urban metabolism - técnico lisboa - autenticação · urban metabolism is the study of the flows...

Post on 01-Aug-2019

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

URBAN METABOLISM

Seminar  1: Dec 11, 08

Research context

Urban Metabolism

US Energy flows 2003(Quadrillion Btu)

~40 percent of primary energy use

~60 percent of electricity

Urban Metabolism

source: Wagner, L. 1997., Fernandez, J. 2006.

Developed countries

70% total societal material throughput

20-30% municipal waste stream

The built environment consumes enormous material resources.

Urban Metabolism

“Use phase” dominates life cycle energy for many durables

Product System(functional unit)

Use Phase (%)

Mixed Use Commercial Building (75 years, 78,500ft2)

92%

Residential Home (50 years, 2450 ft2)

85%

Passenger Car (120,000 miles, 10 years)

85%

Household Refrigerator (20 ft3, 10 years)

94%

Desktop Computer(3 years, 3300 hrs)

34%

Office File Cabinet (one cabinet, 20 years)

0%

Source:  Keoleian, G.A. and D.V. Spitzley. “Life Cycle Based Sustainability Metrics”, Chapter 2.3 in Sustainability Science and Engineering, Volume 1: Defining Principles, M. Abraham, Ed. Elsevier, 2006.

Figure 3. Life cycle energy consumption for SH and EEH

31

34

1,6691,509

4,725

14,493

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

SH EEH

GJ

demolition

use / maintenance

fabrication / construction

Initial construction/total life cycle energy 9% 26%

?

100%

Zero Energy Home

Scales of inquiry• materials and component (micro)• building and building system (meso)• community and city (macro)

Sampling of strategies• Computer aided integrated design (mat. selection)• Passive heating and cooling (insulation/thermal mass)• High performance exterior envelopes (aerogel/textiles)• Building rating system (LEED/USGBC)• Urban Metabolism for sustainable communities

Resource Efficiency in the Built Environment

Urban Metabolism

Aerogel Exterior Envelope System

Fernández, J. Materials for aesthetic, energy efficient and self‐diagnostic buildings. Science, V315,N5820, March 30, 2007: 1807‐1810.

ADVANCED FACADES

BTIIIWindows

Superwindows

Urban Metabolism

ADVANCED FACADES

BTIIIThermal Properties

Edge of glass and frame thermal analysis

Total rate of heat transfer through fenestration can be calculated knowing the separate heat transfer contributions of:

1. Center-glass2. Edge seal3. Frame

Critical to good performing frames is the edge seal (spacer)

Edge seals are made of the following materials:

• Aluminum• Steel• Metal spacer with thermal break• Fiberglass/plastic• Butyl• Foam

1 Double glazing

4 Window frame

6 Seal

7 Setting block fixing/seal

9 Bridge setting block

10 Thermal break

1

3

2

Urban Metabolism

Screen capture of: 

Fernandez‐Ashby Material Selector for Architecture and the Built Environment

www.grantadesign.com

ADVANCED FACADES

BTIIIWindows

Technology

Wavelength selective coatings: Spectral-splitting

• Used to divide solar spectrum into different broadband regions.

Holographically coated glazings• Can be tuned to reflect any

waveband in the solar spectrum while allowing 75-80% transmittance in the visible and assists with photovoltaic applications

Urban Metabolism

The Passive House Institute: http://www.passiv.de/

Clybourn Avenue in Chicago, south of the Cabrini‐Green public housing project

Urban Metabolism

ADVANCED FACADES

CONSTRUCTION & MATERIALS Layers

1. Outer leaf

2. Cavity solar shading

3. Inner leaf

DSFs

1

2

3

A

C

BD

E

Loads

A. Solar Radiation

B. Acoustic noise

C. Heat: People

D. Heat: Equipment

E. Heat: Lights

Urban Metabolism

Resource mapping: Material flow analysis (MFA) for architectural designUrban Metabolism

Sustainable Building Systems

Current Design Work: Low energy – passive solar design

Urban conditions

Urban Metabolism

Mathis Wackernagel

“To our knowledge, no government

operates comprehensive

[physical] accounts to assess

the extent to which human use of

nature fits within the biological

capacity of existing ecosystems..”

