wake vortex x-band radar monitoring : paris-cdg airport 2008

Post on 01-Jan-2017

228 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Wake Vortex X-band radar monitoring :Paris-CDG airport 2008 CampaignResults & PerspectivesThales Air systems, Strategy Technology & Innovation Dept.F. Barbaresco

Short Summary of Wake Vortex Radar Campaigns

Thales Air Systems Division3

USA :During 90’s different Radar trials have been made in US for wake vortex monitoring in clear Air with positive results for different bands.

EUROPE :UK, GEC-MARCONI (1992) : detection at Range R = 2.8 Km with an S-band Radar (3 GHz) (DX 04 Radar Campaign)France, CNRS/CRPE (1992): detection at Range R = 0.5 Km with an UHF-band Radar (961 MHz) (PROUST Radar campaign)

WAKE VORTEX RADAR CAMPAIGNS

DX04 S-band radarAN/MPS-39

C-band radar

Proust UHF Band Radar

Wake Vortex Reflectivity was flat as a function of frequency

Thales Air Systems Division4

CLEAR AIR RADAR REFLECTIVITY OF WAKE VORTEXTests have revealed radar echoes in clear air.

Two mechanisms causing refractive index gradients are :Radial Pressure (and therefore density) gradient in a columnar vortex arisingfrom the rotational flow :

Adiabatic transport of atmospheric fluid within a descending oval surrounding a vortex pair :

Particulates were not involved (not f4 Rayleigh scattering) .The frequency dependence was not the Kolmogorov f1/3

The role of Engine Exhaust :RCS doesn’t change when the engine run at idle or full powerExhaust diameter yields a partial pressure of vapour and a contribution which is much smaller than that due to temperature.

⎪⎩

⎪⎨

=

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=−

∞ K(K) , Tmperature T : the tepourf water vaure (mb) otial press : the par; Pf dry air ure (mb) otial press : the parP

GHzbelow equencies air for fr of humid tive indexn : refracwith

TP..

TP.

TP.).(n

va

vva

288

20

107763864677101 256

[ ]

⎪⎩

⎪⎨

+===

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++−=−

va

--

zsat

PPe, and Pnd AltitudΔz : Desceer) (in Ws.-s.r) N (in Summes.el : Nat Sea Lev

ter)ion parametratificatequency (sVäisälä FrN : Brünt-with

(z)T...

(z)P)(T(z)PRHΔz

g(z)Nρ.(z)n(z)n

int0300200140

1049377622310~

111

626

Operational Needs for Wake Vortex Monitoring

Thales Air Systems Division6

WAKE VORTEX MONITORING IN CRITICAL AREASWake Vortex should be monitored In critical Areas (where

% of occurences is high) :Very Close to the Ground (0 to 400 ft)Glide Path Intercept (3000 to 4000 ft)

These Critical Areas should be monitored in All Weather conditions (Wet & Dry conditions, Fog, Rain,…)

FiguresFromNATS

VoluntaryReporting

Critical Area 1 :Very close to the Ground

Critical Area 2 :Glide Path Intercept

Thales Air Systems Division7

Wake Vortex behaviours very close to the ground have very complex causes that could change abrutly (e.g. Wind Squall or Fall,…) : Need for Real Time Monitoring

Ground Effect :

Wind Shear :

Transport :

vortices

Secondary vortices

Wake Vortex Monitoring very close to the Ground

THALES X-BAND RADAR TRIALS

Thales Air Systems Division9

CHARACTERISTICS OF THALES X-BAND BOR-A550 RADAR

Main FiguresFrequency : X Band (9.6 GHz for ORLY Campaign)Minimal Range : 400 mMaximal Range : 40 Km (limited to 2 km for WV)Range Resolution : 40 mMechanical Tilt : +/- 24°Beam Width (elevation/azimut): 4°/2.7°Radial Velocity Range : +/- 26 m/sDoppler Resolution (& High Resolution) : 0.2 m/s

(0.04m/s)Mechanical Scan Rate : 8°/s (sur 45° pour ORLY)Peak transmit power: ClassifiedData Link : RS232 (x2), RS432 (x2), EthernetRecording System : All range cellsexternal link Ethernet 20 Gb/s

PRF = 3348 HzF=9.6 GHz

Vamb = λ.PRF/2Vamb = 52.31 m/s

(+/-26 m/s)

