unclassified ad number - dtic · inriine.rino dosrri, ptionw, equations, and flow charts are...

Post on 02-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

UNCLASSIFIED

AD NUMBER

AD907815

NEW LIMITATION CHANGE

TOApproved for public release, distributionunlimited

FROMDistribution authorized to U.S. Gov't.agencies only; Test and Evaluation; 29 DEC1972. Other requests shall be referred toAir Force Flight Dynmaics Laboratory,Attn: PTB, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFWAL ltr, 11 Feb 1980

THIS PAGE IS UNCLASSIFIED

AFFDL-TR-72-147 - VOL. II

0,

PROPULSION SYSTEMINSTALLATION CORRECTIONS

VOLUME SI:PROGRAMMERS MANUAL

D D-W.1.AL T. B

THE BOEING COMPANY

TECHNICAL REPORT AFFDL-TR-72-147 - VOL IIDECEMBER 1972

Distdbuvim *Amusd to U.S. Oownmmnt sgowss op*V;""t ed evelueion; "&I ^t asope 3 Oseembw 1012.Other r"queM fmo tNiS do•.,, must be reterred to AirForce Flight Dynamics Labotatorv (PT@), Wrisht.PonnermnAir Force lee, Ohio 45433

AIR FORCE FLIGHT DYNAMICS LABCRATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

BestAvai~lable

Copy

m )

NOTICE

When Government drawings, specifications. or other dataare used for any purpose other than in connection with adefinitely related Government procurement operation, theUnited States Government thereby incurs no responsibilitynor any obligation whatsoever; and the fact that theGovernment may have formulated, furnished, or in any waysupplieac the said drawings, specifications, or other data,is not to be regarded by implication or otherwise as in any

Smanner licensing the holder or any other person or corpora-tion, or conveying any rights or permission to manufacture,use, or sell any patented invention that may in any way berelated hereto.

|I

Copies of this report should not be returned unless return

is required by secirity considerations, contractual obliga-tions, or notice on a specific document.

PROPULSION SYSTEMINSTALLATION CORRECTIONS

VOLUME I1:

PROGRAMMERS MANUAL

W. H. BALL

Distribution limited to U.S. (;.over 111nt111 t Oy01w5.I 4ily,test nrmd evaluation, statlonimnt dpmplmd 29 L)Documbe, 1972

Other requests foa th1S domHAIMmmem Musm b0 1m00118Omd to Air

Famore Flight Dy nammmks Ldtboratory v P1 W ), Wriht- t t',ettrsUto

Air Force Base, Ohio 45433

FOREWORD

This report was prepared by the Research and EngineeringDivision, Aerospace Group, of The Boeing Company underAir Force Contract F33615-72-C-1580, "Propulsion SystemInstallation Corrections", Project 1366. The program wasconLucted under the direction of the Prototype Division,Air Force Flight Dynamics Laboratory, Air Force SystemsCommand. Mr. Gordon Tamplin was the Air Force ProgramMonitor.

The program was initiated on 31 December 1971 and draftcopies of the final reports were submitted for approvalon 31 October 1972.

Dr. P. A. Ross was Program Manager and Mr. W. H. Ballwas principal investigator during the program. Significantcontributions to the program were made by the followingIndividualsr Mr. Joe Zeeben, engine performance; Dr. FranklinMarshall, irniet and exhaust system technolegy; Mr. John Petit,nozzle internal performance and nozzle/afterbody drag; andMr. Gary Shurtleff, progrp.mming.

This report contains no classified information extractedfrom other tiasified reports.

Publicati•c, c! this report does not constitute Air Forceapproval ',,e report's findings or conclusions. It ispublisho- - for the exchange and stimulation of ideas.

Lt. Col. Ernest J. Cross, Jr.Chief, Prototype DivisionAir Force Flight Dynamics Laboratory

Ui

ABSTRACT

This report prescnts the result:; of a research progra. todevelop a procedure for calculati.nc; TropulIsion :;y,;tem in-stallation losses. These los;as iacludo inlet and Jiizzl,internal losses and vxternal drag ]ocses for a wide variet'yof subsonic and supersonic ai'crcrft confiqurationz; up toMach 4.5. The calculation procedure., which was lrgelydeveloped from existing engineer infj raedur,.,(tn(I *ý:xoo:ri-.mental data, is suitable for preliminar, ';tuudios ofadvanced aircraft conficturatolon;. inriine.rino dosrri, ptionW,equations, and flow charts are provided to heir) in adarthe calculation procedures to d(IitiI c(-ir:,utLer ro'lt nI:;.Many of the calculation procedures hav,, already 1beern pr,ýor ivAon the CDC 6600 compuLtr. Proqram Hi.,stjn,i-. .;nd f111.1 Y.h,-tare provided for the calcul.ition prcodurenr tLat,. i-wiv, heenprogrammed. Tho work accomp]i Thed Iurinri th- nr,.,I, 1,1tained in four separate volumc,;. Vol:ume I contain, -inengineering description of th, calci]fati,, rrlrocr,,roe;.Volume II is a proqrainerl's ma:nual (,ontainiinq flow.; :rt,listings, and subrouti ne dusc riptLion;. Vulim,11 ILI ,Contitin.sample calculations and saimno],2 ilnput data. VOl u.",. IV c.'n-tains i )okkeep.ing definitions and data eorrelatin.;.

C

01i

TABLE OF CONTENTS

SECTION Page

GENERAL DESCRIPTION OF COMPUTER PROGRAM 1II DESCRIPTIONS OF SUBROUTINES AND LISTINGS 5

MAIN PROGRAM (TEM 333) 5

COMPUTE 13

TABIN 21

INLDRAG 26

SIZINL 31

AIRBYP 35

AIRSPL 43

DRG 47

CDCONV 34

PLUGMX 60

PLUGNM 64

ABINPT 68

SUBBT 72

SUPBT 78

DRAGAB 82

DBOATR 88

CABTAB 92

DINTFR 97

DBASER 101

DBTTB 105

/ v

TABLE OF CONTENTS (Continued)

SECTION Page

FIXDIM 107

ATHOS 110

PERF 114

OUTGO 118

WARNING 122

STORE 125

CHKRP 128

GTHRST 131

DATA 137

PLACIN 140

TABL 1 143

TABL 2 146

TABL 3 150

TABL 22 154

DSCRUB 157

III DESCRIPTION OF FUNCTIONS AND LISTINGS 167

AREA 167

HOFT 171

TOFH 173

PROFH 175

HOFPR 177

COFH 180

COFHS 2.3

vi

TABLE OF CONTENTS (Continued)

S

SECTIONPage

KOU14T 186

| DEMAND 189

AREAF 192

AUXHST 194

*IV CROSS LISTING OF PROGRAM TEM 333 196V INLET MAP PROGRAM

205

(

q" vii

LIST OF ILUSTRATIONS

Figure No. Title Page

1 Flow Chart for Program TEN 333 6

2 Flow Chart for Subroutine COMPUTE 14

3 Flow Chart for Subroutine INLDRAG 27

4 Flow Chart for Subroutine SIZINL 32

5 Flow Chart for Subroutine AIRBYP 36

6 Flow Chart for Subroutine AIRSPL 44

7 Flow Chart for Subroutine DRG 48

8 Flow Chart for Subroutine CDCONV 55

9 Flow Chart for Subroutine PLUGMX 61

10 Flow Chart for Subroutine PLUGNM 65

11 Flow Chart for Subroutine SUBBT 73

12 Flow Chart for Subroutine SUPBT 79

13 Flow Chart for :Subroutine DRAGAB 84

14 Flow Chart for Subroutine DBOATR 89

15 Flow Chart for Subroutine CABTAB 93

16 Flow Chart for Subroutine DINTFR 98

17 Flow Chart for Subroutine DBASER 102

18 Flow Chart for Subroutine ATMOS i11

19 Flow Chart for Subroutine PERF 115

20 Flow Chart for Subroutine GTHRST 133

viii

SUMDOLS A .NOMENCLATURE

Aiea, in2

Ac Inlet capture area, in2

( AO Local stream tube area ahead of the inlet, in2

AO Free-stream tube area of air • inering the inlet, in2

at Aspect ratio, dimensionless

B Velocl.tj decay exponent, dimensionless

C Sonic velocity, ft/sec.

CE Drag coefficient, D , dimensionlessC q4AREF

C-D Convergent-divergent

CD Additive drag coefficient,CD CDADD , dim n-ionlessDADD ~AD!)m A

CD Aftorbody drag coefficient,- 2 A, Pifens,,JoI•i•isC VAX Base drag coefficient (PbP"I)ABASE- climensionl_.ss

CDBase ,AX

CD Scrubbing drag coefficient, DRAG ' dimensionl.-s

FCf Thrust coefficient, • , dimensionless

g -cpl

Stream thrust coefficient, di.onsionlcs.,(Cs (defined by Figure 48 of Volume IV)

CV Nozzle velocity coefficient, dimensionless

Cony. Convergent

D Drag, lb.; Hydraulic Diameter,_!A # in., di.-%mrtr, Il.

ix

SI DOLS AND NOMENCLATURE (Continued)

F Thrust, lb.

F Ideal gross thrust (fully expanded), lb.

f/a Fuel/air ratio, dimensionless

g Gravitational constant, ft/sec2

h Enthalpy per unit mass, BTU/Ib.; height, in.

hfan Enthalpy of fan discharge flow, BTU/lb

hpri /nthalpy of primary exhaust flow after heat additionpri 8TU/lb

ht Throat height, in 2

K Velocity decay coofficient, dimensionless

L Length, in.

H Mach number, dimensionless

P Pressure, lb/in2

P r Relative pressure; the ratio of the pressures paand pb corresponding to the temperatures Ta and 7respectively, along a given isentrope, dimension!..:s-,-

P T Total pressure, lb/in2

Q Effective heating value of fuel, BTU/Ib.

q Dynamic pressure, lb/in2

R, r Radius, in.

S Nozzle centerline spacing, in.

T Temperature, OR

V Velocity, ft/sec

X

SMBOLS AND NOMENCLATURE (Continued)

W Mass flow, lb/sec

WBX ,Bleed air removed from engine, lb/sec.

W, W V" Corrected airflow, lb/sec.

Wf Weight flow rate of fuel, lb/sec.

SW 2 Weight flow rate of air, primary plussecondary, lb/soc.

W Primary nozzle airflow rate, lb/sec.

x Length, in.

a Angle of attack; convergence angle of nozzle, degrees

y Ratio of specific heats, dimensionlessSAP T

C Diffuser loss coefficient, , dimensionless

Burner efficic'ncy, dimensionless

V Kinematic viscosity, ft 2 /sec.

p Density, lb/ft 3

SUBSCRIPTS

B Burner

b, base Base flow region

BP Bypass

BLC Boundary layer bleed

btail Boattail

c Core (nozzle); capture (inlet)

DES Design conditions

xi

SYNBOWX MAND NftMENLATURE (Continued)

SUBCRIPTSe Boattail trailing edge

EFF Based on effective area

ENG Refers to engine demand

f Fuel

g gross

GEOM Based on geometric area

int Interference; internal

ip Ideal, primary exhaust flow

Jet Exhaust flow jet

max Maximum

min Minimum

s Scrubbing flow region

SPILL Spillage

T Total condition; throat station

tf Total condition, fan flow

T/O Takeoff

t p Total condition, primary flow

o Local conditions ahead of inlet

2 Compressor face station

8 Nozzle throat station

9 Nozzle exit station

18 Fan discharge throat station

Free-stream condition

x Local

SECTION I

GENERAL DESCRIPTION OF COMPUTER PROGRAM

The engine installation calculation procedure naturallybreaks into three divisions: inlet, engine, and nozzle/afterbody. Each of these divisions is represented inTEM-333 by a set of subprograms logically subordinate to amonitoring subprogram which functions as a quasi-mainprogram for that set. The term module will be used todesignate a quasi-main and its subordinate programs. Further,within a module procedures are subprogrammed to isolate theprocedures from one another and to isolate logical dirictionpi gramming from computational programming. The benefitsof this organizction are threefold. First, checkout. Eachmodule caa be checked out independently of the others. Secondly,logical simplicity. The logical structure of the programas a whole is more apparent. Individudl subprograms aresimpler; being small with a limited p.,Arpose. Finally, easeof modification. Engine installation programs are constantlyundergoing modification so the ability to attach and detachnew modules or procedures quickly is a necessiiy. The smallsubprogram-module arrangement allows for quick change sincethe connection to the next level is more apparent.

The modules are tied together by subroutine COMPUTE whichcalculates the installed performance for a single uninstalledperformance point. The main program, TEM-333, handles callsto the input routines, then reads the uninstalled performance

( points one-by-one; calling COMPUTE for each, outputting datawhen required until the last point has been computed.

Programs included in T&L1-333 and their purposes are:

TEM-333 - Main Program, monitors program logic

CO4PUTE - Controls calculation of a performance point

Inlet Module

TABIN - Reads Inlet Input Deck

INLDRAG - Monitors Inlet Drag Computation

AIRBYP - Computes External-Compression Mode

(I

AIRSPL - Computes Mixed Compression Mode

SIZINL - Computes Inlet Capture Area

DEMAND - Computes Engine Demand

AREAF - Computes F1 where A F

Afterbody Module

ABINPT - Reads Nozzle Input Deck

DRAGAB - Monitors Afterbody Drag CaLculations

DINTFR - Computes No~zle Interference Drag

DB0ATR - Monitors Boattall Draq Computdt ion

DBASER - Computes Base Drag

DBTTB - Computes CDBT = f(M, PS)

CDC0NV - Monitors C-D Nozzle Boattail Computation

PLUGMX - Computes Boattail Drag for Plug Nozzle,Mixed Flow

PLUGNM - Computes Boattail Drag for Plug Nozzle,Non-mixed Flow

DRG - Computes Boattail Drag for C-D Nozzle

SUBBT - Computes Subsonic CDBT for C-D Nozzle

SUPET - Computes Supersonic CDBT for C-D Nozzle

CABTAB - ComputesCDBT as Function of A1 0 /A 9

AEXHST - Computes Nozzle Exit Area

Engine Module

PERF - Computes Gross Thrust

CHKRP - Computes Thermodynamic Properties atThroat

2J

SGYfhStT - Performance of Propulsive

Nozzles

; NiW T - Computes Enthalpy Given Teimperature

T011 - Computes Temperature GivtmEnthalpy

PROFH - Computes Relative Pressure Given Enthalpy

t HOPFPR - Computes Enthalpy Given Relative Pressurv

C0FH - Computes Critical Velocity Given TotalEnthalpy

C0FHT - Computes Critical Velocity Given Static* Enthalpy

Miscellaneous Programs

STORE - Stores results of a performance point.

OUTGO - Outputs an engine performance matrix

WARNING - Prints warning message heading

FIXDIM - Determine dimensions of A8 and A9 input

ATM0S - Computes atmospheric data

DATA - Transfers and output input card images

Tabular Input Programs

C TABLl - Inputs table format 1 tables

TABL2 - Inputs table format 2Q tables

TABL22 - Inputs table format 2K tables

TABL3 - Inputs table format 3 tables

PLACIN - Reads a tabular array

K0UNT - Counts non-blank input fields

Linear Interpolation Programs

TABUl - Interpolates F - f(x)

TABU2 - Interpolates F - f(x~y)

3

TABU3 - Interpolates F = f(x,yz)

• IFIND - Finds Interpolation Interval

FACINT - Computes Interpolation Factor

CVINT - Perform Linear Interpolation Calculation

4

4F

SECTION I11

DESCRIPTIONS OF SUBROUTINES AND LISTINGS

SUBJECT: PROGRAM T1M-333

PURPOSE: Main Program TEM-333 monitors the overallprogram logic.

METHOD: All supporting data is input, then the programreads performance points one by one, computesand stores the results, and outputs an arrayof results whenever Mach or altitude changes.

USAGE: PROGRAM TEM333 (INPUT, OUTPUT, TAPE5, TAPE6 =

4UTPUT, TAPE1 = INPUT)

tNPUT or TAPE1 System Input

OUTPUT or TAPE6 System output

TAPE5 Card Images of Input

TAPE7 MARK II output

SUBPROGRAMS: ABINPT DATA FIXDIM

OUTGO STORE TABIN

TABLI TABL2

(!

C5

WRTLL DATA CARD IM4ESOkiUJ ,FILE AND on TAPE 5

IREAD andWRITtETITLE

READ ENGINE BLEED TABLE

READ REERNLET NOZZT DRATADC

(CALL TABINI

EAD :A

CREAD AFTERSODY INPUT DATA DECK

F SuET 1: FL SOW CH ART FOR PRGAM AND X~

6

Ir

L

OF ARRAY FOR LAST

YS MAC H - ALTICALL OUTGOI

CSTO

DCARD IMAA CA

FE ROR • • O

ONVRT.S |ST

AO

ARRAY FOR FDTA

YES Q2 I YES '-.MACH - ALT

REA URE

CARD NO

READ PERFORMANCE- mm -- mm m~mm POINT DATA

CARD IMAGE

CONVERT All F CP AR3INPUT FIELDS TO AllAND A9 90 INCHES, OF

• REQUIRED

I-- -SFC FN

S~~Figul~r: FLOW CHART FOR PROGRAM TEN 333 (Cwtl)

/7

PRINT OUTPUT NO ALT-MACH POINTS.Nw YS ARRAY FOR LAST NALT~ 1

ALTIUDEMACHALTSAVE ALTITUDE

INCREMENTNO. OF ALT-MACH

.

ATEX CASEEN

ACH-10

Fi ur TE FL W C A T F R P O RMIE

3 C n l d d

?8

0 000

0000 U

00

00 0

00 IL

00I

0088cc,

000 000~0I

000000

00 ej00a .I-

M ra 4 P er 1Li0 In 4 1

B00 w re

00 * 0 0 aUC3~ 4 a 0Z 0 1 .3s1

88 Z ZP az -4 zz00 I ~ ~ ~ ~ 0- 1.W4gQIJ - 64U~

ac * 00.004d~-~ggl

1 :% ~ s 1

000 A

00 Z UfI%0 IO Z0J4 aaf- .P 2 IJ4 0 I

0l.Z !4~ %1 --. 4J ~ ii( ~ ~ 0 1 (

coZ IN.,%.U 2 j2% i~% i. a0 -oo 0I014it 1. 4 %41 I'I % % N4- 4* % . .

00 11"- 2 C0Il0000 0.0-~ ~ ~ t44

d'4

'--

00 .il a., WIC0~ ~O*''C~L I) '.Uh-~

00 Wt6 (A

cc I Poo U Z

0 0

00

0000 00 0

0.000I

00

00

00I

0000

00 j

00I

00'

00!00 .

00-

R-

00 on 4 % 0 s.4f. " I

001 0 0 4 4f ,Y 4NW0 0 g 1 1 4 X" 4 11 0 a. 1 2 - 4 11 'e*a -I w w wefr w ofo I yW etyY(00 00 00000 .3 *3 1 3nn(' j a,' i0

$.-1 04 04P 4C00 -. JUcc . . ~ *% - 4*

co* 4-

00 2- U0 . U.-e'.

00, - I2* *2-00 8.0m4 .3Z 4AU4I -co W I.. at-B~-4 - . 24 0fcc Z 4.4V0.% sU d .400 "" a

0c 10 0 A0 0u Al0!0'-z z 10; . % (%Z * 3 c % ~ i- ~ . .

00 U -..0Z ~ r00 000 'x '.x

%N0., w I4.) JUUIIUO

%. 0.2 "0).I 2 a 1.4 U. I.)M 0.

'9. a2 ' -A 1) 11 0- .'11 1

cc A 3121JJ~l~0' ZI142~*'9J1~1,4 me,,.r ,V)If z0~ ~ O 9 O ' ' Q 0 0 O,''~00o $4L~ 49202a)111Ja,11- dju.0j T*I.jJjri

a ý' 1 4& 19

Ix a

* .I4

le I

I IZ * 11 :t eA

4'4-

(I~ uI1 % .u , :

49 of 4NN

CS VI .