Wackernagel, M. et al. 2002.

Tracking the ecological overshoot

of the human economy. PNAS.

Vol.99, No.14:9266-9271.

Urban Metabolism

United Nations Population Division

3 billion6 billion

Urban Metabolism

1.8 gha/person

per capita global biocapacity

US % of global capacity

US: 540% 

Port: 240%

Portugal

Urban Metabolism

DMI versus GDP, EU

Adapted from Bringezu and Schütz, 2000, Total Material Requirement of the European Union, European Environment Agency, Technical report No 55.

EUROSTAT

Renewable

Nonrenewable

85%

15%95%

5%

Urban Metabolism

History: Energy Information Administration (EIA), International Energy Annual 2003 (May-July 2005)web site www.eia.doe.gov/iea/. Projections: EIA, System for the Analysis of Global Energy Markets (2006).

2003: Energy Information Administration (EIA), International Energy Annual 2003 (May-July 2005), web site www.eia.doe.gov/iea/. 2010-2030: EIA, System for the Analysis of Global Energy Markets (2006).

Energy Information Administration / International Energy Outlook 2006

Energy Information Administration / International Energy Outlook 2006

Energy Information Administration / International Energy Outlook 2006

Global Climate Change and Urbanization

1900 

15% urban

2000 

~50% urban

Urban Metabolism

source: Low, M. (2005) MFA of concrete in the US. MSBT thesis, MIT: pg. 16 adapted from:Van Oss, Hendrik G. and Padovani, Amy C.

CHINA

5-8% of total anthropogenic CO2 emissions.

“Our survey of the literature (80 studies) indicates that there is a global potential to reduce approximately 29% of the projected baseline emissions by 2020 cost‐effectively in the residential and commercial sectors, the highest among all sectors studied in this report.”

(other sectors: industry, agriculture, forestry, transportation…)

Imperial Roman road network

Lisboa

Lisbon 1513

Projects and methodologies

Urban Metabolism

Urban Metabolism

City as organism

Urban metabolism can be framed as follows:

• As the sum of the metabolism of all living organisms within the urban zone (people and other species). This metabolism includes all consumption.

• As the volume and attributes of all physical flows that serve to support all activities within the urban zone (materials, products, energy fuels, food, etc.)

Urban metabolism is the study of the flows of resources in the urban technological environment, and of the influences of economic, political, regulatory, and social factors on the flow, use, and transformation of those resources (adapted from Graedel 1999)

Graedel, T. (1999) Industrial Ecology and the Ecocity. The Bridge, vol.29, no.4: pp.10‐14

Material Flows and Modeling

Methods

1. MFA: Non‐dynamic (macroscopic)

INPUT/OUTPUT physical accounting

2. SD: Dynamic (macroscopic and mesoscopic)

Systems modeling

3. Agent‐based (microscopic)

households and transport decisions

source: Mathews et al. (2000) The Weight of Nations: material outflows from industrial economies. World Resources Institute, Washington DC: pg. 14

CITIES

National Physical Accounts

milhares de toneladas

Lisbon Material Flows Matrix

System Dynamics Model for Green Housing

Donella Meadows

“The necessity of taking the industrial

world to its next stage of evolution is

not a disaster – it is an amazing opportunity. How to seize the

opportunity, how to bring into being a

world that is not only sustainable,

functional, and equitable but also

deeply desirable is a question of

leadership and ethics and vision and

courage, properties not of computers

models but of the human heart and

soul.”

Limits to Growth – The 30-year update.