λ=c/F=3.125 cm

Thales Air Systems Division10

Radar Sensor Campaigns funded by THALES2006 : Paris Orly Airport (Runway Monitoring)

From Mode S site (500 m from runway)Wake Vortex Monitoring during departuresWeather conditions : Winter (clear air, rain)

2007 : Paris Orly Airport (Glide Path Monitoring)From Thales Limours Testbed TowerWake Vortex Monitoring during arrivals (Glide PathIntercept)Weather Conditions : Autumn (highly turbulent atmosphere)

2008 : Paris CDG Airport (CSPR Monitoring)From Kbis Tower co-localized with Eurocontrol Lidar (2 μm Windtracer)Wake Vortex Monitoring during arrivals/departures on Closely Spaced Parallel runwaysWeather Conditions : Summer (very hot, rain)

Orly 2006

Orly 2007

CDG 2008

Thales Air Systems Division11

X-band Radar Sensor for Safety Case & Operational UseWake Vortex Monitoring in All Weather Conditions (light

to heavy rain, fog, turbulent atmosphere,…)Operational Use to track Wake Vortex (transport, decay, rebound) in extreme weather conditions :

Wind burst (wind under Cb, turbulent atmosphere, wind shear…)No Wind (foggy weather,…)

Use for « Safety Case » by Data Collection :Risks Assessment according to extreme wind conditions and no longer on mean wind conditionsNeed for Wake Vortex Data in exhaustive cases of airport climatology (good/bad weather)

Fast Monitoring of very large volume (radar scanning) with high update rate (e.g. : 8°/s with mechanical scanning of BOR-A radar)Highly sensitivity of Radar : monitoring of Wake Vortex for « medium » (high % of A320) aircrafts and not only « heavy / super heavy » (requested for traffic mix of « very light jets »)

Thales Air Systems Division12

LIDAR & RADAR WAKE VORTEX DOPPLER SIGNATURE

AngularRadar resolution

Doppler radarsignature

Doppler Lidarsignature

LIDAR WAKE VORTEX DETECTION

Post-processingNeeded for Wind

Inversion detection

ORLY Airport Radar Campaign 2006

Thales Air Systems Division14

Radar (& Lidar Wind Profiler) Site at Paris Orly Airport

WLS7 LidarWind Profiler

THALESBORA-550

Radar

Thales Air Systems Division15

Wake Vortex Detection in All weather Conditions

No Rain

Minimum Temperature 8 °

Maximum Temperature 14 °

Rain Rate 0 mmWind Speed 22 km/hWind Direction : South

Rain

Minimum Temperature 9 °

Maximum Temperature 12 °

Rain Rate 1.19 mmWind Speed 20 km/h

Wind Direction South-East

RCS of Medium Aircraft Wake Vortex : 0.01 m2 S/N ≈ 15 dB (Range = 600 m)

NO RAIN RAIN

Thales Air Systems Division16

WAKE VORTEX PROFILING : RADAR DOPPLER ANALYSIS

Speed Variance of Rain can measure

EDR & TKE(air turbulence)

Time (s)

0 m/s

+/-26 m/s

0 m/s

Tangential SpeedVersus Radius

SpiralGeometry

Cross-Wind Speed

⎟⎠⎞

⎜⎝⎛ +=⇒=⇒=

VVbbr

ddraer rb δ

πθθ 1log

21

Thales Air Systems Division17

WAKE VORTEX PROFILING : WAKE VORTEX AGEPositive

Time/Dopplerslopes

ZeroTime/Doppler

slopes

NegativeTime/Doppler

slopesLow speedNegative

Time/Dopplerslopes

Thales Air Systems Division18

Wake Vortex Detection in Clear Air at 7 Km

Recording conditions29th November '06

scanning modescan angle 45°scan rate 8°/slong transmit pulsedistance up to 7 kmwithout rain

Win

d

7000 m

45°

Line of sight

Thales Air Systems Division19

Wake Vortex Circulation Computation

[ ] 323 2. /

i )S(Vmomentndk=Γ

[ ]

[ ]∫

∫∝Γ

max

min

max

min

3/2

3/22

)(

)(2

V

Vii

V

Viii

dVVS

dVVSV

Wake Vortex Doppler Frequencies Extraction(Pre-Processing : CFAR on Doppler axis)