9242Lv o f y ft I

.4 ev C 3 II' #% 1 1 0, 2'2'

I j 0 4 1 w .

f4 on P% -

Mi P,.4 f"IL A u0lU 0 s. 00.1 0 .4 m k00 MA t .4

'0UN0I" 44P~Y -01 -# 2 1U : 0a 4 44 4v s a

13C t m42 M 1 i14 jZ:2 1 to " S.2 sit 43.2 t2

00 L. 0 aq C; It 10 o.

fy Ic Ia (.9 a N m .Nl fi. N. fSO Zo us (3

m0 Jon UA 00'0 Oi 0 *. C . 43OIS: I0 4 .4 .4. f94 04)dis e

'A. 'a f K11 1 .Al' 000 . 0 0m 040L3 u C2. S It.~ r

Aj4. inN ".44"s %

ff99."99. .. 12 -to' .213 13 as8.%,t 'Cis aA Il 3 Co # #A ( 3 0 C 411,S4 .2 0 SanrQrIP r1,,~ t3 p

6.26 T II IV'It.3 . T b.el w 1'll0

sill 1. 3 , A l4 aAa -4*9 .14A -4 a 41*A.I%* -4. 1-,-4' w 4.... Is-5 K~v A- 0 tA ` .cjZ.1 a

IAA. ~ ~ it Z-'~ S .4.3;, '~.4t .4.4 A35t1,.

"'4f 4 n NONA" 4 Is is mU "0 b t - f . * f.1 , !I S - s, s- `

("Az u PV , 0 U 3 t m f' 11 J-s -f~3Jj" -i .$ ( .-Its-*W : 11* 13 0 A:A1 304 S f&1 ,

~S. AI- I@0 %a &a aI 4~ 0. mo g 0#. I

122

SUDJECT: SUBU0UTINE COIPUE

PURPSEZ: SUBROTINE C0IPUTE controls the calculationof the installed performance for a singleinput case.

METHOD: Using the input performance data COMPUTE firstcalculates atmospheric data and the referencerecovery factor (NIL STD 5008 B). Gross thrustis computed for the input WF, W.1 and P8/PO.The inlet module is called to find inlet dragand recovery factor. Then a second gross thrustcalculation is made using values corrected bythe recovery ratio. The input array to theafterbody module is loaded and the modulecalled to compute afterbody drags. Referenceafterbody drag is obtained by interpolation.Now installed thrust is calculated by combiningthe appropriate terms and the total calculationis complete.

USAGE: CALL COMPUTE

All inputs are in labeled COMMON blocks.

Input variables are:

Mach, ALT, PS, P8 /Po, A9 , A8, FN, WFT

SFC, WO , Table 2.1, WBLD - f(Mach, ALT),C

and Table 2.2, CD = f(tach).ABRE

All of these input variables are direct inputto the program or immediate consequences ofthe input, e.g.

SFC - WF/FN.

SUBPROGRAMS: ATHOS DRAGAB INLDRAG

PERF SQRT TABUl

TABU2

13

T" f EIt)

wa ~ * 1.0 1.

WRFI~ 1- UF 1 .75Iah-1).

mm . .. . sm m

.- 2

fm - mm mb/m m J

B E ab +2Mc2&minm mm;; mm m. Mah2

V2 a (t) M URF)A

oL7Figue2 LOWCART OR SBROTN OPT

offli14

W" - f Oa. Aft)

ff -- W PvThnL IN* RG

r mmOR

FO OUPT ADDITIONA

A.ON.T P1 A fEWtW. Au'G./t. un

fw I* L4

F~~m2.' F TOWHRT FOR SUTPOUT.ATINCOMPTE(CLt

f Rf% .1,r?*RP. ,

(CALL PERFI

F% FF a F m"

LOAD WJ

7C%.r.~ Ch 2S.2CDI A

'IRI

* PAUPREF - CD, AMX0-qi

I WW I S N - D@I ý 111 IN AIE

L...m PC WF1

SFc - WPT

FNc

Figuire 2: FLOW CHART FOR SUBROUTINE COMPUTE (Concluderd)

16

W4

IL :

u ou 0 "J ) u

I-

M 49 -4

0 Z,

0a 14 1* 1$-

#a 1. 49 101 Iza

19L U fAS I&I

J J00'3t4-'Z3 f," .0 jJZ a0 IL0N a4 a.

41.1 ,2 fl 0XC'72 14 4 n Ih"1. .

0 "Z

%4b b. I. Ao fj% ill. f 6b Ut I -N - - -z

;T d00Za.4. o 4~ we .4 '. *.7-92zz -

.21 a11 7 I. j 10 T1 *I lv .2 A K 'IT -1 * 60* lb IIte IA It N: 6- b64 "i Iaa-a1* 11 n % M~ lM11T04 6.A.42 A. I - ZL f1 A140- til 0I4f w. V. 0 *41 4- LI 1 1 6 . 44.

'2 1, ?~ 'n I. mf. w I' zzrLE. .. 34 j1v.sl 191 0J. ' U14k 4 -

CA ~ ~ ~ % f LU3 b60".3ve o 32 jv- PoI 3 v 4, ULre -%j. wIl aI. 'A. 'I u 14fl v

ni'm * I ~ - * ~ *

5 1 no13 NC1

VbI ma. e* N C44 *.Ni N .? no C4N ytw YtNtUNI %- 41

1V % 1%fl,4 r .01 m m if % .4. y N "t 45A. III~ PAV 0 s LI. 31 .4I 1N1

cac I 1 1 2t2 41az~:1 :~ (1,J 1-0 Is j; i j %a A.p 11 v1l.. j

C.ieK 0 .K 61 K1 I La a ho 44 IL LA I r 9 S044U 1 '11 LIP4

17

C', is CA nIX

0 10 I

.W.

04 x

06 1.4 9

( C3 i z

W: w 13-I- ce wI

I00 b. IL

.4 4 91

0 II

0. C301

de 2- 13! .4-99i

do 49 0.2 A t11iaL I. rzL

'0 41 IA ae v-L %JA 4ZWU

UF IL IL 1.

2 4 of 3 1 5 .3av ;I-- - 61 1 iCL W 1.16 0L A 9 4 L . L o f t f I o 0 . f 1 s s f i t 1 o I f I f .Z s s i

If ^3 -. 4f~' -4 'A'O4x-4I 8 3lo l 0 C .t. 4 1. rYE Ina N 30'r, 4 .4I U ~ uI yI W J..~~ .4.4. N -4 \ r VAjN j0vm6 1-. 4, 0 .2j0

g I II~0 ILL.I0.w 4 1 4 0. 49 i.9.. 9.1 4g tS H9 .9 H2 -S M I 44 9 g A H .1 Q rH (3 H '3 -1 H3 #L0 0 (A U. 2 HIt A

Q IIL

A -a ks .4 a In %Q N .4 N * U% N IN .4ltuNa 0o n u J4 hD .4 111,pI.6A N*T 9 .1% 'uA -mu 0% ON. N. . N.' -1 .IN .4 .4.4.4 N 1j "1 ".4. 4. 4 4 .,d- 1 4:. ý4 .4. Il ."jiN r J:N 'i ~ jN V vJy

13 11 '112IIJ r3 12 -3 n LI

13

I IIli

I I

a I I '

!• I

I I

U•

a .I

J.I.

ID 0 I w U Q

C, C2 I2C.

em ma a N c X c~~.4

P N. IN. c WO Woo 4 .4 -1 P) I- a3

O I MI I M ý ) W

Q0 * Q L)(, 0t U 0,L .If N .4.6N2mp N . IF a~ 4.j .4. t C

a1s M 4 , INN- el -4 0. WO 4 C,02P .l 4ý ýpCN 44(JP(N0 C In M43 v nOnC N13CI ~ ~ ~ ~ C C-3 a6 Cl,~i~Z'ew~~.

CD cl IW7 " ~ M C3t 13m1 vr 313m 1

N40.14 4 3 j00

C~UOU 0. .) UU U C.*~~~ C N 'm In' on@NNNND N f MN N.41

.4 IN.I* LA 3 13 mC )2S .3 L* #2 CO's. 0sP"# 3#2.)on:

N2q 2C a L L3, aJ~' .e#i.5.J2,t3I~xý jC ) .J 3im 2 .)t 13,sN~~1 3 It0 1.a0a in '.4 .7 aj a#, 3 3 ~c

V) (A C2 3)g, P j C C. C .2 2 #1 ca vs 0 C2. I Cll3

2 ~ Co zi o wow ..3,tJ U U 12 U( -9-490 0"iO NE, 0 V I0W 0 cu 0~a b. i".3 rf 2 ) fl4 Oa ) a m t0P .~ 4. Y - I.9-

0-~. 2 . 11 .- 0 n 0-.s2 on3 Z N 4, .4.,.4 1 a~ N.r43f¶-4 I 4.1 w

Ito L5 I, . 0 (fll u f33j I UL, i ( .3 t.I# .) J L)' 1 -1 b0 6-j I.. z z a 4 ~ ~ Ua m 1 CfIit fti a a I '7A' " L 3 r 4 tl a4 A faI

w 0- onI s. .1 4 DCS J 1 ' ,

013 (A1 2 tjW m- (A. .J1s (Aj C3 U 0- jrlU 1cp 2 dl ( (A#A m .b , a%2 a s .2 , lc , l Y. 13 C C s12'/ V-r IVC1N

ta. I L.:~ .) a 4in 6. Q7 I '~.' ¶V.li z- C1 , I - '%I~ .sIT . N r-30 W140 m wZ : 7 a' 5

--l*l- In

Ni wrV 49t w 444 (j(a w01 v!( . 9 V 2Aý 2I

''2-

SUBJECT: SUBROUTINE TABIN

PURPOSE: SUBR0UTIN.- TABIN reads the Inlet performancedata deck, Cards 3.1 to 3.2.12.

METHOD: The input deck is read. Table 2A is enrichedas required to evaluate that table. If inletcapture area is not input it is computed.

USAGE: CALL TABIN

All COMMON blocks in this routine are filledby calling this subprogram.

SUBROUTINESCALLED: SIZINL TABLI TABL2

TABL22 TABUl

21

S21 V

I b

Iot It,.

49 Iz I0 - 13xc xiN W~ I- CO0a z 121-

0 4 z I Z 1-bI1-z4 ~

10- wuv

': :-" 1-'I ID O l~0 !0 Il II~ z -cc~ tt A

I !C .9 1aN I Xt;( l I-I zIN Al

9-C ~ N Z Z Q T T(A 11W4 n9 1W . 4. 1 o II I , 2 I tboli

4 b II." I N(YN 4 M t 1.2 TxfI I 41-2m . DT 'ltt o l DxzN1-- - -

.. NJN1 f ,04f o A0- '. :21;NCOb-t fm

VS-4- Vu .N4-w-

11 1` 11 ..4N* *2.2"..N-%2 *, , iA V 'I le 45, Z Z-~ ZN~'~~J4"N Z . (fLJ Z- ZA. Z 04u X '4. 4.

mowo 0 K440 m 00,0000 0m no 4p me .'Y 4 me- 4noIT -. 13 4 N ItNM - 1 4% iu ý CY - It..b-Ell .3 0. 3U UQ 36 . %L 2. (3 .0' 3 P0.4,1 J Ni

z S*4 Z % % tl%-.*( J W*J ~ aa~O Z

.4 4-- C3 r4l. 1 -. 1~ af i .4 j 'j-3 I 1 - 4 -4 -- 1. tl4% 12% % % ~ % %I ~ % 4.~b es4~ 4j 4 Is.'~~ .314. C2 1J4 M!4 -. 1 2C

w i 00 l C2n .0 000042 0lC 0. 0J,. 0. %nO C30 i 46 a 1.3 a 0 ý 4 0 C2.J 4j4L %a C31 .. ýj 1. La4 j j Cl Q . 3

CA'

Y 22

I fW.zSAII

I' I

( .4 Z ty N C I

-4 -4to0 ;'4

ejv, 49L

e t0 I$04 9 1 4

to, - 2 1.- -W 0- -1-INb. b

Z. %4 (6A r3* .4 JW4j . .4 .4 j j 946 4

W .r IL 4041. n-0 Ii. IL It) a11- a0 af T r .49zM eatY b4 -j1 - 10o-0 J I b J"l .-. j.b- J njb -yI.J"*z% f~ "ill4 fill "- 114. 11 " 1- t- fW

i a UT UT T t - I- 553 4 IXVX' 3U A. &2V( 9e1 t( L) .4 .4 '3 (j 07 7I.3 Z3 a4 .

'4.4N.00 f N.af .I-) V18 'IIN U WN N 'IN" j tjC4#. P) 0 "YW ..pi%0.J'0 ONg r44 ." .1j I 'N %D tn % N N i %00O - 1mC-" 1.4.~ weU '1N4A 4 4 4~ 4 4 4 t .

Fa&"'ic 0A2 N IA4f A t.31 .11 %.3 aUf' 4 .1.U6 . Stl o'. j .4 .4 4 .14" I .4 IC2 cs w, C3 u~ C- 3t . 44'wwC, v'3%3: 0 4. 20C ' 3k . jwwc~r wC31I, -z -11ZW . W 4 S iI J dt I ? 1 a ,J J I. 4 4 ? '0 ?I t' g ? i t I ! T J2 3. ¶

Z N,

N -4

' I j

ujz

a n

ar- f%.U%

Il2

.- B~

ZN

SJ b"4 p

14 ~ a.4t PP.4 N

QI 0 C4 1I&% sc % if2% ;

04 (A NN4

C-44 IN I g z

~~4C1.N4i O.4

flaU u~c3 0 U uUV C3 Uu

IIw4 414 e a NNN41 4. "J 0ar

x x 10 N a co M M

0 N t*NDaU"Co. 40 I .4I MA -4 ll 4 IU-4 .4N

'? A In . 1t4)ee " mM a .*Wri " 1-4N Y 343)NNNNN UUUUI'

Ii ~~~ oi IE~ I~ ~-I I-- I $A

on4 lc ."!Z. "'ll2t-4 IN, ) 25 no "A'

-- ,P ) '

us9 449! ..4,- 1r 21 4 4N 3 A N

oools# 13 M IN .2 N N"In a

SIn.. .4th N'g N**M 4r~ 1M 6

* 1 3, %3 9. 3 SS LA b-I3 'I 4) cA (L~'A .W.a at o I 1- 2%- AC j% JI -1ý ~EJ fA J,3763 - 'J t z'. x.)e

atC c l 441 P t a a 4A42evf a I -3- 01 2a5 3. -- - -

SUBJECT: SUBROUTINE INLDRAG Controls the Calculation ofInlet Performance.

METHOD: After initialization M is interpolated and0

compared with the minimum Mach number forwhich inlet drag will be computed and withthe start Mach number to determine whir, inletmode to use. Low speed mode is computed inINLDRAG: Subroutine AIRBYP computes external-compression mode performance, and subroutineAIRSPL computes mixed-compression mode. Inthe two latter cases inlet drag coefficientsare interpolated and inlet drag determined.The outlet array is loaded and subroutine iscomplete.

USAGE: CALL INLDRAG (XM, P, WE, WS, DINLET, RF)

XM - Free-stream Mach number

P - Total free-stream pressure LB/FT2

WE - Engine corrected airflow, primaryLB/Sec

WS - Engine corrected airflow, secondaryLB/Sec

Output DINLET - Inlet Drag LB

Output RF - Inlet recovery factor

Input from COMMON

XMMIN - Minimum Mach for inlet drag caiculation

AC - Capture area - ft 2

Inlet Tables 1, 2B, 3, 4 and 5

Output in COMMON

0UTINL (10)

SUBROUTINES CALLED: AIRBYP AIRSPL AREAF

TABUl TABU2

26

Machoi mf Mach from Tae I

Mach: Machmin AREA= AREAF (Macho)

C D sp1 0 .Q0 M do s A

COULD 0 0.0

Ao1/Ac - 0.0 CDSPL - f (Aol/Ac, Macho) from Table 3AolAc -0.0

CAo/A 0.0 C BLD mf (AOBIAc. Macho) from Table 4

RIF-f (Msch 0 ) CDeyp f lAoeyp Macho) from Table 5

-- CDNL , CDSPL+CD 8 1 0 +CDeypIll

00 +fpto Mach 0 2 (1+ 1j Macho02) y-

L DINI. - OACCDINL

OUTINL( 1) CDSPL OUTINU() Aoa/Ac

OUTINL(2) a CDBL OUTINL(S) UCOINL

OUTINL(3 = Co 8BY OUTINLI71 Ao/Ac

OUTINL(4) - Ao1IAc

Figure 3. FLOW CHART FOR SUBROUTINE /NLDRAG

27

CLw

r 1A

.I.

2 43

ev b.a6

1A

40 I

IN ICZ a-a-44

I~4 i .. 44 a. II: N 14 *4 'A

04 At .4 t -I4 ICT us

*~~~4 x1 j4 ,f

0, 0

le z m I- -a -a*1 w 32 223 2c t0 Is r w4 I. Jr W 1 4 .1.60I 40 -9 - - -I -1 -h - -JJJJ. tz- 04 AK F,4 1 N I 9

.4 E KZ EZtZZ rKzi XKKUz 3u O.bJ Hd -Ifj. in. aeL-Ea, Hu 4 .1- v~ j~ 4.4-4. j j

Im 2 .5m c z CIX l ( 1 1 . 4 AJ U Iof 0 _ _ I

.4 N

4.46.44. .. .41w .444 -44.4.44.4 .4 4%1 '"t%~ ft% 4)"YA w,. V F- ' -104 t -094 A44

I~~I -ftIA

28

$ q q I

I II I II I

'*1 II I I II I

( I* *1

I jI I

I I

I' S

I *

� I

* I

I II I I

21

=C 4 ca1!~C 1*'f

, !II I f I I

:1 41 44 t .

.4 .4 f* oj

%2 .4ra ~ ~ r9 4 yf s 4 - Ns

f3C 4cm mnN*E2* mlvr IA2 (A c,43 co a k3 13 rz..2CC .1

z Omm 1b.OUS

N I **e so S

4y z z 1 0. o b. I-0

.41C. .i UU'UA .4. 4 a, -,3..4U CDC 1440-'qN 4

f 1 @13 k" t f2.% 63; oD1 2.4cIs ..L3,ty 0 V) cp M 0,0 ca "O ~ J ~

fe w A r. .4.4.4 7b

zasa

!II~ 4 . .4 .4 'S CA 1.. 1

'* lam9j .4 tN .4.4 .. * O3*~11 12 N ca 002).44'~11.3

2@ 1j C3 J N 9 -a!.~'3 2

L 4 46 6 I 4 W 0 ' 1 4 S C r

U z 1 1S *1 14.4 14 4 ~ .1. 1 1 jf #o l

ZI c .4 j -os -. V94 I-* 120 6- T 2 1.2f'.e.~. it" '" T

ald M 3*4 CAJ L) L). A. Z S 0 v Q .4J'~ Or'. .3.,) le .4 u1

Ow X 2011 -1 IA t U I%# I, I ;- 'iiAn

(A0."4--1 $. 'js-8-0j es %S X h6 A 4 i i

SUBJECT: SUBROUTINE SIZINL

PIURPOSE: SUBROUTINE SIZINL computes inlet capture area.

USAGE: CALL SIZINL

Inputs in C0MM0N/IDESIGN/ design Mach andairflow.

Tables 1, 2B and 2C.

