC Apuan Alps VIII – July 2013 27 / 43

Diamond thermal band gap (II)

0 200 400 600 800 1000Temperature (K)

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0E

g (eV

)

Static latticeIncluding el-ph coupling0.462 eV

B. Monserrat – QMC Apuan Alps VIII – July 2013 28 / 43

Diamond thermal band gap (III)

0 200 400 600 800 1000Temperature (K)

5.1

5.2

5.3

5.4

Eg (

eV)

Theory Experiment

Experimental data from Proc. R. Soc. London, Ser. A 277, 312 (1964)

B. Monserrat – QMC Apuan Alps VIII – July 2013 29 / 43

Thermal expansion (I)

I Gibbs free energy:

dG = dFel + dFvib − Ω∑i,j

σextij dεij

I Vibrational stress:

dFvib = −Ω∑i,j

σvibij dεij

I Effective stress:

dG = dFel − Ω∑i,j

σeffij dεij

where σeffij = σext

ij + σvibij .

B. Monserrat – QMC Apuan Alps VIII – July 2013 30 / 43

Thermal expansion (II)

I Potential part of vibrational stress tensor:

σvib,Vij = 〈Φ(Q)|σel

ij |Φ(Q)〉

I Kinetic part of vibrational stress tensor:

σvib,Tij = − 1

Ω

⟨Φ

∣∣∣∣∣∣∑Rp,α

mαupα;iupα;j

∣∣∣∣∣∣Φ⟩

I Total vibrational stress tensor:

σvibij = σvib,V

ij + σvib,Tij

B. Monserrat – QMC Apuan Alps VIII – July 2013 31 / 43

LiH and LiD thermal expansion coefficient

0 200 400 600 800Temperature (K)

0

1

2

3

4

5

6

7

(10-5

K-1

)

H7Li

D7Li

H7Li (exp.)

D7Li (exp.)

0 200 400 600 800Temperature (K)

7.7

7.8

7.9

8.0

8.1

Latti

ce p

aram

eter

(a.

u.)

Experimental data from J. Phys. C 15, 6321 (1982)

B. Monserrat – QMC Apuan Alps VIII – July 2013 32 / 43

Outline

White dwarf stars overview

Theoretical backgroundAnharmonic energyPhonon expectation values

Results

Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013 33 / 43

Solid helium structural phase diagram

5 10 15 20 25 30Pressure (TPa)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ent

halp

y di

ffere

nce

(eV

/ato

m)

hcp

dhcp

bcc

fcc

hcp-dhcp continuum

B. Monserrat – QMC Apuan Alps VIII – July 2013 34 / 43

Solid helium electron-phonon gap correction (I)

0 5 10 15 20 25 Pressure (TPa)

-1.0

-0.5

0.0

0.5

1.0

Ele

ctro

n-ph

onon

cor

rect

ion

(eV

)

T = 0 KT = 2500 KT = 5000 KT = 7500 KT = 10000 K

B. Monserrat – QMC Apuan Alps VIII – July 2013 35 / 43

Solid helium electron-phonon gap correction (II)

10 TPa to 25 TPa

B. Monserrat – QMC Apuan Alps VIII – July 2013 36 / 43

Solid helium equilibrium density

0 5 10 15 20 25 Pressure (TPa)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00ρ/

ρ stat

ic

T = 0 KT = 2500 KT = 7500 KT = 5000 KT = 10000 K

B. Monserrat – QMC Apuan Alps VIII – July 2013 37 / 43

Solid helium metallization pressure

24 25 26 27 28 29 30 31Pressure (TPa)

-2

-1

0

1

2

Eg (

eV)

DMC and GWel-ph (T=0K)

el-ph (T=5000K)

kBT (T=5000K)

DMC and GW from PRL 101, 106407 (2008)

B. Monserrat – QMC Apuan Alps VIII – July 2013 38 / 43

Helium phase diagram revisited

Pre

ssur

e (T

Pa)

Temperature (K)

24

25

26

27

28

29

30

31

0 2000 4000 6000 8000 10000

Insulating solid

Metallic solid

Fluid

B. Monserrat – QMC Apuan Alps VIII – July 2013 39 / 43

White dwarf cooling revisited: metallization of solid helium

B. Monserrat – QMC Apuan Alps VIII – July 2013 40 / 43

Outline

White dwarf stars overview

Theoretical backgroundAnharmonic energyPhonon expectation values

Results

Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013 41 / 43

Conclusions

I Theory for anharmonic vibrational energy of solids.

I General framework for phonon-dependent expectation values.

I Metallization of solid helium.

I White dwarf energy transport and cooling.

B. Monserrat – QMC Apuan Alps VIII – July 2013 42 / 43

I Acknowledgements:I Prof. Richard J. NeedsI Dr Neil D. DrummondI Dr Gareth J. ConduitI Prof. Chris J. PickardI TCM groupI EPSRC

I References:I B. Monserrat, N.D. Drummond, R.J. Needs

Physical Review B 87, 144302 (2013)I B. Monserrat, N.D. Drummond, C.J. Pickard, R.J. Needs

Helium paper, in preparation (2013)

B. Monserrat – QMC Apuan Alps VIII – July 2013 43 / 43

top related