Thales Air Systems Division20

Advanced Processing Chain: 3 PatentsDoppler & Image Processing

For Wake VortexMonitoring & Profiling

(Thales Patent 3)Regularized Autoregressive

Burg Algorithm(Thales Patent 1)

..2)1()(1

...2)1().(2

1

1

0

2)1()(21

21

1

1

1

)1()1()(*11

∑ ∑

∑ ∑

+=

=

−−−

+=

=

−−

−−−

+−+−

+−−−= N

nk

n

k

nk

nknn

N

nk

n

k

nkn

nk

nknn

n

akbkfnN

aakbkfnN

β

βμ

Doppler Entropy Based onInformation Geometry

(Thales Patent 2)

( )

)*2()1(

)2()1()2,1(

1

1

2

)2,1(

)2,1()2()1(2

1

11ln

21).(,

ii

iii

n

i i

i

with

ind

μμμμδ

δδθθ

−−

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−+

−=∑−

=

[ ]

[ ]∫

∫=Γ

max

min

max

min

3/2

3/22

)(

)(2. V

Vii

V

Viii

dVVS

dVVSVγ

Wake Vortex Circulation

Radon/Hough

⎟⎠⎞

⎜⎝⎛ +=⇒=

=⇒Γ

=

VVbaer

rrVrr

rrV

rb

cc

δπ

απ

θ 1log21

.)(.2

)( 0

Wake Vortex Geometry

HR Autoregressive Doppler & EntropyImplemented in C language :

3 times faster than real time byuse of 4 Threads with Quadri-Core PC

CFAROn

frequency

ORLY Airport / Limours Radar Campaign 2007

Thales Air Systems Division22

Limours (site Thales) : September 2007

Thales Air Systems Division23

Wake Vortex Monitoring In Glide Path Intercept

Vertical ScanningFrom Limours Tesbed

Tower (Orly Glide Path Intercept : Altitude 1500 m)

In Highly Turbulent Atmosphere !!

Wake VortexRollups Wake Vortex

Rollups

CDG Airport Radar Campaign 2008

Thales Air Systems Division25

Radar Sensor Deployment at CDG Airport

08L

08R

26L

26R

27L

27R

Horizontal Scanning

VerticalScanning

Thales Air Systems Division26

Wake Vortex Detection based on Doppler Entropy Time

Range

26R Departure

West Configuration Procedure

Runway WV Detection : West Configuration Procedure

STARINGANTENNA

MODE

26L Arrival

Thales Air Systems Division27

Wake Vortex transport by High cross-Wind

RangeCell n

RangeCell n-1

RangeCell n-2

RangeCell n-3

time

Range

Time

timeRC m

RC m-1

RC m-2

RC m-3

RC m-4

RC mRC m

RC m-5

RC m-6

STARINGANTENNA

MODE

Thales Air Systems Division28

Wake Vortex transport by Cross-Wind

Thales Air Systems Division29

Vortex Transport : Doppler AnalysisRNG 1 to 6 (6 x 40 m = 200 m)

rebound

Time

Range

Thales Air Systems Division30

Vortex Transport : Doppler AnalysisRNG 3 and 4

Mature Vortex

Time

Range

Thales Air Systems Division31

Vertical Scanning : East Configuration Procedure

Wake Vortex Roll-up(Arrival)

Image of High ResolutionDoppler Entropy

Thales Air Systems Division32

Vertical Scanning : East Configuration Procedure

Image of High ResolutionDoppler Entropy

Thales Air Systems Division33

Vertical Scanning : West configuration

Wake Vortex Roll-up(Departure)

Image of High ResolutionDoppler Entropy

Thales Air Systems Division34

West Config. Procedure

WV Roll-ups Evolution : West Config. Procedure

Image of High ResolutionDoppler Entropy

Thales Air Systems Division35

Wake Vortex Roll up

1rst Runway (Departure) 2nd Runway (Arrival)