Output: AC ft 2

SUBJECT: FUNCTION AREAF

S.013858 ( I + L_; ! Mach 2 2 (y TPURP0SE: AREAF = Mc

Mach v -

USAGE: A = AREAF (XMACH)

XMACH local Mach number

31

3

gSUBROIUTIEg

"SIZINI I

MaChODES - f (MachoEs) from Table 1

Pt2 /Pto - f (MaChDEs) from Table 2B

Ao/Ac - f (MaChDES) from Table 2C(:

Ao AREAF (MacoDES) Wc Pt2,/o

----Ac - Ao/(Ao/Ac)

RETURN

FUNCTION

START I AREAF

L ... l

AREAF 0 ,013858(1+ Mach2 ) 2(7-1)

Mach VT

IRETURN

Figure 4: FLOW CHART FOR SUBROUTINE SIZINL AND FUNCTION AREAF

32

ILI

Z, IL

$-I-Q I.)4I.. Z!Z 9 N

.4QD AD

(3:0 1 4 4~

(J - 4 i ej .

noJ IS W.m g -114 *.4

Z ZZ 1 U W o- Z4

W%' 6&' ~ ur

Iu*0c)CAW.,.. 33

C-0 C,#4 'a a'

N w

Ai

.0 .1CI

( 'L to.)

j. ej I.A *LM c c a,3~

~x 0

a ~00-430

N Z ý I 3I.t

z 01 tUUut0L% I- 0 N3 -4,41 4.s1`*,C 43 2 -a , 0343Cf, I

N j . rý q.3 a 9I . . 1 t

* A0LJ 2LI L3C (AI,. 3 . 7w

(A .4 1- 1 M P

'43 A W Z4a1 IA , J '3A.

f. I' til 1- 16f C 1. to It- 0t ,1.

IVt ty, fm Mi' Ij 0~ lI 6- 0 -.1 4cC5 I11 It -9 P. P. -: I I1, ~4. 'A .4 l.I- l x e'Zj J

34I0 ,

SUBJECT: SUBROUTINE AIRBYP

PURPOSE: SUBROUTINE AIRBYP Computes recovery and massflow ratios for external compression mode inlets.

METHOD: AIRBYP matches the recovery and mass flow fromTable 2A to that obtained from function DEMAND.Table 2A was enriched to 41 points per arraywhen input by SUBROUTINE TABIN. AIRBYP firstinterpolates in this table to develop a curveof RF = f (Ao/AC) at the input Mach number.

The 41st point of this table represents the

choked flow point, in Maximum (Ao/Ac). DEMAND

is called to compute (Ao/AC) for the RF at thechoked point. This Ao/A(C is compard to th,. A /A

of the choked point. If the A0 /AC from DEMANDis greater than the maximum Ao/AC then the inlet

is choked and RF must be found such thatDEMAND(RF) = Ao/ACMAX. A Newton-Raphson iteration

is used to solve this case. Otherwise the inletis not choked and a solution for A /A existsless than the maximum. A Regula F2lsi iterationis used to match the recovery and mass flow.

In either case buzz and distortion limits arechecked and the other mass flow ratios computed.

USAGE: CALL AIRBYP

Inputs in COMMON include Mach number, air flow,capture area and inlet tables. Other COMMONblocks are- output.

SUBPROGRAMS: DEMAND FACINT IFIND

TABUl TABU2 WARNING

f 35

:START:tD

BUILD RF - f (.Aa/Ac)CURVE FOR INPUT MACH NUMBER. LINEAR

INTERPOLATION ON MACH IS APPEIED POINT BY POINT TOUTHEENRICHED TABLE 2A. THE 41ST POINT REPRESENTS THECHOKED CONDITION.

A(K)- nMA Tn(.11-AA K I))AA(.I

No Old CurveNowIs

MWI Lh StilN Good

MMw(hom - Mach 'h

INTERPOLATE FOR MACH IN ENRICHED TABLE 2A THUSLY:FOR K a 1.41

INTERPOLATE FOR MACH IN ENRICHED TABLE 2A THUSLYFOR K- 1,D41 P(K) XMFAC (PTAB K I + 1) - PTAB K(0) + PTAB 1K, 1)

AMK XMFAC (ATAB (K, I + 1 ) - ATAS (K, 1)) + ATA (K, 1)

WHERE I IS LaWER SO)UND OF MACH INTERNAL AND XMFAC =Mach - Mach()

Mmch(I + 1) - Mach (1)[IFIND owl FACINT]

, I

CHECK FOR CHOKED FLOW CO)NDITION

C -A (41)L m - m -" m uI I FUNCTION DEMAND COMPUTES|

A2 -DEMAND (P (41)) 1 Ao/Ac - f (RF) I

FC -C-A2 L-___. ________"I.. ..

C <A 2 "CHOKED

C:A 2 FLOW"

C > A2 C

Figure 5& FLOW CHART FOR SUBROUTINE AIRBYP

36-!.~ .-

Cuv

0 ý REGLILA FALSIRF ITERATION

-7 2A TO FIND_ 141141) INTERSECTIONJ

NON-CHOKED FLOWAo/Ac C

L R I fA/A)frmCuv

=(RF)

,F c 4e

1:26I > 25

I EP

l< 25

L Ao/Ac -10C F - IAolAc) FC

F - FC

Figure&5 FLOW CHARTS FOR SUBROUTINE AIRRYP tCont)

CurveNEWTON-RAPHSONcA. ITERATION TO FIND

RF P~o)INTERSECTIONRF

.CHOKED FLOW

A

AolAc C

Ao/Ac - A (411

F - FC

SECOND STARTING POINTRF , P141)X2 RF/2

F2- Ao/Ac - DEMAND (RF)

I -0

Xn- RF- F (RF- X2)

X2 - RF

F2 - F

RF - Xn

F AoAc - DEMAND (RF)

IF 1:e iI< q 25 > 2F A . o

! g, ro .' FLOW CHANT f 0/? .5UB/ROUTINE AIRBYP (Cont)

"ITE RATION r Lat dasFAILS"or Ao/Ac:n &W

is Miimumfor BZZ *f (Masto rtion

Liit

Mi*nu MachA.aho rm~be

is Miiu fo BuAc/ac f Mach 0) fro Tabe n

A1 *Ao/Ac .BZ A/A EO

DISTOR~~ - f .- ,..) ro

3PJ

zl.

lq4!. :: ;: I

ICI D

C ) . wI C .4 . ,

04~~*~ la: -NI mp . ' aI- s U

IL4 40 '1 . 4 .T , z1- 6

-. do 4

- N ~ 1 0 It of 1 2Z 0

I.)4

I .,.r Ne4z3! 0

toN 48094t

010 N3 00 1

*s i' m@' . f, .4. 4 No N N A'ISf.pt-f f

C2 -. C

:- & i ). ~ g C2 1.94

43 3 ;IL 76 2 JIAC:30Cj:33 I aý L j, a is Ic s 6" 3%

lo

'I N I

L D- of I.,

94 0

I* a. I'*' I. r s4 -1 N(

I . U4 0 I4

I , ato a XX

Al 2 a 'I E3*

# A 0it h.4 41 z I-- 0. 1 q oc

-L k 0f of-- Lba N - I.- 4 *, %0 -11 N A., C 'A - Aj t

IL dfl) N ric (otyad;CY J * 3 4 5 1 1 1 0Z41t. CYX1- 0 ll I- Ia. 1-4 X . 6 r j o" QI .- 4 N

am 11- N ,. I13 0y I204 -- Xý4 4*,u &1 1. 'g,0. 3. - 1 ,. ,N

Il. 10 zA Is 11 r. Li, O 0 4 oe 40 49A A- 0* II.C1611, ; 7 0,S NC f, IT4.- III S-i. -7 el3 d.LN;ag W

to 11 w r, s . C- 0 If 7S %L N~ a JJ -q9 1

I,- af j CLL ~ OJ I..369 1 j . c 's I-- a.b- 4 6.C ~ j' I.- bJ- - . 41 -

N Ut lb N j404o 1 , f0wo N 4 0 IN J S-it.4 ft N .J * N,- j vIj y j to wN'4. U " voN6 t %zN-0-0 G N4 ww0M0 0. 4M N0. 11- N w 5 K1 y O" n ",J " I J

j 0"4,0 41490 zwL N *4* 4w loI.L- 061 a 4UX 24" 9.

0 i .4 ISO~,O 0 - 04 4

.- 4

z3 N *t) N 4 " 4 N n1~J 4S 4 M4 jillN N NN.:,p f3 * tn ifulf 4 .4 - t I n 1 -M %1.' " "i

.4 -4.4 .4 .4 .4i.4'4a( Z.4 49 4 40. . 4 0. 4 I'9. 4.4NN N f '"~. N 1`4 '30 ~N 'V. 2i. .3-Y *0 , V... Yb

C, ' , S ,3' 'a U4 0, N 'a 3 c

Oh C33 0a It 0,13 JIi 0 300 Q~0i %.3 '0 C J ca 0 1. %2 % 3 w0 w6a .3 jk .: . a %3 'C j o % )41

a lk N' )Af om. 4aNN sQN0.C

Pol w I %9 C . %226. el- fI se

VIll

46 1. 1 049.2 .4 W"* P5I

mWk ski ' 14 .44p. . O) r P4

45 to. mo0.

*~~~N .4 fm 4 'li

.0 .4 ffi f rm2 $AI .4 fl % O. o 4- 414 fyN NN*

.dA VA tsf on el f - of.4NP nlm .4 " Ntou.4in1 @41;f 001 30 6 10 10 U.3ra a3C

esta 00 * 0 10 " C,3V

es "142 es1 Laisra 44 e4 , 4 Go . 4 43

.2.4 . 00#34.z"0 .NI

es4 aO 13.4 oolr4'j s phnngt

lotw IW w ;*%

Ufl ~ .4 y

00.0 ~ .0 4*--S 444.2 42U. -4-.4a4S fl Q. . tf0

CA .3 *'CI .4i A- 'sAL

1.2. -JIe U) . 4a O V %2" to 4ai41 .4.4Ad.4 , N ' .4* 1 O9 1) -1 1j- 1 * I

or'0 N N -. 6.13eb 'aN ft N s .6 10. 0 .4 , .A N I '93 'a~ Ga " kd SW .-f .4-441 'u

to m1 01 IN. I. ~ow .s IL 44 .4 13 2 11 IL . 2 I.-8 o-) 4 So

V~~. .tj.4~ -4 -4 CM0Wpal~9g 4 *i * 3 (A b

L2 *I,1,0 814 91. . .S .8 A P 4U ib2.3A-4 - tf@ .A) " % ..

es.: 41 V sm-e A # M sU IIf 4m o'3v 6- a lIA lla t 0 4161 og a A ' 0 04-C3 3-I1 $ -A

SUBJECT: SUBROUTINE AIRSPL

PURPOSE: SUBROUTINE AIRSPL computes recovery and massflow ratios for mixed-compression mode inlets.

METHOD: The various mass flow ratios are computed fromthe input airflow and by interpolation inTables 6B and 2C. Recovery comes from Table 2B.If bypass mass flow is negative; recovery isrecomputed so that the bypass mass flow is zero.A message stating that the inlet is undersizedresults.

USAGE: CALL AIRSP•,

Inputs in CONNU include Mach number, air flow,capture area, and inlet tables. Other COMMONblocks are output.

SUBPROGRAMS: TABUl WARNING

43

!3

SART

'1. f t Mach) ftom Table 69

Ao, fMach) fromTable2C

Ao Ao/Ac + Aog/Ac:

jAc____

R - f (Macho) from Table 29

4I ....... I - iI

j.AraW, RFAe Ac

------ Ao/Ac -AoE/ Ac

E At

~AOSy .m

"InAc -Is AAc RF -Ao/Ac = -

Area Wc

' ~RETURN--

Figure 6: FLOW CHART FOR SUBROUTINE AIRSPL

44

-0

* .4 L4 I'

-0.

we4

ha fu.a .

~I Xz ii 00.;

wI O'.2IIII!~ ~i~ 1 0 0-i + itLO0U

0ww I. i~X -(D X M 4 m u

J542gg OA1 2

64-14, ~ 1, :

CL-r 1.1 (11 to is .*P.*APclCN .N 'II

a. I- 0 f 1. J' w0 0qg. 1-1 .(4 CL 9 1 I 4 w . JJ C 0 1U

% -lz0 C, ~w~mt

C1 a IC4 0I -4 I445 In l 3 a

111 c" IC

to N .4 0 to W

:.4011.4.40

~ !whu C'tUOLI

Ica CA0 4.4

r

v" H 0 4 146 U% a0U44 .. 1

*ý ca .4U .4IAU ,4 0,C. 1" 0 4 I0 YND tj C3 N -. 4 14.4

0 y C3o . 00 'a rv. 3 0 .2 0.~ a~0 a 'k c L3 3 33 CM 130 12

' 2 .8 LS C3 t .a - 13.1sC3 1 3. 33

'- C a 4!I ID caca a 4

YIN 3 - 4b- 44In -1"' 4 40

IA I-I jA Iz .4W , Z-* *r, N A 4 t .4

* La M, c 14 J

t3,. 0'. L4 J13 (Y Z 3 13sJ'JJ.)J 0 3. 0- 4z Li 0 - C-I m es -Iii.2 ar 3 " 0I'sI~J I ~

1 4 Ica Imo a .3 ,30 40 CJ 'I Q j"5 alf C2.3

j IIA

46

I

SUBJECT: SUBROUTINE DRG

PURPOSE: SUBROUTINE DRG computes bottail drag forconvergent-divergent nozzle.

* METHOD: The built in nozzle data tables are defined inthe DATA statements of this routine. Boattailangle is computed; then Mach is interrogated.If Mach is less than .9 the subsonic procedure,SUBBT, is used. Similarly if Mach is greaterthan or equal to 1.0 the supersonic procedureis used. If Mach is in the range from .9to 1.0, then the subsonic procedure is usedwith Mach equal to .9 and the supersonicprocedure with Mach equal to 1.0. Final resultsare obtained by interpolating between the twosets of results using Mach as the independentvariable. This provides a smooth transitionbetween the two Mach regimes.

USAGE: CALL SUBROUTINE (DMDG, DBDJ, LDJ, EMF, EMJD,PTPF, THETA, GAM, ICON)

DMDJ Ratio of maximum to jet diameter

DBDJ Ratio of base to jet diameter

LDJ Ratio of length to jet diameter

EMF Freestream Mach number

EMJD Jet design Mach number

PTPF Ratio of Jet total to free-streamstatic pressure

THETA Boattail trailing edge angle - degrees

GAM Ratio of specific heats

ICON = 0 circular are boattail

= 1 conical bogttail

Output in C0MM0N/A/

SUBPROGRAMS: ATAN SUBBT SUPBT

47

Define Built-in ow

Tan~

2(IL/D)Pr - Tan- 1 (Tan (8)

d - 57.36

MachMa 1 Compute CoT CDBm and CT

: 0.07 Using Supsi on1c: Method

COIIIP~~~tSCDBTT COB. gnd Coo sn h usn c O[C(CALL SUSBTT.<Mnh < 1.

ComputCDB-Tr CDB. l, &W CDTotl Usng the Subsonic

method with Mach Number Equal to .0

CompuvCOBT2, CDB.e2' and CD Tot2 Using the Supersonic

~[CALL SUPTIIT

CDST - COST1 + ST-|C~a - CDST)1

1.0 - .90

1.0- .9CDB ,CDBM + Wiph-.)JICDTM CDs&,

P-D~t - D~o, + ich-.9)ICDot2 -CTo. 1 )

Figure 7. FLOW CHART FOR SUBROUTINE ORG

48" 4

48

et 4 Al

I I. I,

04 4 ItII I. o t l 41

EyI 0

.4 .9 a ~cm aUN C S)a n UN 0 U% LI a0

;I.. 1; z% 1 C) "s

All -)- 914 SAI IN CefC32!2MS

o .a p .a..... ..

V W, V. U% %. I* Ps 10 3L

ah L6-U Z Z 9 inD4@ av LNý 4N4I

PL 94S-i CI- C3n a fi -2 4- m. maa ~a

a* ft-O4. C.3 aS. . ....C-2.0E14 Il1% CV. o 1 I j3L 'SQ JI1. . 2 4j ON.

.. 3 4 .* S30~.. 1.- a Ma it aD a IS a a.LC L& 1 ý* NC

1 044..4 1 aa

ID -

S*f* oi ,~ dofI o 41 b Id NIl !h a .a n Ic 1wl N--eg I-9 14 495~9 as a9: aaaaaaaa-

15- IWai4 .1 0.. 10- 49 *9 4 Ix)"1. *ftI-.10 m a c ~ .a,9 It -2 .4. =1 a. $- b- b.. .394Nb- 0

% . 1 0. 0 ~ b-S aaw a. av C1 ,-a 491- .9-4-

*4 44 W4 I. .4 T4W4949. 4. 4 a4 a4 .IA ~ 4 4Lan~ 'a L.a '

*2( 13 93 s'fl 0b' ar a3 fIIA, A a . "% ..3 ".) ~ 1 3'.4

Il 'I Q w9.< h '- 99.99 l -0 L a- a a aa aa s4a 3apa

C, Co toOy# 4 i .-

II

I

I I

I I I

1~ I I

I I'

a ta

"" Ia I I 2 a a

* 01 Ja*0¢1l • .t

tr N

4 • i I~o @0lii•* -t.,

(,! i . 'ihli I, ,

I • I ~ • l%¢ • t I • i*,~ *I lI

*a94 m 400U nC0944. 1A. - (0

t. 0

CPIT IN IN IN . . .. 1I 1 " . ; I

To

N.9 - 1. I 4 ; a 1a%4I0

4 . U,% N . l% - 0i l il

A . :

P. *%'4. W30 -4 .4 4ýf 2,3 1. . ul. La F

C0D 0 0 L II g,. -0 (

it 6. 4 _ A0 . 0 040I c Dp

^1p O II

9 04 a1- ~a

... . i

ra a lt~ I 1; e M C2 13C -CsV A 3t

to -- a l M . -a r JA x .

f; D 0 0 * (Y. 0. % . * I * C; I4 6""5 . a. . * ' i.113a e.ll62 1. •* - J .0 i 1 0* r

•a :' * i. aa Z* *l0 4 ' 43*'

0 9' 4 *e 4 0 ON t o w t*g'' ( at41% K *

t; QJ 12c.In Is ' I Ig MI 1,,1 C7 Is I'D. N.N. ý41 All If$lI

94 I ^4 C3g 13 al944N * *4 n n In tac0J~,,9 if 'D4 -

0 4~ .1 fiA ..4 (Y4 a.. gj4W )..

.0 tA I I I "% C 01 a I

:In

N 9 0 L 'it.1 'es-i .44 . 4 0 % '9.9.9.9.. 0I .4- 90 09 4 4

0s b.ico ,S4 I.- a %-I-wZ1-0-6

A 14~n 499 .111 9

.4 4L -4 4.4 .44 444 4 .4.4 .44 .4 4-4

a I toj jr '-vZ, 0 U '1 %3 U: 1cmmc

3-2 .4)'r ri 45 '43 .31,' q'.4 C, ~C4030 Aj 4. I0 L1 "3 3

50

I I

CNIi

IWOI

a. . La 4,

* 0 0 aN

C, 1 01 . I

to, .. t a a

@Ip..

C; k. IA)ovo PIPI Is~ ca es"" 14'N 'NAa Con

N~~ .9U1a

C's'I MII.,' %2 5I 14 U.0 ca (a a It . 3 .4 am tI ILI: w U.1

If % & ) is CIt!4

." *.0

ty I N 41

N~ ~ N to CcO ;N 'f~ICa iN -4 .i Ul kI A b-'

,C 4 yf PlO on F35 ec, In ItI W.AM,'Dnfnr Ox11 M,1 "I".13.1 -

s 25 - ~ 5I P. -40 If W U. c it : 111 1 IM A HI if 0 r, J J -4 Z 'A

0-444 95.-444 61 911 T l 4 151 11 'jjJ 'I50 j5 0.4-A55., ot 6. 1- If5 5A J .-% -6-n

.44- 1414 .4 4 1 Id ILI.