(2004)

•MPP/UM: Urban Metabolism and Sustainable Buildings

ReMAPLisbonResource Efficient Management and Alternative Planning for Lisbon (ReMAP Lisbon: Urban Metabolism of Lisbon)

Result: MFA+SD tool for Lisbon + USIs (Lisbon)

• Methodology: MFA+SD: coupled analytical model of resource flows and ‘social metabolism’

• Detailed resource flows + additions to stock + dissipation: top‐down (aggregated) and bottom‐up (households) 

• Dynamic ‘scenario‐building’ tool for future material and social Lisbon

• Conducted within EEA DPSIR framework (Green Capital Award: 2012)

• Involving key data providers/stakeholders in Lisbon (EPAL)

• Resulting in urban sustainability indicators (MIPS & THAurban) 

RePADResource Efficient Planning and Airport Design (RePAD: Urban Metabolism of New Lisbon Airport)

Result: Alternative Reff airport planning scenarios 

• Methodology: MFA+SD analysis of Airport/City concept

• Detailed resource flows + additions to stock + dissipation (current airport versus future potential for resource reduction)

• Dynamic ‘scenario‐building’ tool for future airport design and planning

• Involving key data providers/stakeholders (Airport authority)

• Resulting in green (resource efficient) airport indicators + alternative planning of main components of airport 

UMRaDUrban Metabolism Model Research and Development (UMRaD)Result: MFA+SD coupled model framework

• Methodology: MFA+SD: coupled analytical models or resource flows and ‘social metabolism’

• Unified mathematical relationships (C. Kennedy)

• Social measures ‐ ‘capacity’ HDI1, TET/THA2

• Urban sustainability indicators linked to national and global indicators

• Involving key urban metabolism studies (past and current)

• Resulting in proposal for international convention on UrbMet framework 

1: J. Steinberger, IFF Vienna (ConAccount 2008)

2: Giampietro et al.(ConAccount 2008)

RCGCResource Consumption of Global Cities (RCGC) Result: Global urban resource burden ‘tool’

• Methodology: MFA derived from national flows + recent studies in global resource flows

• SERI: www.materialflows.net

• Interactive tool linking urban growth with resource flows

• Involving key data providers/stakeholders (EPAL)

• Resulting in a series of interactive maps (graphics) illustrating the linkages between urban growth and resource flows

• Google Earth or other

• Interactive: specific city inquiries

Wolf, M. Sustaining growth is the century’s big challenge. Financial Times (www.ft.com) June 10, 2008.

ReMAP: Modeling phase using Anylogic

Key questions

1. What governs resource intensity of urban areas?• Households (based on typological distinctions)• Districts (based on resource consumption density)• Metro Area (based on resource flows and indicators)

2. What strategies are most effective in decreasing resource intensity (increasing resource efficiency)?• Efficient buildings• Efficient transport• Renewable energy (local prod and storage)• Closed material loops (water included)• Urban form (density/center‐city living & working)

17‐12‐2008

ReMAP: Modeling phase using Anylogic

Key questions and modeling platforms

1. What governs resource intensity of urban areas?• Household consumption based on typological distinctions

• Agent based (AB)• District resource consumption density

• System dynamics (SD, stock and flow)• Metro Area resource flows and indicators

• INPUT/OUTPUT (MFA) including passive I/Os (H2O, air, other?)

Modeling teams• AB: L. Rosado, A. Gonçalves, Artessa N.S.S., JEF• SD: J. Abreu, David Q., D. Wiesman, JEF• MFA: A. Marques, S. Niza, Paulo Ferrão, JEF

17‐12‐2008

aggregated agents

aggregated districts

ReMAP: Modeling phase using Anylogic

Key questions2. What strategies are most effective in decreasing resource 

intensity (increasing resource efficiency)?• Efficient buildings

• Better envelopes etc.• Efficient transport

• Energy storage/shared vehicles• Renewable energy (local prod and storage)

• Micro‐storage/micro‐grid• Closed material loops (water included)

• Recycling/H2O reclamation• Urban form (density/center‐city living & working)

• Reclaiming center/city, increase density etc.

17‐12‐2008

ReMAP: Household Consumption

H1

H2

H3

H4

ReMAP: District Consumption Intensity

Buildings

Industry

Transport

∑BA,W,E,M = ρA (B) + ρW (B) + ρ E (B) + ρ M (B)

Metropolitan Area

ReMAP: Metro Area Resource Flows

top related