Image of High ResolutionDoppler Entropy

CDG Radar Campaign Data Exploitation

Thales Air Systems Division37

Wake Vortex Position & Circulation (strength in m2/s) along runway

Position des vortex au cours du temps

1200

1300

1400

1500

1600

1700

1 2 3 4 5 6 7

Numéro de balayage

Cas

e di

stan

ce

vortex 1 position

vortex 2 position

Circulation des vortex au cours du temps en m²/s

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7

N uméro d e b a lay ag e

vo rtex1 circulatio nvo rtex2 circulatio n

5 s per scan (35 s)Position around 1500 m

Position des vortex au cours du temps

600

700800

9001000

11001200

1300

1 2 3 4 5 6

Numéro de balayage

Cas

e di

stan

ce

vortex 1 position

vortex 2 position

Circulation des vortex au cours du temps en m²/s

0

50

10 0

150

20 0

2 50

30 0

3 50

1 2 3 4 5 6

N uméro d e b a la ya g e

vo rtex1 circulat ionvo rtex2 circulat ion

5 s per scan (30 s)Position around 1000 m

With Cross-Wind Without Cross-Wind

WV roll-upsposition

WV roll-upsCirculation

WV roll-upsposition

WV roll-upsCirculation

Thales Air Systems Division38

Occurrences of Wake Vortex Position versus Wind conditions

Thales Air Systems Division39

Coordination with Eurocontrol & ADP

Debriefing meeting has been organized, 18th of July in Eurocontrol Bretigny, with persons in charge of Lidar exploitation to :

Present first exploitations of radar data recordsDefine File template (date, WV position, WV Circulation) to concatenate all results for benchmarking with Lidar

Debriefing meeting has been organized with ADP & DSNA , 25th of September, with G. Batistella, Guillaume Auquier & Jean Jezequel to:

Present first resultsThank ADP for their logistic support

First Excel File has been transmitted to Eurocontrol, the 7th of November & new results in DecemberExhaustive CDG Trials Exploitation is in progress :

Vertical Staring antenna & Vertical Scanning modeHorizontal Scanning

CONCLUSION

Thales Air Systems Division41

Thales Radar Trials SynthesisParis ORLY AIRPORT Campaign has proved that X-band ThalesBOR-A550 Radar can :

Detect Wake Vortex (RCS of 0.01 m2 on medium aircraft) :In all weather conditions (wet & dry at short range < 2 Km)In Staring & Scanning ModeIn real Time / Update Rate of 11 s on 90° scan sector

Localize Wake Vortexin range/azimuthWith resolution : 40 m x 1°

Characterize Wake Vortex by :Geometry (Spiral)Age (Young, mature, old, decaying)Strength : Circulation (m2/s)

Characterize ambient air (in Rain Conditions)Wind (based on Doppler & post-processing)Ambient Air Turbulence (EDR & TKE)

X-BAND BOR-A550 RADAR IS AVAILABLE & CAN BE DEPLOYED, AS SOON AS 2009, ON LARGE EUROPEAN AIRPORTS

(Paris CDG, London Heathrow, Francfort, …) for SESAR studies

Medium AircraftWake Vortex RCS

0.01 m2

(e.g. : Airbus A320)

Thales Air Systems Division42

WV Predictor

Main Objective : Ground wake detection, tracking & alert

WIMS(in TMA)

Data Broadcast

Data Broadcast

Pilot

WV Alarm

Approach & TowerController

WV controller HMI

Ground RadarHorizontal/Vertical scanning

of Runways

Ground RadarVertical scanning

of Glide Path Intercept

Data-Link(WV Alerts)

Limours trials 2007

Orly trials 2006 & CDG 2008

crosswind

crosswind

Thales Air Systems Division43

Complementarities of Radar/Lidar Sensors

Radar & Lidar are complementary sensors in all weather operationsTHALES has proved by derisking campaign (Paris Orly/CDG) that X-band Radar & Lidar are complementary for Wake Vortex Monitoring :

US Campaign has proved (Westheimer Aiport Campaign) that X-band & Lidar are compementary for Wind Monitoring

Presented at Wakenet USA 2008

Thales Air Systems Division44

Acknowledgements

ADP (Paris Airport) Radar Team (Orly)Jean-Paul LecorreJean-Marc ReceveauDaniel DuongGilbert Herbulot

DSNAAndré SimonettiAlfred HarterJean Jezequel

Direction des Aires Aéronautiques (ADP CDG) : Gérard BatistellaGuillaume Auquier

Eurocontrol « Wake Vortex » Team :Andrew HarveyAntoine Vidal (visit during Orly 2006 Radar Trials)Vincent Treve (visit during Orly 2007 & CDG 2008 Radar Trials)Jean-Pierre Nicolaon (visit during Orly 2007 Radar Trials)

Thank you for your attention

Leonardo Da Vinci

top related