(44

III - .4 4 4t 4 l.. y 4 ol SANo imia .4 j N3 U -

.4.4 94a.4 .4 -4 -4.4 .4..41.4 OY ly .41.4 ".4.4.NIS'ULI ~~~~3 (4 23 ',a ,20313 3(S 939j3s. 3I

I~ I 6 3 " , ' 'LsI t 1c 1 xV 11 3 ,, , 3 31%2 3 4239..aC1V C 's t ,91;11S%1.k

t g

I O

I a

( "

I I

I i I

a , III

SI i! .04' .,

S4 , I

*$ I

a . 1 1 110 a I*10 C1L" j'

to OW ICAq aP NtNNIIU nC, 94 94 to4Pi I D

in Ij Is Pa 4 0= ae ,L . a4 2c

I I o l I fII I 1/0.4 94 N I

it N N N (Id N NE %N CNNW~NNN' NN~AI.

64 C, ' ma a 0 cz 40 0 urs .2 '4 C3 .

a els Cs C2e C*cpC C C

066 2 2 2 z1�4 0.6- .A I-.B

944 N.NNN NNNNftNNNN Iral!0cwu r~a omesu33,2f3..a

10 IN4N N C3 m 43N 04 .0 Om 4A a .0 I 0 oN

I a4 I*j CI O, 42 a I L 1 . "

Ia " 2 j'

a FA , a aa ! 43 f3 oao a.=aC2L4aaaCID, (.

-3 III 1-4 4 CID4

U~ ~ E(A tIo.9Pu .4 J fl94ETIfl~tN ~

3z 2ý C S3- 3 C IS 2 La A- 'A( I AI a It f1C 0 U u C.3 C.) t I ( I L) f % U 0 b.- 1 6- NO

:b. x 13 1 4 6,4T' 4 .4 flI - " *.4 n0 -N4 F 'M .4- It C2 de4-

w .4 (A%3 n'C 4 I 1.3 301j"a '

(A 14 r- UWzI I IId I I I~5 I L".

:0 t 4 Z; z 0 6 N NYv .- U' 1,W 41 .4

1I tv..~~-e .~o .j~ :

L wb44 b .494f(Y1 l~4 0% m94 2e4~9 J1 E

fa ti. w i 0 zY-!f VW Iz I i z At 4.3 %1j

53

SUBJECT: SUBROUTINE CDC0NV

PURPOSE: SUBROUTINE CDC0NV moniters the convergent-divergent nozzle boattail drag computation.

METHOD: CDC0NV computes the required input values forSUBROUTINE DRG from the TEM-333 inputs. Ifthe supersonic procedure is to be used i.e.,Mach X 1.0, these inputs include the designMach number of the nozzle which is solvedfor by iteration. DRG is called; then boattaildrag computed from the CD obtained.

Note: The set DRG, SUBBT, and SUPBT were inexistence prior to TEM-333, hence the incorpor-ation of this routine into the logic.

USAGE: CALL CDC0NV

Input through C0MM0N/ABIN/ and C0MM0N/AMAX/Output includes D for interference routineFlags PLUG = 0.0; BTTAB - 0.0 causes thissubroutine to be called.

SUBPROGRAMS: AEXHST DRG SQRT WARNING

)

54

1%,I

ICON -1I

Do j j_

09I

Di 0 9(DBM) 1. + S- I U -

L/ D9

[ Diameter for Inwtference DragDs" D9O0, *

< .9

Solution for Nozzle Deign Mach NumberNewton-Raphon Technique

Find PSIPO Ratio Such that AIA9 Equals

ha of Input Performance Point

(FUNCTION AEXHST)

I - 0 00

X -1 P/Po

X2 1- (PS Pdo

Figure 8: FLOW CHART FOR SUBROUTINE CDCONV

55

• +•'.IL, t i .. Ira

F~m AXHSTIX2)- VA

556

F1 F2

X2 " ePD

F2 • F

50

100 MDu 2(/O Y''

CST f (DMhMP~P. .y ICON)

110 'r,(CALL ORGI

DST = CD'0M

RETURN

Figure 8: FLOW CHART FOR SUBROUTINE CDCONV (Concludedi

57

JI I )of I I

j'1 1 Iia JtoII '16

jy a, 0,1 .

0 ILI

a.~~ O'. l

in I.

I It4 1 Wo 4 2

V.a (A IW , b

.56 .1I 0I

z~~~1 LO0,.0Illy ~0 Ijc ,

IL I-I

41 4, % :0 - y is*I& 4 14 '0" A . -4 vQ T311 %Q 11- -e ftI I ' 1 0%*

AI it I4.4 0;. -b KW

40ite..- ' IVI g7,4

Zv --. 4 oI f A002 " a itit11100 ---. . of -4~ -4

% ~ ~ of 4 * I I 0. I0 of I II If 66 . j ý4 0 -

a1 1 1 . .. 4 N -. . i _ , p 9 1 1 U . d Iý N . N * d 4. C. )

~IO C 0'0 405 1 Y 0 n,.I 4 M.d 6. *. W X 'I A. ~- 'L k-J U' P.I -I..44NN0V~0 )K0

pq 44 4CI .1 4 .4 112

C9 C2.)I31 .) f9Irlat It ,'1~It Jti1 u~, U ItI'*1111 .11,1:jI.I 11

allJJia %JU La J 4 W0 a a - .a A L k L2 J_ ,3 jo0 t (jSI3jIJ.

0 MA .4 a IA

I,,a .0 a4 0

a aa ai ao .au 'Cs c

(.IL

In in

ce co .4 94 P .11'tA I.-. & tr)E c,, c, %.4~ ~ ~~C ff ' N 2Nm~%

ay am a a Isae0aaz

2 -3 -9 I CL~

LS 43 fu' '. i

4, 430 .4O-

a Yt 3 1 k3a C4 N ca Ctij(4 2a sN r)3 tj%4a 43 V'-

C, , e4Ie3e

All * 4 xfl0

v4 L% .4" A'o (, ' -Ro-

%.83 C* -2 CA Za 44a %3'J ,.4 .4.4 .4.4c Ls Z4

4. " X.- .4tin '4 0- 0

00

fy vM I~ 03

59

SUBJECT: SUBROUTINE PLUGMX

PURPOSE: SUBROUTINE PLUGMX computes boattail drag for aPlug nozzle, mixed flow.

METHOD: Boattail angle is computed from the maximumdiameter, exhaust diameter, and plug length.Then Mach is checked and either the subsunicor supersonic method applied. Input tables4.2.2 and 4.2.3 support the supersonicprocedure. Boattail drag is returned.

USAGE: CALL SUBROUTINE PLUGMX

Input from C0MM0N/ABIN/ and C0MM0N/AMAX/Output includes DS for interference routine

Flags set such that: PLUG = 1.0

FLWMIX = 0.0

BTTAB = 0.0

Will cause this routine to be called

SUBPROGRAMS: AEXHST ATAN SQRT

TABUl TABU2

60 •I

S• - AEXHST(AE$.,gPOqo)

D -.

- T --1 1.0 - Cxv

DB,0.0 DBT T0.0

•~>0 .0

CDp 1.4 Tan (0) 10 -. _1 CDT f - (Mach, 0) from Table 4.2.2

I ac 1.53 AMXCV* f (PsP°) from Table 4.2.3

DBT, Cop10-" AMqx Cp ý .- "_HEPv

CFgeoa CVp_ r. !O AmexCF -Cgaoi

DUT a (CF g CF9 ) F9,

Figure 9: FLOW CHART FOR SUBROUTINE PLUGMX

61

I0 j

ItI10. .

n fil

NN

a Ua. J 4 f

02 'A I 'NC am &Z94 .4% wC

C0 a~j VC

*Uj 1 C

t.- B .- 9 0. 1

ewlw 0 11 0W., 1 .* 0 Id1' .6 tIC 1 ; . - 1 X Y

z .9'.99.T 11.- CUis

~2la s-1 -1U4 is ofif -.1 43

~i.44.4JNC~jI4.2 * A0P.i,

IJ9 I fJ~~33'o JtJJ-'L.Ii(INi',

fal2l ( YNtv* I M414 M 1 nNW 3 . 4 8

62

Q 4

.4a 4 ' 4

co I

(C W',m W, .1 .I

40 0 -.

C31 U% .4 45N 3 2 .N - cmesa 42 4m419

C, 0 40 a .,42 sCOC a a'A 4 1 cbcsC3 3 c (3'U 42

11 N* a,- b4 P~ad af.a ~ Ta

a3 mm a #a3oaaa1. 43 . f. o r %D aaaq .3 -ton

1 0 C3 1 0P! c 4.4. I- i.a CI I a. es

fI N. 40' 04 Ca i -&, M 02

jII

44

;A A 1A

z wi Wij 6hi Zt3C2 c a C2 3 C21 A~ 14 'AT Ir od 3..a OI F"lI- @4~ thJ * 2 1, (3 -

1,4 U% r2 vo 3P3r .43( I.4 mC3 .4~ rs 4o 0, f

-j 4 II qb, LaN 0 J~I .P ~ 4 OC' W W#iý )%Jr'I -9 A A 0. '43 0 3C 3L 24,

It I' I iJt~ I I-IWf

4 3 -y e 2 1 4

-63

SUBJECT: SUBROUTINE PLUGNM

PURPOSE: SUBROUTINE PLUGNM computes boattail drag fora plug nozzle, non-mixed flow.

METHOD: Boattail angle is computed from the maximumdiameter, the exhaust diameter and the pluglength. Then Mach is checked and eithcr thesubsonic or supersonic method applied. Inputtables 4.2.2 and 4.2.3 support the supersonicprocedure.

Boattail drag is returned.

USAGE: CALL SU.R0UTINE PLUGNM

Input from C0MM0N/ABIN/ and C0MM0N/AMAX)Output includes DS for interference routine

Flags set such that: PLUG = 1.0

FLWMIX = 0.0

BTTAB = 0.0

Will cause this routine to be called

SUBPROGRAMS: AEXHST ATAN SQRT

TABUl TABU2

64

Am AEXHST (AES ?pP, Peo)

Aw fa AEXHST (AE18 'YF, P1I/Po)

9- irT. i DT- -

C CD0 . 1.4Tmn(19) -CDT -f(jMach,0) frorn Table 4.2.2

Mach153 cv f IPSIPo) from Table 4.2.3

DIT Co 0 ~gjC VD ' f (P16/Po) from Table 4.2.3

VE -0.5 (CV + CVD)

C P 1.0 -(1VCV

CFggo . CV..CDTO0AMa

Fg1p + Fgi~e

DST, (Cpg CFgv) (Nijp+ Fgi

Figure 10: FLOW CHART FOR SUBROUTINE PLUGNM

65

06

10 a.0. w 0

14CY

ts 11-

,at! 01,cy th

;.4a.fy1c; a; x 04

z for I.- xty

40, ox 1.- .140 z

ev C; x 4.314.3 .9 "31C b..

bm, 22 ell -C 0.3 ty " .1,j 411 .2, 3w i). 94 0 IM 6.4

Awl 0 s- Z f: "I- CL K Ia10.10 -CL (L If.

w CO 49 .9 W 'N In .4 uj I- M

49 z4 IL N &. '9:-a 43,2 a .4 w m , ý 'kaL IOL4a N rZo 49 - af 0

:0 -L (A J -4 -4 ta.& dw Ili I" w 3 -1, 31 1 "'Il ýNft 0 0 X 9 9 A A4 allne 41CJNM x 1.- 14 x 0- 't 6mu.-IlIZO 1.- 42 X X 30 ;.tL b. ILI A r 4; 1.- 0 2 -

al .ý I X "1 1 44 4 w 0- CD j 19 N'Z 10 0. 1- "1 "1 .6 12

49 C:13 11 w m w uiw -1 1 m C2 JIM 0 w - 0 W499 0 r3 $A W 4 04444ox x 6- T 00,1670

z % %. % % Z: gý* 6. i-C 4. 1 .4 ,; Np a 1- 0(L 9L %4.2 (WI %4 "Is , o wC - w at 06 -4,6 (5,1

19 w " IL L IL I) L"64 1 w i " .4L, %lC ; '.

2 es VIA fA 10'M Id Uj W M t.ojeft for w 0 9%. lu, 0 03 9ý N .4 .41cl 0)m 49 .9 49 W 49 1A t3 I a !a b. A. .111.4% %k % 11 it of of it U.1 K 0 .11 N

2 z U z I z z z b- I- IAJ.411 0 x J -i A qg 44 44 of j zrj vof

IZO 'Aj 1.- 0 6- -30'2 IAJ I,# (A T 05 "10 -3 "If 'v IA IL 10 -. 1 it

C.) 0 130 -6 'A -9 '31 0 6- b4O 4 6-4 U 1) 11 It ) If If 'IT Ur3

rsIs

4A

N cu-tv CY tyl W 1.3 96 f P %0'-a %3 .1 C3 u. a'm ly r, g- NO -M " " r 4 t t a k, tý . .4.4 .4

-,1- .4.4 .4 .4

12 -1 12:3 tj -j .2 Ca 11fm , 412 , a cj " t-l rs %3 ca C3 '3 .1

42 92 ý10 Qý %a ý3 U %3 ta Li %3 14 %7 43 .2 %, .I a Q 1.1 tj L3

66

.4' Im a y "( 4%a 4M . I a 4P.1

fa c It I'r$ Is

ILty-.

fl -4 VI% 4-

I~~ 60!~tIt. tv 40

to (AV t C pe) N * %2 t3 CM A -

N j r. -Z * *W IbfZ - -Jf% N 4 40 S4O w r h to A

-4 1 4 9 w I w J%0 .2 4A 'N24.-4 q 0 61.4

es Q. .Ja U% .Styria q4 3N%0

Gi a y ao jf' U' . .N4 a lt, t 4r jE 4-.r "v6

I 3 m I C3. ca. C343 -aa 3 a*~f 12 a . b W 9 ~~l6

IA . -"2W $ O U.9 4 .J: ~ f3N. 2-0' A IV 4 '0aw

Z~ 92 'JC oJC ^ u%4'. i'n '' .q4 5 .4 W4.1 'A Ci. IAJJ~C)~I

'c to 0 .4 In f/9, IfN0 ft2e1'I@ 2f21 0 6 W OII.-. .,F 'S 4yN.-

'3 P% 0 U%''j N -. V . N cS41 -- '.% le 10 V .'1 4 N t9IS 6T 4 .4 ~ e%. esN -- 9.i

A.. "J 0. -.02' t 1'4 . -.2 S . tbt'A 4 U ~ 'V.4 'V3 'Aw t, 'k.4c ca 4s C3 '11 ". g pm C31 6 ..2. 4

z Iw oj 67

30 Ol i?. x z N i J 4.

SUBJECT: SUBROUTINE ABINPT

PURPOSE: SUBROUTINE ABINPT reads the nozzle performancedata deck, cards 4.1 to 4.2.6.

METHOD: The input deck is read. The thickness of theannular base is doubled to account for top andbottom when compared to the total jet diameter.If A10 was input the table of Mach 9 vs. A8/A9needed by subroutine CABTAB and the Ps/PAMBlower thrust are computed. Tables not indicatedby the input flags are not read.

USAGE: CALL ABINPT

All COMMON blocks present are defined bycalling this subprogram.

SUBPROGRAMS: TABLI TABL2 'rABL3

68

TO; "4 ,,I'

A w

I. IN z :1a

T - .4L&4to a-

14 Iw oz 319IC b. #11 .

.4- a .40 4. 19 Ca4 col N Iw 10 1. 2 C2I IJW 6

0 z

g~ .4? ** M w93 6 'O -4 1.- go CI l

to VI Z' M. x 0. . M

K'e *N a a 3I.- !J (1.* 9Jz104'4.4b. 4 4 09- *fda s 1gN41 EU f5 -2 %'. *

Mlazxg-a 1W9* . -:: to40.(IO N~.. Z so -4 4O 11 ja N of .4 .111 cl - JtMM%4ab w' '0~ua ::: Y.. .O 0 n0 js .. K 0 .. - ý .1 1; 0. of .4 C 01U

11 M.. x M oj x c-h '0 M 1-a 1- 3u A091,z

r4 110 0 .4 f

N Yt yN(M% *NNI "N YW N -- cy0 fu0 N N -iNN ' .NN'M"i :'0 *-' N's .4 t 7 I .0 , 0 21 '03, 4 44 @4 4%~ J 's.4 . *1 .14 .1. 4 -4 .J . 4 .41. 4 Id,

.4 5 43uI' S 1 j t2M .2C tI. * ' .4sa 4 .A3 *fl 'J" I- -

44 01 0.84 21 44 4 w B CW .310.4.3' -r.I f'> L ly1N44 444s-444g,1e4cm 1 A.112O - 44* %.31IO'O

69 , n j4.4*. '~'4.*.f. F*.

%3I

4 % 4 IL

x 14 j )(a

ki. x A

OZ N 2'ag

z 0 49W.

a N

II.4 -a

., Z.4 Z 0

on-9 046*-

01 ~. 1 CNl .-4'bS m

N'- I. 2 J -. 1; W41-4=04

ONco 2 . J 'i40NI Jla

NI b.. p 4tL'*4 .W - ,W '4

wIU..0S'W1

'41 .4U. .- * a v .(Wb* N *ZWW6'

no, (s i-', .-- I

2j Au j( IA b4A. JIL4.I

Z j

Inell

.4 Q4Il . o I .w"NF i

4~ hI I

ILI

I., ca 000.4,NP~~t. 0 UI~ U UU

.10 C3 .4 4

.4y4.% Q13 Ma I1 0, coCID aC11 W 1 em m0 a1., C C"0

0,, 00 .34 Ono

0430il Uf 3 Uc c CIO@0

0e 2 cy r4 -. 4 Sy*-41

.3. r% 1 4M4 MN . 4UI J

4A3.

404@AJ %a 0 N x.4 J) a z. N N a,

-4 2 I"N I

:1 W1 W4

a-- -44-j~0

z L4'j es1AJ - 0-1

IJ W~l. :. 'I

'A I. @04 ',

Il zS~N t3. -4s * 1 @j, ZJ I* ~~ ItP)c I. I4

z .0 d~ 2.12 43j .1v '13.31 N

N~0% 00 0AY 2In UJI'42C3e Wgj , eggs,:.2 1. Z I

(3W .4I71

SUBJECT: SUBROUTINE SUBBT

PURPOSE: SUBROUTINE SUBBT computes boattail drag fora convergent-divergent noz7le when Mach < .9.

METHOD: The quantity Dj 2J B . DM)is tested. If it is

greater than 0.25 boattail drag is determineddirectly from built in tables XI and XII. Ifnot, an emperical method to develop base andboattail drag is used.

USAGE: CALL SUBBT (DYDJ, DBDJ, EMF, PTPF, THETA,

ICON, GAM)

DMDJ Ratio of maximum to jet diameter

DBDJ Ratio of base to jet diameter

EMF Free-stream Mach number

PTPF Ratio of jet total to free-streamstatic pressure

THETA Boattail trailing edge angle - degrees

GAM Ratio of specific heats

ICON f = 0 circular arc boattail

1 conical boattail

SUBPROGRAMS: CABTAB TABUl TABU2

72

CDDU C +AD/C I )I

Di :M2z .3

- )fro~abelXCP 8 -t~9D~m f4.25le

Fiue1. LWCAT O URUTN>UU

CDZ (0fD/D)/DnD~73"I

0 8m -1m

( Din)

COS Dg n '%PZ q "P

[ CD % Js

fj > P 10 Aoo~fortable >II mU C/O ST fCA/A

.0.

74 0

I I

La I.I

94 -4 w

I- :

J' .4- 9

ee 1~~I4 WA0-~' 4t9j. 94

oa D.i one

z E I- 9 3c

I- X wS 2I- CP . Z ( N

a10- ~ ~ ~ ~ ~ ~ ~ I If- a .MaIn V1.9 UZ kh. ;z 0 0:4 r

P3 o(I twtb;3 I %1C4 U4 1 4 4.146C 1

0j Za 6.. 6J-i' 0. (L a ~ toLI 33 0 1 f31 TL.i~ *J1 13. I .U2S

ta 1 1 T.b.76

td

1.0 100-1

0 14

U. I

I a. o1 , IP3 m .4 es1 n-41

*N I -I A aZ

0EJ M,0C t zI.ý

Ub.1& . 0 9.. as - 2 .

3. cyi IA NLn

.~j 9% 1 A1%,I

vy f* III 'yfP4)y `.NiIJ JN ~. N'~J '1.2~

) pi IJa

** a It4 00 IN o I tvU I f %t mO

Pv 0 cmmC i"' c I

ol0 ' IT

I 0 *o~~00000006

P. m ~ U UIn .. 4N NIf U% U

aa**.4D'-.4.4m

10 ca Q x x P. I& x . 3. "

043 ~ ft 0 43 0.N.lS0*.NN*D C2AI

00 N0 0 .4 000 @)' C2 43 -1 s '20j I " 7 4.00Nfyc 0) 04 a mo. N00 00@2@0 *U13 W 1 Y 0:

f% In 44r.

:. * 0 0130,$.@%1% t l M a0

*A I. i UUSO. UUA PUO

2 AN. w I ;'S eS r? C3.J-1 '1)I4 1M .3 t - LN 4

0- x .MAIA 4 N¶ N t% A f.. * A.4 . -f%.0-m ., I

0 ts 10 *2h UN 1. -3C1& 2 3NN..00t 4= . o

N41 N0 111 0 09a a. elm re13((10 3 1)

03 b S* a *4 NgggItgjggtgC*-4 % % M*:,S

b-4 Ii b.- I- N

0!z I1 IA I 1 0 20' *'2"0 ' 0 ~ ~ ' 1i 6f 0 1 t

IL on -64N P44 4 '1 ty2I I "tfN ~ , ' N- Il W

Iii 14 IA: J.2 I~r 4.n . 2L*' 1 114J .J.J..'tt .4 11~ I

,g cc c g e - o - 4

in '4 A 29 9 9 hIoSS3 4aA 0 -1- J 0 V

77

SUBJECT: SUBROUTINE SUPBT

PURPOSE: SUBROUTINE SUPBT computes boattail and base dragfor a convergent-divergent nozzle when Mach > 1.0.

METHOD: Boattail drag is computed using Table I, thenif a base has been defined base drag is computedand added to compute a total drag.

USAGE: CALL SUPET (DMDJ, DBDJ, EMF, EMJD, PTPF, GAM,TANB)

DMDJ Ratio of maximum of jet diameter

DBDJ Ratio of base to jet diameter

EMF Free-stream Mach number

EMJD Jet design Mach number

PTPF Ratio of jet total to free-streamstatic pressure

GAM Ratio of specific heats

TANB Tangent of boattail chord angle

SUBPROGRAM: AL0G CABTAB EXP

SQRT TABUl

oi)

START

< 1 . (.. . ... .... . . . . - ,•..... . . . . . .... _ I

(1 B°° -, f(•othe~

G - f(Mah) from tal I [CALL (Kr talecost - 6-ton-(P)

D MM , ' 2- - P -/P F

< 1. (2jo -- .$4MDo

P il/P F - f ie .11115 1.1 5 2 Mt

in.2 (2.) ..Q(ua2.1

CDes ('_ F" 1.-.(IP- f (C) 0,from taleI,r'M~h2r ( D-j• PB/PFK f (K) from table II I

-DP PB/PF 8

M ach * .815 - 1.1 ALOG(K)|

y Mach 2 (D) 2

\Di

CD -COST + CDs

Figure 12: FLOW CHART FOR SUBROUTINE SUPOT

'7a

al. 1 I '* I-

0! . I Ia. Is

I It

alI--

.4 1- 0 a- ~

1 1"a h 41 1bi

*I 4P,1 x Ps-tab 2Ix iv 1.!;xZ I

.4 .3.I.4AIZzT: N~,U 11-4 Is N

W4 . 1L4- X a .49 b U % a 10 on 0 1-2'

N1-I~~--t. 0 0

a. 0 1.. -DZ 4NX1- N& 11.64U. 1; . 4 4- - - l

0*01 mom I %.04

o11 11. 1M- IaZ &jO& 13-

0.& sit.-. 1gZa

Is.. j 1 %110..,- ! .4I.I#f J~aIa -~ 4111 3 :- I.;"3..2444 IS It ,h Z!,.

B. .4;. 01b .0 =o8 X4 0 .4 6a r4III j l.4t of 111 1 ' '.t -w4 WS 'A~ Is- 0-1 *04%&L6" 6- 3

%j I ne I"s 110.310 *4 0 t 0.k . 1" .v & Q jV 4 # ( % J " ,

30 N% 4l~ CY a 4~P .4.4-." I2 ZM F)1A 4 . 111 R 4 A~ 2 0 f1 3. I.J f 11%w . eo .N~ 63LP4%L.4 4 . . 4 4.4NFY I n.I t r Ir ?4 -III if% gg 'f 'iI " ll 1111. 11 -1"It .1 c jh J j 3 'j) LAP v:.. 'Al I- 4d -4IjL f #'J0 1 1 'd a.1D soa --f L f a0 2 - o

el 040 4 * ;s 0 %4.2 I .ge0'9 W#2 _1.0 -3 fl0 .31

.111= 4:1 -1 toCT 4 ýj CAP 3 Q 3 S

I so

94P mA!

U, # j% -r cy.af:yC 4U 1c r"f oe

.4 mf a a clIto

0 N am @***-a N a

oe %2 US = cm 11aa0 amaa C, a~ua L

co Vaq 14-

CD CD 4 -.1dda *f% N f s .4ft"s (Y Ca11 %a aU .4 In." V M1. t 2C 3* CI L Pa m

8 0Ia11:,aata 43V CI ao2 a t' a qu %3 42 I's

A.. 0. 4 .

us -2 ra Na IT -.1, v 12 -

'2 6- J ca 4aN 03C2'4*3u t .4NN inAi- -. 4 I)t'",,C .4 oft 4S C)JJ ' ZbD'3 jC 'f%,t ). M $-).IAN.J Zý41 j A% a m Iý,wwý A aw"%a.. A t

Is z 'Is5.5W) S

.4 4 M m ',aa (9

faCI .4'A V% .' 0 0

SUBJECT: SUBROUTINE DRAGAB

PURPOSE: SUBROUTINE DRABAG monitors the afterbody dragcalculation.

METHOD: The input array is transferred to the afterbodyCOMMON block ABINP. A check is made on Machnumber. If Mach is equal to zero drag is setequal to zero and no further afterbody calculations

performed. If Mach is greater than zero, boattaildrag, nozzle interference, and base drag routinesare called to compute the various drags. Thetotal airplane drag is returned for nozzleinterference and base drag so these are convertedto one engine values. The output array isloaded with the various CD'S based upon areaAMAX (drag may have been computed using adifferent area).

USAGE: CALL DRAGAB (ABIN, ABOUT)

ABIN (40) Input array

ABOUT (10) - Output array

The input array is defined as follows:

ABIN

1 AE8 Primary nozzle effective area - in 2

2 A8 Primary nozzle geometric thrust area - in 2

3 AE18 Fan nozzle effective area - in 2

.24 A18 Fan nozzle geometric thrust area - in

5 P/P0 Primary nozzle pressure ratio

6 P1 8 /P 0 Fan nozzle pressure ratio

7 FGIP Primary nozzla ideal thrust (actual mass flow) lb

8 FGIF Fan nozzle ideal thrust (actual mass flow) lb

9 PC Power setting

10 GAMMAP Primary flow specific heat ratio

ABIN (continued)

11 GhANAF Fan flow specific heat ratio

12 XM Free-stream Mach number

13 PAMB Ambient static pressure psia

14 Q Free-stream dynamic pressure psia

15 A9 Primary nozzle exit area in 2

16 A19 Fan nozzle exit area in 2

17 CFG Nozzle internal performance coefficient

18 DHEP

19 DHEF

20 PLUG Nozzle type designation

21 FLWMIX Mixed flow flag

22 DMAX Maximum diameter, in.

23 THICKB Total thickness of annular base, in.

24 ZLPLUG Overall plug length, in.

25 ZLBTAL Nozzle boattail length, in.

26 S Nozzle centerline spacing, in.

27 ABASE Base flow area, in 2 .

28 BTTAB Boattail table flag

29 THETA

30 XDNI Number of nozzle interference spacings

32-40 Not defined

SUBPROGRAMS: DBASER DBOATR DINTFR

03

ARROUTUT TOMINU

0?ZERO

(CALL D8OATR IDB .

Compute total A/P CN .

Nozzle interference Drag.a D:NIAA/P CBS

[CALL-DINIARI (0oen0

LoADut toUtPUT ARRAmDArag DBT+DN

DNI DNI / (No AMA )

CDI*DNI,/(Q AMAX)

Figure 73: FLOW CHART FOR SUBROUTINE DRAGAB

84

b Io

*w w

igit IOf

Oct-

;1 'a X

04ti wI% L -4 4 9 O45 I -% 9.4 .4

w w 3 1 * ý ,b-I L w U I d'1 (4 % I 61

r* -I4 "J *

.4 . 4.a !

52 49

"t- 129- f-%, 1 0. 4 " J- UN

V2 I3 'mcs t31 1 1ej " 11:2 1 * -.2 001 4:2 In %3001 I 2 " . s1

* Z a 0p CPC 0vL a* a 2- 0 c 3

,4S@J N.4 9.4 ~ as

w

c If If

ItI

o oz"o -, -2

W e

C3, 1 C3 C3 GC2 C v a4

a. C24 CC, L3 v,02 I

'UL) CO Z

Ic w U% a.

C3 .0 -z; '-. -f"IA a ' 3. a D a f

~~Vw M, aa

a IAIa

J,1 UltU

a 12 2 a

, It

, ,, * (A

1-4 M .II~ L "IU 1A 04 LI

220 3 - Ls (4 AjN ' U* 4i 0rS-.a -Ai 4C3 (A C t2~ ýaa' 4 .10 La

0.4 b- Ut) Zi- ..

124 1.- /:I I~ I IA'j~ l I laWIN 4 1 D 4o N of

Il C, 2 lcA 3'

01.0 t V 1.

SUBJECT: SUBROUTINE DB0ATR

PURP0SE: SUBROUTINE DBDATR monitors the calculation ofboattail drag.

METHOD: The input flags PLUG, FLWMIX, and BTTAB areinterrogated to determine which boattailmethod is desired and the appropriate routineselected.

USAGE: CAL DB0ATR

Input through COMM4N/ABIN/

SUBPROGRAMS: CDC0NV DBTTB PLUGMIX PLUGNM

85I

START

<0Mach DOT 0-0

> 0

tabular Yes CDOT 16 1 palated

option? from tsWe 4.2.1(CALL DBTTB)

No

plus No CALLCONVERGENTnozzle? NOZZLE MODULE

[CALLCDCONVI

yes

MiKed Yes CALL MIXED FLOW

Flow? PLUG NOZZLE -400.MODULEICALLPLU

No

CALL NON-MIXEDFLOW PLUGNOZZLE MODULE[CALLPLUGNM)

CR:E T U R tN

figurelIP: FLOWCHART FOR SUBROUTINE DBOATR

89

IS 43

:"or ji'I

".4x I

j W*44 (K00j 4T.0~ nI. -j f

z ji I- n(

lt IL .8AA.J, Zx0

4%e*8 4u .4 j 003 v, r, L3 -,10 1

N ~ ~ ~ j -W4 *.108 jO .

m x~U)a 0, 1 . C .Ix i vJ$."

545thou 1.0JJ U c

(3 .Jy 6- w)

30 cyf Y"$ 1 Y AA 0N CP.

-1- 4.4 fh4.4 1 ILS ~ III UN2 I'l" J t tkOLO

esD N1 M~AE . Is~ j;l kr.0 L3, "I':NI

910

Ic U P

Sioil

co t

1..

Ic IL I

Al-

C3Cka.

C U ,

CD

.1 N a L7C

4: C3 ca C

49

2 3 jj.41 CC

Nl i Z toa I (A '. jU 2-3 0L

K 21. 4 1 Il `3 4 U Cto Tn 04I I4

r232 . 0.las K4 14,I Z aK Mt .1 'A

I.C z ' ot L 1- -

ct4 W-.11 1 4 0 w3 I' I U

US w.

SUBJECT: SUBROUTINE CABTAB

PURPOSE: SUBROUTINE CABTAB computes afterbody drag as afunction of A9 /AI 0 , P9/PAMBI and Mach.

METHOD: The drag coefficient is input in tabular formin input Table 4.2.4. Mach and A,/A, are known;,

.; J. 0the suprogram computes P9/PAMB after interpolating

Mach 9 = f(A 8 /A 9 ) from a table generated by the

program. The table cenerated in the inputroutine ABINP is developed as follows:

For Mach9 = 2.8, 2.6, 2.4 ... , 1.0 compute

+l+1

As/A 9 = My+l) 2(y-1) Mach9 (1+1_1 Mach9 2)2y1)

The resulting array of A8 /A, is strictly

increasing; hence serves as an independentvariable array with Mach9 as the dependentarray. The subroutine also checks P8 /P0 against

1 lower bound value of P 8 /POLB = i/(

The C DAB obtained from Table 4.2.4 is based on

an area A whereas the program uses AAx (most10MA

of the time these two inputs will have the samevalue), consequently the CD is ratioed by A10/AMAX

before returning to the calling program.

USAGE: CALL CABTAB (CAB, AM)

Output CAB - Afterbody drag coefficient

AM Free-,stream Mach number

Input from C0MM0N/ABINP/,/AMAX/,/AREA10/,/P8PAL/,/XMACH9/, and /ABTAB6/

SUBPROGRAMS: TABUl TABU3

92

99PA

pW~mb'o 1.0

M>h, 1.0

CAB/A (A/1.0 PP Msch) frm1a.0 4..

f I CA.g A1 0)frAm Inenil

;p 1.0nltbe.FrM c, .8 ... . .

42±~ --

FCur O 5T FLO CHAR FO UBOTIECAA

AMA3

X aa

I * J toI

4;~

as 0; 3

64 .d *

.4 1 4~.6 V 4'l :

on S %p t -S

or 00~ 0 II--I

z mU**SEc, s Wl.01* 4

"'.~ a ~ .raI '6- 22.44at 0 I 5 b-F

* ~ ~ ~ . .4. J . (t Ij4 -2t o L

1W2 ~ , I-4 r J 4 f a % %. .

.4N94

W�.

V - - - -- ________________________ ,.------,�-.---.---. t

I j I � j II II I

'IL 1

�. I

I *1

I I

I I

.1 I

. I

I. .� I

( j 0 1 I

laDrv 4 I

I. 1.hi

. I',41 . I

J IU

4. i

� aJo

' *'I Ihi.

'5

0.4cul ulE U

10,1,0031 02

%D me b.4

o I.- co 42.0b

%0 ty 'oIto~

C3 r% caW 01

CD43 .40CD.4 C Ca

00C,000

a C2

C) N.4 t3.4N.40.

4.3 C, ¶4 Ca -3

b a z

la LP 13 603If

4* ?N' 0 *L 94 a O W) .)J Cl

.2 e'i "'' -

AS6. 6-4 `3l3I r.0 .IJ6 .4~r . N a IA w~

z W 0 fj M, C3 S -. $ . S ýSIS z

(A 9 q 0W C C ra02C39m'

II

SUJUCT: 'U0TMINi DINYF

PURPOSE: SUlDWTINE DINTJR computes nozzle interferencedrag.

METHIOD: The ratio S/D is interrogated to determine ifit is greater than 1.0. If so# CD isinterpolated from Table 4.2.6 and total inter-ference drag computed.

USAGE: CAL DINTYR

Input through CONUON/AJIN/ except D which isinput in CUI•N/DIPACGI. D Ws an output fromthe boattail routines except when C is

interpolated from Table 4.2.1. In this lattercase D B 1.0, then nozzle interference dragcan be input only as a function of Mach andsome constant S/D ratio where the rat.o isinput instead of the nozzle centerline spacingfor variable S.

SUBPROGRANS: TABU2

97

4-

START

F 16: FLOWCART 1.0 O T NT

'S

a 5-..-. - toJ•..%•-

f- - -it. M -=.ON

R MN

Now: O €omped by boattaN drag rouimn

FO"• 16: FLOW CHANT FOR SUBmROUTINE DINTFR

95

Iw

I-- 4

NNf.4 14I,

44-

lob a a

w*U.*0 '0 a T

0; ft I4 t3

04 W!,c~g2w m

sI~

Ni' 4 .4 %J

*'x xzi i, aa

Z 1 04Ie3LtvO02

54 .8 4 .4.

ty (14 Wi..N3. 4

M 0) U%.4 Aps CIO .4.ý4. 1ff

4a CIO~ CIOf La a is -

U 4SC~99

ca 1

Im .4 I

I .I 1* I: I .

C3 0 0

(Y4

oft~

.4 .tO t

izI jl A J q L %

:,a 'A r3 * n 4 I

a ca I Ac

4 I-OI

Sw

'. .4?& 1. V b - z rc

*100

SUBJECT: SUBROUTINE DBASER

PURPOSE: SUBROUTINE DBhER computes total airplane basedrag.

METHOD: If a base area is input the base pressureratio is interpolated from Table 4.2.5 anddrag computed.

USAGE: CALL DBASER

Input form C0 0N/ABIN/

SUBPROGRAMS: TABUl

"101

START

N ot:SA041 is Ynt 0ififdootr4. .4

Fr7%-1SFL CAR SUBOU

2Pamb

oil

Note: ABASE is Input In field 8 of card 4.,1.1

i ~FigurelA7 FLOW CHART FOR SUBROUTINE DBASER

l ,].02

, to I I'

I..I,.9 C

2 La.! 01.-

a *

0 LIA -

*q -4.W* 4

tyN .W1 ',

1' Z ~C4I. .40. 44.4 *0

* P' Ma 1.)' ma Oi10.4 ~. "'a %,g 4b

a2OC 1 coo

a aII V ;

z 1

'S CN ;mCOD L 2 2 2 ' 3

3r.J

Ip CS CoiI

ca c

1-0

130 rI N 2A u0

z 4-3'111Ix iw x il J Ij (% U 1.-

ti CtN " in n ib

J c 2 9-ca '5 14d13 1.-$2 M~ t3 C3 8. 6.

#A(A) (A3 CY0Cl I

w 1.2 z w ' I. I Ii L AO.J U ) 4J ! 4 I.4r' 0l cc' u

2' z~ ~I- t 3 v;- 0-' - .

tI (3 0. j U 0 A 1 , I J 47 ty 4 C2 og a aLC2 .1 418ýx 1. . t

'RikU

I I 9

z CDt

j i

C3 Z

WZ .41

*4 m:l - 4

N N

v. 150e! -

f3 x

cc #V -.94

Ny xE4 to 0 0 ;

0W44

~~Ls Cal i -

d,1 If

I~c EI*cInII 0;0 0 (3In to5

I~ I o

aa.

0~

(~01 00

a i. 4

%3 aI aSIn S.4 -1

100

14 1

14 64 ILIW fA2 2 3 e

4 r - -40.42 1 .. .4 T 4

4A o l 9 .1 04cq15It (

W 49 f- IIA r4 i

ly' z I I~4 I4 tt4" I -

10O~I ZY z .10 .ty LI C3Iofj -w 4 I.L Z ia 91f3 La

1046

.SUBJECT: SUBROUTINE FIXDIM

PURPOSE: SUBROUTINE FIXDIM determines the dimensionsof the nozzle throat and nozzle exit inputs.

METHOD: The input flag is interrogated and three flagsare returned indicating input type anddimension.

SUSAGE: CALL FIXDIM (FLAG, J, K, L)

FLAG - Input code value

J = 0 area input, = I diameter input

C K = 0 inches, = 1 feet

L = 0 ignore, = 1 (A9 /A 8) input.

10

107

a x

eq 0.e Ir 4C 40

6.." jI ~ .. .1t0 .42 4 1. 2- 0

I w 2 3%

I I Los

- ~ i

44

I F

ty in

,• ,,

I I

z w 6 W I..

I ft

I I

1*0

on F

II " 41 . o -

a4 4 -P .3 I1a U. w"4m I t lD oi b wA Oit 0' 1

I Sa K 15 , wi ~ 109

SUBJECT: SUBROUTINE ATM0S

PURPOSE: SUBROUTINE ATM0S computes ambient pressure andtemperature using empirical equations for the1962 U. S. Stand4rd Atmosphere.

METHOD: Altitude is tested to determine which regionit is in, then the appropriate eqaations areapplied. If altitude exceeds 100,000, anerror is assumed and altitude will be dividedby ten until it is within the required range.

USAGE: CALL ATM0S (ALT, TAMB, PAMB)

ALT - pressure altitude

"TAMB - ambient temperature

PAMB - ambient pressure

SUBPROGRAMS: EXP WARNING

110

II

START

Twb 618.0 - .0=03618 ALT

518W

-I

>Io

Twn T - 364.18 + .0006M3 ALT

ALT: 10002 30.4757 - aG43Tam

> 100000

it IiN

Figure 18. FLOW CHART FOR SUOROUTINE ATMOS

*1 111

* :1

00130T 300.00

I'I'

W1

It -6

.09

I- w" o' 4

.A

#A c 4 ca ey 0 *

.. b.a * 'd rf f -1On .% *.f ON$.

o On* , - 0 .* q4

0! 49-4 0-N 2. J-i

aj 0 0 w a a J 11

P4. .4 .4 .)-9J%.

N .4 .4 N A *ý, !:. oLa6. f0 J *i ts s"'I tjJ

%aS co 0 N .4a " "9 l -iIj 11% .q2 3 I C * t 2 % 6.2 2 2,jL Z .3 a C

t*S9-0 * .~ 0 6-.40 '~112*

0 I0

Iii I I

CD .4 N

f.3.

es IA

I Ij

AS 2 I

p IA

NA I J I W 1 L , i

w - IImetl.4 - ' . 3-CLI .4 N4 3f jf

Of (DV 3 'ACa I I

at~ I113

SUBJECT: SUBROUTINE PERF

PURPOSE% SUBROUTINE PERF controls the calculation ofgross thrust.

METHOD: Mass flow, enthalpy, pressure, and relativepressure are developed for the nozzle throat.The thermodynamic properties at th- throat arecomputed, then gross thrust computed frompropulsive nozzle performance analysis.

USAGE: CALL PERF (WFT, WO, PT80P?, TT0, PAMB, FG, A8)

Input WFT - Fuel flow lb/hr

WO - Air Flow lb/sec

PT80PA- Nozzle throat pressure ratio

TT0 - Total temperature degrees R

PAMB - Ambient pressure PSF

Output FG - Gross thrust lbs

A8 - Nozzle throat(given) ft 2

SUBPROGRAMS: CHKRP GTHRST PR0FH

114

Wf- Wf./35W0

FO% -wlWo

FOA2 - 0 0

H2 HOFT (Tto, FOA2 )

We - Wo + Wf

He8 H2 + 4. eW8

PS (VP/o) ,amb

PRO - PROFH (H8. FOA9)

COMPUTE CHOKER THROATPROPERTIES

[CALL CHKRP]

S~COMPUTE PROPULSIVE

NOZZLE PERFORMANCE(CALL GTHRST]

C RE:TU RN)D

Figure 19: FLOW CHART FOR SUBROUTINE PERF

7P~r

115

06l,

0 I

IL

IL

a#

'W-

a.a.

awl Ila,,(IA T

v IN, i

I IIii

U.

I I I~

01. , 11-.- 0 I 1 . i

Ag : ý! W. of6

14 - if to I of i• i g. 0 x

a -K .9- .,N12 12

S r• , N -I • - -" . .

M.N•'a , ,

(- ,4 -4 4 4 -'-*I *rl a

1.3 li c W LX CI

~'%IS114

-".------- --- - _ _ __ --

Im I

fy V

in .4.4..4.4 -4op~~ CD C2 C2 rsCD

ID , C , a0 C, C

EA~

U~tL 0. -

.4 C2CYmV"

(A I C3C IC,14

in.0

IA I- (A a .2 II1.- 2 1.-

' I En ts -1 Ia

z s z 4 (e

i4 1-4 0 ZO 4~ 1. 2 2 34j-

t ot w 94 UI Id I o0

de 2 : j. IA).( I~ IZI. I I I I

I-4 IV v I l b- PIP 9- -.4I

In FA

0' a - .. C.4 9 i4 u31 3 I. P j - X' x 1$ 40 40 1. 0

ae i a Wi Wn Wo IA ten,,117

SUBJECT: SUBROUTINE OUTGO

PURPOSE: SUBROUTINE 0UTG0 prints a matrix of performanceoutput.

METHOD: The output for NALT power settings at a Mach-altitude combination has been stored in thearray 0UTP. A FORMAT is built t6 print thevariable name on both the left and right of theoutput columns. The matrix is printed and anyindicated punching of MARK II data is done.

USAGE: CALL 0UTG0 (NALT)

NALT - Number of columns in outputmatrix = 10.

Input in COMMON

0UTP (45,10) output matrix

PC0DE punched output flag

DA, TE date, alphanumeric

TITLE (8) run title

MACH Mach number

Output

IWARN Error message indicatorintroduced

SUBPROGRAMS: MIN0 M0D

118

Al

a ft 41 L~- (ý c' . . ..- vs.ca-w-0,--..-

*4 .4 m M" P n"inq",44rr*r ttU%% UL

I CE 12

0. 441 14

IZ I .

a IL ILT

0~~ ~ 0. 00 , 0 0 0 0 0 0 o 0 0 00

CI adjiPA. a 'r 04 W

M= , w

"M It(* a l. t 4 A

?U L*I9 in w - aL0 %C.0 W.0 - .4'

1, 4: 1* 0 ta ;a a, (L of It

I J a K1 4 .-i 0-4 %D I.~- z 1 9 % .- U0J

14 1~ .4 t

'1 .0! 40', 4 12*f. -UIa t- za .1 ja ax (L ~ 0

W~ & S- X, a 0 .on v!.j JI ,t I cA a y- . 0 . ( a. I .

0 ut~ a .0 e-s ' a =P4 499_j * ~ SNW 00

4109-9-J 149 IA. I. C3 '. ( 9- --4 ~ ~ t T iwn. -0 -4 me -se -. o .

9-'9fi z &L t &. U ofI *, 4- %Z .. 4 z . ~ a o" I.-- u SN% in %U0 00* TI 10 %I UTX :j v J - r WX -a IJZ 0 1J* 41 41 fi T5J al .7 If 0. "% Tjj NY, *,'J9- .0. ~

vX1 a4 ,4 aZJ '4 Z MM __ _, OL . OZ O ý .

212 I ?ifZ "! 444%1. l T.M.44 'd VI ab VI~S -1 'I -11 '.400. - * et.4 W M- .4.4oUP9f %d a *i 4 .a4 a 2 1~ - 3~h a. 1. v .4. .44

IIIn lz X46 w.3 2 Q E Ms % 0 .4.a =0 ag " ~ r~. -4 of* z 4' A I 1' a4 a - 4 a .a

mcofl4"IAV Ii 41 0 40 0~ X 29 V a .44.0U-32 0 0 v9 w 0 0 . X u. in 0 u. n w .1 Y Y~N aI W. r. re.#ý N t ZZ1&v $U.u.2 4 L,13 t" 50 - 14 TIA

%

.4IN hJ~P .4I%. .ON4 .tn

~~2 4I 4A MM~7,~ * I ~i.~i4..4 tz 0'r U% '00 .I 1J0N.

oac~~~~el in:C(~4I N ~ J9)' ' r ,S *s ' ,

0 U I.~~-~ ~.S J J..)1 C1 u~l. a .l.3,

1uP 2 NL 0C r A WNN4NN .4NN. .

+I

I Iw i i I

ii ~ I

I I

I. 3

*•1 ,rn* I

ItI

4;

• N

• +° __ _ . .. .A

4 r

.4 q4"M lan PS" 4I

Ii 1" 3 aa C

U% I.4100 L3

ISa~ 'CO 0,e =alI

P?"N.4I.P W

C3 .-I2. 0 ,:

CAS W. (AJ

Pt AL r~ 2) it' ''3(-t 2 43 41 4t .4 w.1 L3

.2 * J 4, 111)a zaclCJ.L. IN,ce #iI~ e .

lOP- 0 4 N Z! 0 Q CDPe 'r I- vi 4V1 or v- z S. y I. OY li

E ~ 4 S.S. m w4 I~'4 ~

118

Y SUBJECT: SUBROUTINE WARNING

PURPOSE: SUBROUTINE WARNING identifies the point towhich the warning which follows applies.

METHOD: If no warning message has been written sincethe last printing of an output maLrix, a headingis printed. In any event, the case number,Mach, altitude, and power setting is printed.The calling subprogram will then print theappropriate message.

USAGE: CALL WARNING

Input in COMON

IWARN Error message flag

CASE Case number

ALT Altitude

MACH Mach number

PS Power Setting

Output: STATUS Error flag for case.

1

0 IPA

I~ 4 OA.I I

10 IA I WI

fV -4

lA l * UU &f # s

e Sl ýý-p 0%. Al

0, PIS0On .,

coaw '-

* I

*e N

(1., C

St

Nt0q

'4wtto

Wil

a ai I- ~. U

SUBJECT: SUBROUTINE STORE

PURPOSE: SUBROUTINE STORE moves the results for a single( case to the output matrix.

METHOD: The COMMON block OUTS contains the output forthe case just computed with the individualvariables in exactly the order to be printed.This data is transferred to C0MM4N block 0UTP.

USAGE: CALL STORE (NALT)

NALT - number of cases at currentMach altitude = 10

O 0UTS (45) - output for NALTTH case.

NVAR - number of OUTS locationsbeing used.

Output OUTP (RT,10) Output 'matrix.

1(

S~125

I, 0,0

AJ

*1

men

www

~o "

r2 42 co at C2

C, C3 402 olu

~,.-.-. .- - ~--.----.--~---c

9 ( I 'I I I I

I *9*

I I I, 1

-~ I I I j i

I I I

4 IC

(A 49 I- 0 OA

I l f W I I

a 11 z IA

at IA Iw r--

12

SUBJECT: SUBROUTINE CHKRP

PURPOSE: SUBROUTINE CHKRP calculates the thermodynamicproperties at the throat and the total/staticpressure ratio at the sonic condition.

METHOD: FUNCTION C0FH is called to compute sonicvelocity. Then enthalpy is computed usingthe entry total enthalpy and the sourcevelocity. Critical static temperature andrelative pressure are computed as functionsof enthalpy and fuel-air ratio. Pressure isderived from entry pressure and the relativepressure.

USAGE: CALL CHKRP (PI, Hi, PRI, F0AI, PAM, TC, C, PC,PlOPAM, PIPCC)

P1 Entry total pressurg PSF

Hi Entry total enthalpy, BTU/lbM

PRl Entry relative pressure

F0Al Entry fuel-air ratio

PAM Ambient static pressure, PSF

TC Critical static temperature,degrees R

C Critical sonic velocity ft/sec

PC Critical static pressure, PSF

PlOPAM P1/PAM

PIPCC P1/PC

SUBPROGRAMS: C0FH PR0FH T0FH

128

'7" .-

-

IL

vS I,' ~

z ,

us A , W

o U.

w 0,ILI

00i . it

23!

IL IIo- W, z 64

a. u. IL-Is..' w 4 la) As

di la.1;.jw CL0 Z a 15 CL 12 wu. 1- 11 1a - ZOfAu ~ s. 12.H

AIAN

II Iz I -,I. lcl 1, 0za 44r lý(L (A U.0so0 4aeb-½, 3

I s 4

CO*1

ca IA c

19 f

-'a .,. ca %t

;IV If% ILb. uj 2

0 , Co 0 v .

cz 21, w a.~ 0

IA30

SUBJECT: SUBROUTINE GTHRST

PURPOSE: SUBROUTINE GTHRST computes the performance ofpropulsive nozzles.

METHOD: Outlet conditions are computed, then nozzleideal exit velocity. Nozzle throat staticpressure is compared to ambient pressureto determine which temperature, pressure,and velocity to use in the calculation ofnozzle throat area. Gross thrust is computedby the appropriate equation.

USAGE: CALL GTHRST (XN0ZZ, PRl, P1, Hi, WI, F0Al,PAM, CV, CD, TCS, PCS, VC, H2, T2S, V2, A, FG)

XN0ZZ - 1-0 for convergent-divergent nozzle;

2.0 for convergent nozzle.

P121 Nozzle inlet relative pressure

P1 Nozzle inlet total pressure PSF

Hl Nozzle inlet total enthaipy BTU/LBM

W1 Nozzle inlet mass flow LB/SEC

F0AI Nozzle inlet fuel-air ratio

PAM Ambient static pressure PSF

CV Nozzle velocity coefficient

CD Discharge coefficient

TCS Nozzle throat static temperaturedegrees R

PCS Nozzle throat static pressure PSF

VC Nozzle throat velocity ft/sec

Output H2 Nozzle outlet static enthalpy BT1I/LBM

T2S Nozzle outlet static temperaturedegrees R

131

IOutput (continued)

V2 Nozzle ideal exit velocity ft/sec

A Nczzle throat area ft 2

FG Gross thrust lb

SUBPROGRAMS: AREA H0FPR SQRT

T0FH

132

* PR2 - (PRI)(P~,.b)

T'-

H2 - HOFPR (PR2 . FOA 1 )

T2S - TOFH (H2 . FOA 1)

AF W H1 - H2

H . 0 " 0 14 0 .0 A NA 0 " 0

A > 0.0

Figure-E V 20:FLW.CAR FOR SURUH EGHS

s P33

ARANEA (W1,T2S, Pmd*,Vc A AREA MW, Tcs, PCs, Vc, CD)

•-- - 1.o

Fe WI V2 (CV) W1 wVc fCV)+A (P -P

,. go F0" go "

Figure 20: FLOW CHART"FOR SUBROUTINE GTHRST

133I

op I . I-I -1 0 I - I- II 1 11 1 -. -0 . . 1-0-1 -Wo ewa

I tI00I

I I

j I

IL a, wI-...w~ ~ w w

ow w.4~f'(U0 U. IZ usd AIIu LII .6 L W

J * w 0 wfi( -9 IL III: . 1 10 to

. ~ I ..

CY re w a. I s F

* Co. 0. 1& is 0-0w 0'A U 0 I14 t9164 lo -94l ~ -- II H Q I- .4-1 (

4. 0 OV6 I 50IbZICW4dm ~ N NN IN .91,011 1" C (A .. NCtv 30 5 111,z 0-ZL9w I- WCet-W&' w 1ý G.r£

No o o o a W4o~ 'A0 0. 5 0I mg: )-A (A(A ( C,(aL Nine L) 0-91 1- Z Ill, up w

0N W W Jut- .9 C0 W C

-11 w4 W ILI (A- 0 4'O JZ0"1Q

NI ZO e 4 wA z4 N* Olt ;c z z . i ' lL . .I. IC-'v 4 ow . .2. 1 0-t- 0 01. T -i j :, at N LL 'I.. 44 0 'X

I- -, &IE~1 fl4 e.J'U 6N- tic 0 &NIz thW " I N b i jeaEa . 64 30 w -1Q A(

LUUUqI UI aeNNMWNIW:Z ~ ~ ~ ~ ~ -. 4U C Mm iNN NN INN NNN C .O.~41gl6- y ,C~ 0 a" 0""" 0 ` : 2f(3 tw 7 9.I`J C, . N dg9I'S

IN 3 .. U'

III I-II iI

t iI I I

I j

s I

, 15

's I '

IL I

U.

( f

CJ

N!

I',

* 4

* .

.,L*

N .4

if I I- I ,41C, 10

~ *~ I

000

t L

.4 104 #A II

:0 ca 1C-.

I i L" 92 14.1L0 C3

II u0 * t ca

(hL 11NIJA1.Z , lh0cm 4.

~36

- SUBJECT: SUBROUTINE DATA

PURPOSE: SUBROUTINE DATA provides a card image outputof all data cards input to TEM-333.

METHOD: Data cards are read from TAPE1 (INPUT),written on TAPE5 and OUTPUT. A card countis provided. Upon sensing an end-of-fileof TAPE1, TAPE5 is end-filed and rewound.All subsequent input is from TAPE5. TheINPUT file is equivalent to TAPE1 to providea logical number for the E0F test.

USAGE: CALL DATA

INPUT file must be in desired position whensubroutine is called.

137

- -~~~ -. - - ---------

1444 9. 4 4z2a I me-91144 4at4 4,4 co

Izz l..

w % -

fh.m

w .

* w -. 9m". IIao ae D aW. '- N *# .9..0ý&c 0 N.* ~.4tb

fs 42 Z .46 6

N ZR O.a0 .40, .8 4

N - ORIdP4 ca42 " 0 Zo I~.- *I-

.4w 4 j 01 w- I- .4 N

'1,4 0 uulLJtwm c3wxl.% *0 a,,O

U% a g cm .4.in3 c3 2.s2 caz I ca es~

ty 42 Qt -

.4 .4 .4 tNyw)*ri~f% at0~ 100al

am U-a I~ aýa iGa ' ti $a'1 w a qpO. C) .I.I

I i

I Iy

-m I

to r

-4 1 6 C

2 1 L9 N-.4 fg I

ma us 43 a

4I I

~ 6 Fq 0. N ~ U

-l w ..

SUBJECT: SUBROUTINE PLACIN

PURPOSE: SUBROUTINE PLACIN reads a tabular array. Acount of points is provided for independentvariables.

METHOD: If the number of fields input, NF, is equal tozero, then data is read until the maximumallowable number of cards has been read oruntil a 1 is input in column 72. A field byfield count is made on the last card image sothat the total number of non-blank fields isreturned in NF. If NF is positive, then NFvalues are read. All arrays are formattedten field-seven digit.

USAGE: CALLPLACIN (A(l),NF,NCARD)

A - array to be filled

NF - number of fields to read or if zeroon input, the number of fields read.

NCARD - the maximum number of cards to beread if array is full.

SUBPROGRAM: K0UNT

140

'l C3

"'a 01.4

(A z1-0

of w20

:DA (A

Id D

I . I 4;t 1 L

ty 4 9Of1

06 Z~~.4f 2 ica-, w10

IL I I9 : I 4CL -IIA Ol.

14 ; 40 - .4,44 .4 .

2SZ . 0 0. kt -4 oil Z 6

% tV .11 I" T T N w -1-4 U's g '.a i

;Cz z 39 b 0 i -c 0- .41 02 i .. Ot~ mot. jr

C, 0 64 04 Ll4.AC 0 ~ N.

CJO%. % 2 0 7 9 Of-' j 1 4 - -4't1 Z if . .U. t, L I2 ~ ~ ~ u MCI~t t2 J

~~~C 1* 13 .ft 2I2 I, 4 ~ .

IL 0 '. ?li

IsC Mm . 14 .144 ~ f Na, 14 4-t f l4P.INP.4 ,1 "'13 ''I..1-i .( l..N

f* l L 1 W M . . J C t .2 , 4 J t IIt ic .4,s44 -d Z .3 . .4 ý4 .4 1 -4aCD42* 0 C 2; ~ -'41 C3 4W0t. 40N 1-I0..fb~O . 2

kaI v2 C . 3nesc ,"4 23 ' 'o.

v1 -.3 0 CD 3 t3c 3t a . 3w~ 3 .,Jj0iL 3 .caaC s 9 LL

w m i

hii

aC a a, as0.

I aC a ,

va Ma NO .

CI,

K' .4 IA4C00 a a0! C c

coo 01 0,0 IL

8 IA

N

4NONb 0 t 0 NO 42 AIe12 b4 .4 esC .4 z * V.4 N 0 W

L4 t3L lC a Q -4- 3Q 0 C -

z IACD"SUN VX 0' C1 J QC .0 4 .4.C C,4 2* #2 C2I

,.. t 4 N 0ý N OI

Z' ~ ~ ~ ci Qi 0 C

C, CA0 a. 0. aA

tL4N 1 Aj 5.( 0014J

b-I a~ j 43

SUBJECT: SUBROUTINE TABLi

PURPOSE: SUBROUTINE TABLI inputs tables of the formF = f(x), table format 1.

METHOD: SUBROUTINE PLACIN is called to read and countthe independent array, then recalled to readthe dependent array.

USAGE: CALL TABL1 (T (1), MAX, N)

T - Table to be read

MAX - Maximum number of points in X irray.

Output - N - Actual number of input puintsin X array.

STORAGE: The table T is stored as follows:

Address T(1) (T(2) T (Max) T (Max+l) T(2 Max)

Cont@nt X(1) X (N) F( 1 ) ... F (N)

N MAX

T can be specified in the calling program by

either:

DIMENSION T (2MAX) or C0MM0N/T/ TX(MAX),TY(MAX)

SUBPROGRAMS: PLACIN

4143

1 I2

.44 .t3

IL . I64

I. 0 Igki...fm ca1 3-

ofI

' I'ILI

I.I.

ao

.w CA tj 4 * IL

LA Tm4 z

N lq14 IV 64 v 113P

-a In! Zu: Cal ) IS

1463

SUBJECT: SUBROUTINE TABL2PURPOSE: SUBROUTINE TABL2 inputs tables of the form

F = f(X,Y) -square matrix, table format 2Q.

METHOD: SUBROUTINE PLACIN is called to read and count theY array, then again to read and count the X array.Then for each input Y point PLACIN is called toread NX points of the dependent array.

USAGE: CALL TABLE-2 (T, MAXX, MAXY, NX, NY)

T -- Table to be read

MAXX - Maximum number of points in X array

MAXY - Maximum number of points in Y array

_ _Output NX - Actual number of X array points input

Output NY - Actual number of Y array points input.

STORAGE: The table T is stored as follows:

Address T - - - T(MXX) T - - T(1)(MAXX+)- (MAXX+MAXY)

Content X " - X(NX) Y(1) - - Y(NY)

Address T (MAXX+MAXY+l)- " T(MAXX+MAXY+NX) -T (12MAXX+MAXWI)

Content F - - - F F(1,1) (NX,l) (1,2)

Address T((NY+l) MAXX+MAXY+l) T ((NY+1)MAXX+MAXYtNX) - -

T ((MAXY+1)MAXX+MAXY)

Content F (1i,,Y-) Z-F (NX,NY)

T can be specified in the calling program by

either:

DIENSI0N T(MAXX+MAXY+(MAXX) (MAXY)) or

C0MM0N/T/TX (MAXX) ,TY (MAXY), TF (MAXX, MAXY)

, 146

SUBPROGRAM: PLACIN

//

,, 147

I I

cmI z a I0 " .1"WI

1 4 2

I j C' I o 2I

IC 1 *

IAI

'I.~2 I III

I I ,

t i,

iPsi

c a '

I I

(

tb V

2 a Will aUV 4 c9a A tI'

SUBJECT: SUBROUTINE TABL3

PURPOSE: SUBROUTINE TABLE3 inputs tables of the formF = f(X,Y,Z), table format 3.

METHOD: SUBROUTINE PLACIN is called to read and countthe Z array, the Y array and the X array inturn. Then is recailed to, read a lependentarray corresponding to the X values for thefirst Y and Z; then for the second Y, etc.This Is repeated for each Z value in turn.

USAGE: CALL TABL3 (T, MAXX, MAXY, MAXZ, NX, NY, NZ)

T - - Table to be read

IAXX Maximum number of points in X array

MAXY - Maximum number of points in Y array

MAXZ - Maximum number of points in Z array

Output NX - Actual number of X array poin arput

Output NY - Actual number of Y array points input

Output NZ - Actual number of Z array points input

STORAGE: The table T is stored as follows:

Address T(1) T(MAXX) T(MAXX+1) T (MAXX+MAXY) I

Content X(l) X(NX) Y(i) Y(NY)

Address T (MAXX+MAXY+I) T (MAXX+MAXY+MAXZ) T (MAXX+2MAXY-4AXZ+)i

Content Z(l) Z(NZ) F(1,I,i)

Address T (MAXX+MAXY+MAXZ+NX) - - T (2MAXX+MAXY+MAXZ+I)

Content F(NX,21,1) F(211,1)

NXIMAXX NYSKAXY, NZ-MAXZ

150

T can be specified in the calling program byeither:

DI4EINSI0N T (MAXX+MAXY+MAXZ+ (MAXX) (MAXY) (MIXZ))

or C0MZ0N/T/TX (MAXX) ,TY (MAXY) ,TT. (MAXZ,TF (MAXXIMAXY ,MAXZ)

Note: dependent array stored in natural

FORTRAN order.

SUBPROGRAM: PLACIN

153.

tIL4

X.1IE 43

.4 .4 X )

Z(114 C ;. 2 1q; LS f

10N4:

Will 1 1 .Z x~ 67

z .C3f "tc3 K, i IZIn) N: m a xI "-J l 4J.) 4 i. ..-

b ! L) 3 i

-.3-414 N4444NU4W 1 I ai

J 0i .4z .4 .4aZTZ ~ 4Zt-C J

5 a4 a N ~ a

20.4.4 2 r, ! t r'AA.3no-t 4. .4 .

I ~ ~ ~ ~ ..444..WIS' .4 .

1 .' '1 C 1 L2.1p%

m Z;

I I

*cgs

I i

I II

I~IA

;; a -

A P 4'4 0

to' I W, , -22 0

14

tz 3x 0Iu Ila lyt3~ b. ' w v -4 l. 4A 0.. . 0 h

IV3* IA4 8 ~ -

'4153

SUBJECT: SUBROUTINE TABL22

PURP0SE: SUBROUTINE TABL22 inputs tables of the formF = f(Y,Y) skewed matrix, table format 2K.

METHOD: SUBROUTINE PLACIN is called to read and countthe Y array. Then for each Y value in turn,PLACIN reads and counts and X array and thecorresponding F values. Th% various X arraysneed not have the same number of input points.

USAGE: CALL TABL22 (TMAXY,MAXXNYNX)

T - - Table to be read

MAXY - Ma^imum of points in Y array

MAXX - Maximum of points in X array

Output NY - Actual number of Y array points input

Output NX - Array with actual numbers of X arraypoints input

STORAGE: T(l) T(MAXY) T(MAXY+l) T(MAXY+MAXX)

Y(l) Y(NY) X(1,1) X(NX(l),l)

T (MAXY+MAXXII) - - T (MAXY+ (MAXY) (MAXX) ,i) - -

X(1,2) X(NX(NY),NY)

T (lAXY+ (MAXX) (MAXY)+1 - - T (MAXY+MAXY (2MAXX))

F (1,1) F (NX (NY) ,NY)

T and NX are specified in the calling programby either:

DIMENSION T(MAXY+MAXY(2MAXX)), NX(MAXY)

or C0MM0N/T/TY (MAXY), TX (MAXX,MAXY), TF (MAXX,.MAXY)

Note: X and Y have been reversed in the actualcoding of this routine, but to be consistentwith the write-ups for the other TABLroutines, the outer loop variable iscalled Y in this write-up.

SUBPROGRAM: PLACIN

154

a'9 1 10

t* 3. 2 0.2

* '0,.4 .41-.4 .4 ).

fil )- %~4 " Z . bN ~ ~ V #I~ U 3 b

.J c. V b4I.4 . .4 g. .1 F i dI''# 4i

'C2 4I N r,% r o

%24J aa4. 2 Cx JJ2g 13 M 2(F0 O:2 ,)'d4ZJCV-41J

.3aC . 3'0 '0

I I a g

VI w0. z I Ii

II .0 0.

4( I.t I *

I. 1 aa4

I A*

P. 6- SJ le w'D 0 N

0- 1 3 aCI * I

a. 40 12 4 ý . 2

a 1I6

C, iC. -1 ~~i - 7 -- r00I

00 I00

no.

00,00'

00'

00

001I

nf fln00'00 ft I-I

noI I VI1

0 -0 ( 0 L

n~f rl re~ ~0~I UU '.

-0 f 4 A I.0 o

n00 q CCL.T-N .4 w~ q

00 WNS .

00' 6" L> I a

_ 1 0 -A

00 A- A-L

M~ - ý4II I . I-: -DO JJ 4 A V, 0..xDO~~~~~~I Q. 0 '4) 4 0t. ~

,c'I -. 4 V).0~ ,' -.14D- 0 IioZ 6- 0.1 0. 4k- I

0-I' j I ~..ta *a - "a. 1,s-k- .4p W, -4 .)

M,~ ~V, N N 111 Z- TiZ to C-m £3

0el -1 el'*' . :.a' . .

00' ~ ~ ~ ~ ~ ~ ~ 0 4 % 0 .0'4~0 1 ~ .0 .CA -' -

00~ it ill r51* L) i.L +'- 7 '-;l) .- '~

-O IJ:. 11 3- 1 ~.5' - -~9 - .J I -

I~~l .4 31 o-4 Iii -4.~IA ' *~

u 0L;I U 5'*)1' out ~ . L) 4) 5)t 0. '

I T! .43 n 1 C

c) 0 C2 0 c i 00c

I I I 3157 II

2 � e I

I

I I II .1 Iii I I

f I I I I 3

I i II I II I I I

I I II .�

I I I

I I

I I

I I i )

J I 7

* )C

"I I I* If�d4 I I

3a � I

� oa I II I

.� aIeee I.4... ..ErtI.tA. I II I--- I I-" - I I�?.f.1 I I

�;2�?;�I I N

-.� e, I I -..� a

/ � .4N� I

I I

3.p8,

I, -.

j J

Illy

w911-- 1 9

oill at 0. IV

A) S

C` G 044 .- z o U ( .ce of (3S 0 . .

of. ~ I~ (1 a-0C

IA* j

eg 1- 6

10vI 1 woy ~ ~ ~ ~ ftC Lc - AV~f I I'!' x V0j.J

00. 31 i

a 1.

0 d94 2 C

94(L

LLU

w 6fa w 1413M I Iq . . ". I .: *I-0

Z o112 lt 64-4

.44C3 9-0 f* Ps

6N m 00w. mC3~ .2 9 .N N N

F22C, t'9 Cc 00il .J'~i *

•~~c U11 in.. W ..... in r.j J j j j -1

Iwo

'I 1

z I

N IA J 4 IL ,II - t

C iI

USt 10%0 00 1 % A%

0. C. ,42.

{+

j (3 I -. 1

M,- N I

0N (43 MN lo ~J N4

ZI -3. -

I ,,VJ J -,,J

o -1 -o '0,,

%a Co . Z , -

" '44 . . .4 . " JD "" L.j . 3. ,,,

- a,#vw....-m,...4 0 b to I 3 1

t, N N N 0N-6 11% O7O No .1 A0 j L o Z'

1- 0. (A .1- 6-V,ý 50 1 - 1 AI FU .4 4.

on* I-

U 0'. 4 zt .4 '2 .4 Nx

21J PE 'C' ~ -4% 1) - t Ioi

%4 .t9c%4 a tZ . . C-

*L& C0 Li *a.-. % 4

O(M . , f, 4jNN r~ N

n a 0. 0 m ~ .% 9 a...3 aN 3 I c C. Nt C. ' 0 C-)47

To -II

6. w o I -

r *= U- I '

0CA X i at Da 13 0 i

a N ý CCf,' t 4A 0% V% ft 00ANL t

b-1 0 o 1..k fo o

It~~~~~i f:6 71, ' , sI

.4 LL 0 4 4%

V0I U Li4 -4 4 W .FA- U, a Z0) J -U. i J, C 3 N ItCl I x L~r "a I, ICA q I'

4 o m lul 'Z '.4 AN P.,& .. 4

I V ~ .4 L . 4 Y'O .4 .4 .4-4 .4 -. W IA0 14 4Iii'A. ''"nI~ I4 ~ ~ ~ ~ -- 11~' ~) 5U 5 .~ 4 ~ U UZ -~~4

~~~~1 ~~4 n~N ~f i NA~

10 C2 U i ]

&icNj I V-I

IiI

'a.'4a04

a,

II*

0a.4

'a.I."I*

.10

S.4Ii.

*ea .'AN

-aS

5- a.)IA. �CE *a4-ti

* NC.U

ifSA,'

�. 0,* *�

Y.SIll ..4 '*l

.. 4L4�I- 5- Z�

Uk. '� b.�� 1W2� I�.i.j

c�c.4�

�*�) �fl#) .s"�'�a 3 '1*)e�

;I I Vj % a % P

V I.

1 1 11 1)

ma v4 va i 4 4 0*4 4 'y AN WNN N? p 1 f ol m

44 4 4949 44 0 149 W 4 44 4 444 4 4 4F3 ~ (3 cca MOQ n~~ oz000t

*40 V F: ;;cl 44C. C; C

vq4 N A tl NS 01A 61e m 0'K V. '0 f N C ON 0 N

.40 a0 0 N .4 v4 00000.

SO~I 0 "0 0. '4. 1441 "4o 0

to9 N4 M SA N@ f- 00 30 PI V% 'S0 C I.~1 v- 0 0O a0 00 0 0

9.'5, -4 0 Na 04 12~.. N14 "04

N6* 4 N.@ * .31 0. 000 12%0000'M t**4 v4 '4 -50 4 oz P404 - N M 1f% ~N ,%Nt

.*a ~~ ~ ~ d .4 - @ 93~ '

10 0'0 1. -l N .01. .4 t''.00 0D1L1 4'0I 41 1 .4 NN Ml4C N.4 N1ý4

U6 - 6 -0 05 * a0 0 0

N 40 N% .% * 0% 1 *P0 "I 41 IJ'INI*W00 N41.0.N

*0 ago P 0 C .DP 1a'.0 lui 0 )0N

@0 0 oCI o; C; 0 a.4 n C3 to coa s.0 mal oona %' 16 L. M L ag0LM 'A 0

a 0 a0 aO 0000 00. . 4 t340 00. 0 3* t 5 5 a C 0 .a

* 0 .4A~Zl-t 0 4Ni. 414 4o3 .4 CIj I

0 as 00 a* am a0 a 0 ftjN .4 -4.4 4 .4

-.%~ UN 2 00 N % 'q%"4 - *" .4. N 1J4 4" 4 N* 14 .4 .49

-so 1. .2 94m is 4w aeo*a 4

a0 0 It

CU ~ ~ ~ ~ ~ ~ ~ ~ 9 40%e 0 k A- 446 # 04 A kb*64 4-

I i

i7 7

I I

".0 10 N 11 0 N4' 10'"a #W %Cm No 0 11 : • C3 A.-|.t t o , t o % th to tft.UO . to to jD0 'O ' ON N 'CIO:~It 4 .9 4 4 14 EEE 1 -9-944 4 .9 i 44 S .4

00 ,~i~ 0 00 0 = 0 03a ) 11 f z I l1 n 0.QU3 4a M-1 a A4..A-j j

* -•o. .4K 0• •,, • , ,,,

.e ,. • I. .. .0 Iee . .. . .. .. 90 .. e .4 1g9.

4 ;

l~• ++ -4t,0 4 1 Sel,+,, smo •~ @0 U~lN UA.I%.A .I.. Jig+a

... 'F -- 4 . .. . N '9 O.4,+ +4

Na a a

am •. O+to~o, 0 m o m o o o, ,.. 4.4 Ot'. + IE* t'

So n, NO e L•a , •m ma al * ..I • 0 0O . .. . .Co .m fo of a at.. a ,, ma. a-,O

N,4 * ON a '% o 9O~A ftj ~ N Na0 cm C3a a .4 fm .011UH91 ~9 ~ 49amt a . 4% *. nt~ il 0 0 1 a.

J= C;a = 0 C a 0 a N tA a. a J940 cm =M C, go * *4 D N 0 D r1

Nci A n N cu' *0t to a.4kA 14~.00 a 0 S*a a

a.,+,0+ 4 . I,+,'. 10 el I:s a. aai . • I • .4 4 o e, 0 000• +e3

00o :. o . -, :1.,! !,, IPx I MN. I s, R .

00N~g~* MI 0C20~O P' aa a= taaY1 aU o(

a, , = C , , A P3 1 n 7 ' W) "• 0I, '0 011%14 o tl I I•P ;I L

0~ ~ IN.a o

S•4

=42 CN W'~~t. ago04 e a .0 0 m 155j00A00000'. 0 ~ ~ .*o ' U% UN IOntA 5S ~ .4T4 C: 000 5-u UN%0 04,

M I~ft y 04M.4 1.4 -A 0 0N .4 N I" -A C

Uaa~~" -49a a3 coc LN cm a t S-I. ZO a 4- a5~ O 1

~~u ~ oaaano : a- aAf ON C310 0 0 Ma~ a~ 'Nj

no0 0 0 14

0 in C `%N

SISCTION III

DESCRIPTION Or FUNCTIONS,.AND LISTINGS

SUBJECT: FUNCTION AREA

PURPOSE: FUNCTION AREA computes flow area

METHOD: AREA RW T - sq. ft.PVD

USAGE: A = AREA (W, T, P, V, CD)

W Inlet mass flow lb/sec

T Nozzle throat static temperaturedegrees R

P Nozzle throat static pressure lb/ft 2

V Nozzle throat velocity ft/sec

CD %ischarge coefficient = 1.0

167

I A- tI !I

I I

)

* .1

.,0

*I .l

*N!

t ,.0

Q I' lI 'g f

1 °

Si &

I °

... I.

W9f

SUBJECT: - Thermodynamic function set; H0FT, T0FH, PR0FH,C0FH, and COFHS.

PURPOSE: The thermodynamic function set produces datafrom Keenan and Kaye Gas Tables to the program.

METHOD: A polynomial fit of the tabular data is used.The appropriate coefficients are detirminedby the checking the range of the input variables.

USAGE: H - HOFT (T,F0A)

T = T0FH (H,F0A)

PR a PR0FH(H,FOA)

H = H0FPR(PR,F0A)

C - COFH(HTFOA)

C = COFHS (HS,FOA)H Enthalpy BTU/lb T temperature degrees R

F0A fuel/air ratio PR relativepressure

C sonic velocity ft/sec HT total enthalpy BTU/lb3

HS static enthalpy BTU/Io

The fuel is assumed to be a hydrocarbon ofcomposition, CN HN 2 N.

)

I * ' I

0 Z

C'4

e. 41b "4 "

* e

(I -

1..1 a a N u

~INI

0 91 O t ': ' ý s au- 1

Sh,, V

ne is• C'W , ,,1. 12 6.wia ot a w W a ,,l 0T"06-Z " c Tl,-u

I IeaIa I)

,A ca I ,, Q 0 0 00 0 u0, u-W-,-iSi 4 ,+'17

fIa , I *I 'A L .elmS •

.. p . . . .. ..aJ~U n . .IN O.S.•40 .O' , N I(~ .4, IZ

,+ .l • .UII+ +,1 q " ap'. p. 'ua

I I I - I l ,' * 0

a ov

PA I I

9, I

me .

I ..

14.e

t1ame 1

t. ] i ,

I: 'SI ~ h 172

-4 4.1 ' mii a 0 ':

I. I I~ . I '

I I ii

P. fl

as 't

46

I 4 -I % 04 cy0 Y0 1

*1 #* ~ 1 - v ~

Sm ! a1 0.:i-

4 -

404x 1.0 IV N N %S..

0 0 *@ 11 1 41AI :

al4~ M. J P.

fol 0-4S. P.6S lb. f- a

*OIN N '. i I% I

u W I 5 0. P. N 64fI~d Oki, a IL4..h

64.

w0 Il 1- 1.040 . 4 ao f -

40fobI l s~lUL 6 JI~I lIe u ' a wwo

IV

2 a Is1. 1. 4-2

41 1. a j 0

30 m I I)

5174

Fil Iw 0 I

"" 4 "O

I' 1 ll ft II- ;P:

I I" I.X I 1

CM no I ita C 4UI.I (t#

a PCAt f% If

OWJq f- 1 4 -R ca ( '@N .4 ly(

64- 1, "!~ Pe4 . NN ..4

RI~~ A~9 ; N*fOI..A *aP.

2~ aV 944

J~~~ .3 1A 440AI 4 0N, 64.10)

C3W 6 0 I n if It 11151U%. r3 0r N If% 4 i. .

31 1. 75 . i

I ItI. I

I II

i )

I-

NJ

!J IA V n 1.

~~~~~ it • "••1

. I .... ,

5 4 1"k

v 0f

0 it

~I .76

---*moo '

190 ' III

9, a'J 04N

.4 MR M4 M9 . aotIi"IA~~~ tIz*MIn. "

q4 IN9,4 T ;!j I V4 % Ca, 7*9tek 49 o.' . y

04. 4 44 4kP 94 of WINS 94 34tM *W I9I.In %aI

aA9 *I0*.~@ 0 @Pt1

R~~ tI w w ~f$ 4.

b. b.p 9 0 ,96 64 00.J4N V al~* s~94Otyea t 64a: In. .4 0,0N I

04 00 Iy I%, U% .

In* 00 .4 . V .3%*9

I I N

-~I S*I .4 .ft .41 .4 SW anj, Ia. N* 0% In~ %0 14 to,) Ol of ta Il I%"* l l*l a 10W N- . " * I a, It ";* IrE~

#A 015 *4 IV t:6.0*%I . mOf% *h lo IW11 *",I*5 Ir. rjif "4 aa ~*d@t9 .1.4 0 ~ ' Nil

4~ ~ ~ ~ ~ ..14 .34 Na an 94n .4 INN # t99 1S.J *M.4 5,4 m

Sol 04 1;;l 0. 1 COMAJ4.4*A OJbDots4N*.J*I OON m .PISNC l .4A A')

OR. 20.1 1. w .j 110- 44 O 0 4i 04 1 Va CI O Vs W a1-3 s0

..1i77'

IOU

I

;

WN i ILk

%p Z

" o at c.

44ac *4

"I ID IS$ 40 0 L i

Uý V4 0 1.*

1 .4b. :4 Xt..i .s IN 4b N i4.

49

.44c t o - I.4 S

* ~~~ b4..0 zta U. z 6 1 *

~v,.J. *4t'4 S

.teIW t *A*

eNIO * Nsa4@4 17f

foo

I I tooI I j

! fo o? a0-0 e, z .4-6

14 9

mem 11m0 , awmmi - Aot

I 1J9

*t P- co o. - -- - -

v IDNMIry, nI In InI

4r ty--1-el, -P 0 N nS

49 I 0; *A I" I I (

IC, D C3 0* t~ N (P It N m "I .3

P.. t3 IC - 1 1 1 i . . M ~

W 3

jJ Ju i'. 0 .n041 Ný 3% C

6.~~~ ILI -4 1" 1 0

4, 40* -4 (9 1 P. f N 1 . *. 1%1 fi * . b . 4~

04N M '.. N 4 age .4 fy )4 .4 Ij N 10 ~ C3~~ h. OM I * C S0 *.0.4'j .%6.j0 IA6 3 (

4 4

4U)jJ3 4L Z V14 'M

l o D 10 j3 0 1og J 0414 ;i CI .4 . It .4 W )

", 6.. 3 4 -0% " N "', - 0(" , " t

sm ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 6.%10 y i t44' . -. IOg~~~~~I, am " yf % tMM

IL.

41 4

4 b4

r 4

C; *.ý 41 .41 ~ Z 2 U%4

- - 4.

U. neC

f I Aj I

3 C,

¶ I

8 T

C3 a!

gmaC* I o

0-1 s 'Z b.liNz

A9jo

2s ts P;.4C.4 (A ,L,4 dl L 3 (

a4 9 14 Zi A 3C 4

21' .9. w1 1* 0 1'loN I WE E t E;E

Ml04~IJ 91. -

0-O r.L ý4 M ~ l. f~

i u 'P. id I V-

04 N N IrJ %lDL7C nd

u , 3P._

6-4%DCll92V-Lh 0 ~~ " %MD 49.4 VP t4 t.,0...D11% t* * g0 ; 0 U-.4"OI *3C _0

N " i% 4 If% N .4 1 1 nsnF"J 3 P,.*

9 0In t0 ly 1:3 CI 10 onC amI-n.4. jU q I 4 U% -3 IF. 0 ;' i N PI.-4 .4N . MF.M7I 0 .4 IDn CINMIo rNI 0

0.. 2 L y yle 10.4 ' o III I aO 0 A11 .4MN .4 , U n 1, 1 .4

or z . 1.4 .0 - OU% 170 U aY1 .tP4 ~ 4N4 N 4.4 2 0 In inN. .L.4 21 w0 *n S~* . .N 0 .44 .4 In40'~ in".

44 ~ ~ ~ ~ i inD~4O.- '1- I.. 0 1.0. .. tmAC~4~Z '0 .OIJ.V.4 .4 N fN M 0: .4 1 1 14 1

49 0 I *Sl.4N ll 3.J 4 ~ -1 3 N J nl Im f..gg1 0*% 4% 14 1 A"'0 1 ,. I 0ýIIMIl(JN

-9 OrN . tA .0 . .II 0. .

ae 1.4 ~N *.4 IA0 .4 * N .' .4 IIqIn0'4 * .4 N ~ *OAM.I., " %'1 . (WY). I I. f.. .4 t.a , I. . % ~ 0.44 1 tl* r~ IlP

oft 111 4A .44 *MNM4 CD OnO ~N .4 ...20 ..a 4 i. ~ )j I N N Ow 1, 0 4 a 10 a1NN 4 MIJA4)I 4 D0 I

tiI 4L [A~4 11,3 4. 4N'S4M 10g F% 1 Nt0 N

Z II 7% aaI

1, 5j NIJ Nj 4A cp JA 331DIN N NP

(A Il) 0i -94 x " M r 'A .4 N ' a3 Ma NO4 0 400 I t ) P, P_ ' 0 .t iis j oe. o . In a " 0r10 71 1 a Na )a .LA t,~C r *ICIt t ý .2(A P4 I -a* '0I'D.4M C11 " -dN0j 1% (- 4 1 34 t2.4 "

1'' II~I "',I

(a IW 7 4%)11tUt l 1.4 IAN 111 1 .4 ., IA,. 0re 4 ,fJ,.0N. 1 0 I¶IIIII I; MIS 6NN x0

* *g. 9N

CIlM4~ pq~

*11 24 '" IC I a. NO * .N . . r . 1-1 ;7j

.j wN w1. ( In' 0DP on' K 0M.4''N v J tfJ%. ~44 *C3 I .4-0 F... C3 -D1- j. P4 cr 0% .1 N.1 01t4

N t --

I NJ -'2 ' " ""1 0. I .4tI%1 11; "I -* A -. A I r .4-

ZI 1I N Ir J% '' A.4I

II ZIA, I. III z k IIA. , 3 .S.

C3 a Q Ic XT I4 4 - 1Z UV

4 i CDI i

W L IV L

4. .41

atF caii F2 C ,C

I I IAgo2

I In

IA 1

.4fu1

z II Inw z(

Id~Z 43 C bI A*i

* In

IL II 4 Ia4 IV

Ij le I v

U) i 41 C0 6y-4 ce 4 ae L'S I-4 f.2 0J.1- S- 0 V

U" WI Z 1-4w V

2J5 41 j555 .. - L

75-1

SUBJECT: FUNCTION K0UNT

PURPOSE: FUNCTION K0UNT counts the number of inputpoints on a ten field seven digit inputcard.

METHOD: Starting with the right most fieli a testis made for a blank field. Upon ..indinga non-blank field that field number isreturned as the input count.

USAGE; K = K0UNT (CARD, NFI)

CARD - Array of input points

NFI - Maximum fields defined on card-10

)

186

I. II0 I

IL14

IL 0

.- w 1-

N oIN

0 0. *4 0 ( ,

0' 2 - 4;0 045

ly (A ta 0 -9 ? ~-j* w 04 3oI of J CD sI, 2 tv w .4 t '~g.V VIV

W I

o4 Z da " -4 *4 to -Z

CJ3V-'40 I.)

0 49 T b ofUILb-10 0 il2

w z x le187

I I

4 2!

CII w

s qrW z V

V) 41 I2 w t

0 O0

af W IA

SUBJECT: FUNCTION DEMAND

PURPOSE: FUNCTION DEMAND computes engine demand, Ao/Act

as a function of recovery factor.

METHOD: DEMAND = Area RFWC + Area RFW + ABY

AC AC Ac

where AOBY is from Table 7

AC

USAGE: A0AC = rvMAND(RP)

RF is recovery factor

Area = AREAF (Mach)

WC = Engine airflow

W S •Secondary airflow

AC = Capture area

SUBPROGRAMS: TABU2

18

189

I I

cm I aw of

41210-O N O

fbi 4W.0 I 9

' a a a

on on Iq 4 ,4ktI

.3 IsI aq 1 1.ex C, L ab IlItoa oI" %

w2 a- -. 0 3

o- eta

.40

InK I 'wco caU

ty Li09' C

C. 0.4

Ip C% 93

ra ft 0

oX1

O. I

I.I

v!4-

in

1'

-W ., T O .W

i* 4K .1

K

'-

15.61

tja

;In -Ses f '.a C , -oC

" D 3 2I,

63 43 aC3 ca EK

* 44 i92

-Fri

101

i ,t

I I - 'I .

W, 4A

o III ' I t

I .1

tA o. . -IA .

j Is I

$ It

i Io I

L2 b-3 I I jI41193

I I

I I I

I

I I

Ii

III, I

II

* . .. , I

* I, S. I.Z4 I

* g 1•s I

* ..I II,,, a

41 4

I II

,I 1 i• 114 %1.,! I .

F"J . - rlll, r 1- •

ei t

bD 0 Dn

W1 IA

13 0 - 03

.. *Z 311 4m

w I %

9z

w 0.4

'a 4 "

ev Ih 5- ot ! f2 O 4 I5 4w ow l m e 4 1 ~ 1

6_ 0. 0 b. C2 . . a0~ LP Ai 4J 4A '3A L

~" A.J' ~ 195

SECTION IV4

CROSS-LISTING FOR PROGRAM TEM-333

196

r *

Z .4

(0 (A 1 I I0w 00 0 n c

I.-J oil r". CA 11ov ~ ~ ~ .). -q1. 1 -4 -

I

'A. sAC (ALI P v0 .4%

J4. 1. W(a.W

.00 0 1 3 5 y

I- rr - y

0 0. I L) o

ii

I Id 4

I IF If %. 41 4 .

CY AD.N N e4 N N

ruN AD N IN N3C

U) jc v 03-

4.4N, ,.. ey .4 ~ IV .4 If% .4 -4 .CY fu N0 4y ID N

IaJ--4 VE .14-4 ~ .I

It.N. z d..4 z44 . .4j.. V. 13 fu -1

.4 .4N Nl 4 a D y. 4 I %4. N N .4 N4 .4 .4 [4N N. .4 cm4 l

A J .4 -440 C3 .% P. .4 th qr -30

!J~~ l t.I % .4 1 ý4 NN o 7I

A j0 4J'0' *J3 0 4 K444 z4 1-44 0V 4 4r 1- M o. Mi

'4. NfjP..4 '4.4 ..4 ILU 1. 044N. .44.. 'gI r it .4i M 44,nN 04 N n' NN Nl n-x I `

4. .4)I axu 0uI-X wPL t I N-

.4 '~..3 4L fi I/I e ''T -A 31

'044 .9 .8' -'11

of 4 - -

P4 a L I.-g :1 0 IA I. m

.4-4

P)I

(4 M re InI2 4 4y 2 . .

*14 49 .9 0.9-.

^, N 'my N

4 0 4& 42

-Ina T*

04.

LL w . m,sr -'N .4. N 9 .' NwXI (.3 I

1 m X$- - p I.-4U'Sd. .4 .

0. I~ 4- .1 I ( -1 t .1 14 10 1 4 M 4

j .111J64 u4. h4 ~ '.1% ). a

MON""!'~PYN

it~ '~, * le

I * All

I I

a of a. '

In a

w. *8 000 .06 .0

I U IVK a' 19 ' Va 06,4 10 a P4 Q

#5f OM3 we I 0. *a 4 04 1 49 a

go dc = h. 0.' 22 4421

of At et j wJ 41 4 -j 4J r"E % I II te a 2

a. UJ # us VIA ILI w w1 Al " I us 'i""0 "11

ac W' ft 4 x146 Wb w' U.V. t . &

~ o) 1* Oi 'ii Iii III 000 ai *II W1) I '.

N y Nf , 1 N N0 5 * y 4~

7 " I a 1

.4 J -

L4 V a .

654 lie if,2 2

.4~. .KK K4 0. 'I 200

I- I

UJI

11K Id

IWO IS IS

4 0;( 11 ae

h5~~ c- r2IT2 0. 0 11 IL LCIo (

In 4A In I ( A V

III IL d .1 o

to Id

fit I d wIl

IL U. w. w le U.w -. a

09 Cie ty af Of of af ar 0. at t

IV IC N, .4 Qy 40 04. y A N

I- I -0

KIL

T 43 "5 2 (9a

~a V Id 4 r III . 1 4.11 J 5 I Ij i

IN 49 It 0s ez a..

I101

- I

I *I I

. , I1 . I

I )

'.9It I Il i

tot.41 Jn

II

Q V1 0(At

I I r

zW of a N t !

0 ,.II II

,•) I I

'I It mI m o 1 0

', d I, I.1* 6 ri 1I l 4 6 •, a • 6

" 0. 0. , , 1

It i I I )

9*9IN

0 IA IIA 0II N IA # A 0 AS

'4 j 14 1 fil I'j w 2J 2 IL 2d 2w11 ~~) 9*9 I~ 4 3 4j. U, 4' ' 4 ' 4 4 .

41 111 111 us Wa its Ito ta liJ 14

at Ul Wa aI '*9 at C

I.,J 's 0 0 43'U U f U 0 U '

'. .1 1 Ills ILI - 1, 'if is Is 19'i ul: . * .I 'J' Id9 ILI 411

2z IX 13 ~ X 2 I X X E 2 2 2 I

f39 ~ i I'm 5vI 2 ,i 0. 4 -

;f I I- 0N .i' ' ' 'l ' I '

rx I ~~-.1201 gl

, -!

I,: I $

I ,

I iI I . *

* I I

1 I ' I '"

,I' 'I 'Ii'I * I

:.... i

SECTION V

INLET MAP PROGRAM

204

SW SALve ooo;oooCoCocoo2oooooo00000OOOOOOOOO302OO30~30OO)OOOOOO3OCCOQCOOO03cooQocoooooS116.6V 000,.. OOOG OOOUDO300000000JOOOGOOOOOOCOOJ33OC O3UO00 000000JC COO OCo)UU 0 000 CrOOOCOO

COOC1.33 )ATA IN91AJU4O/IN.oU

OOGO33COtl-lJh/AR-jAVL/ARTA

CCQ 0J C.13 i/NIA.4i/ X Hi.lN5

@00C23 4Otq.43h/OJTPI'L/OUT*1NL(;) ,C3,OUTINItI.

OCOG33 COP.sijN/TAiJ.1 /7132440*0 TA92AY14l~j,?,A

000033 GOt4i)/TAaZ3/TA32~xT~(~N

OOCO*23a JTA;X(;)T82ytlIN2

20063 3 JXMP-ws14SO4 TI LL (:3) LAJL (2)

A, OJT7(14)4000033 -OHN S 10 r'iACH(33)

0004~3 JATA 1/1ICOGJo JA A 7EL9.3,1'$ Gooo

iouuu 'J.) JAiA CoL~o6E.4l .n C, / 1

000212 WdRIT; Ab,833 TITLE* 003C2p. N T tO.A.0HxJ__ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

OC3&2 sKIZ 9 01809302 CALL PLAClN(TIACI,,IIMACN,3)0 0 0C3 c READ(5,b) WCLfjELedcfwCU _______

6 ;0 .4 2ARLUC(69dwZ) WCL#.DELwiCtoCU400654 CALL TAUI.4

-9001Uý- 3YAAý-Jj G/ C60005? IF (3ELwk;) 23#10t.20000360 LO0 W4Gu1La 0c 6 (1 4_O T3 30

62~o 20 *44CLFIAt(WU-keCL-.1)/tELW,)4,2* cjc-?0 3) JuD

ccgG?1 NwCclINC(Aofh40,.)____

C03:76 ~ jxjfl

CGJ3J3 Jo Z;; K'lp4WC_______CALL 14~XiC, 7 ~3, 1 F

OCOLC IF(1.1.11) OUTv(,K):eC*JYAC

00C321 OiiTI; J9412CO ____________________

205

RU.' VERSION JUL 7?1 11*19*li. 72/36/29a

033tic NT2A=-NZ._______ON 12 ~ I -17VT J-iEfiuMACH1S) ZCS 220 ;M20

UGO±34 2:5 IF (XMZZiJ*;EoXIHIN) GO ro 210AC3137 #lCACUL=ASrE-_603 14d :'Li.-.AST S

UG11COO)L= ASTEA2CCOL4'2 WCALU3ZzAStEA _________________

g0a±143 itF Uz AST --.OC3144COOls AST9II

000145 GO TO i~ -(TB~YA'N2c 43 Ft 213 A;G~T6lXZ:OTa-

403152 RFOLzT81U(.AiCO&,UTA32A.~,TA82AYtj~NT2A)Qc31*b WCACjLzA'.C3L/(AREA*RFOL) -

00316%2 CALL LtNLOD&i(XMACNP,WC ,3.0,30G,RFOL)C03166 C0CLzlCO _______________________

G00177 ENC3OEt1;,9'.29WCACDL! WCACOL0%03237 ENCO)t(139931tCO&)L) COOL_________________

4G:22L. IF (AZAC3ZL.Lrc..;) GJ TO 215C03225 -tF6~zTeLJL (A3AC3Z, TAO2AX ,T482AY ,1,WtZAI

G~ -.az-O0~234 11=6000235 5 90 WCxW3ACdZ*#________________

c~3e IF W;S(F)sLr*Zs..;:5) ;j,, TO b _________

a ~ic Ii.F l7FG~) GO --;- TO --b _______

OCC254 IF (I4.)GO T-0 61i

00:237 613 IF CF*E3.*FSAV') GID TO 64.00002b1 XXNA3-WAS-4E:*/FFAEQC3267 IF c4XoLT*G*5) XA3:%5

COC275 FSAV-*FGý077 C.~t,;3ZzP

0301 0 T3 590~

004332 ;ZFJZz-Co3

OCC313 COU~z-Cal0C335 CJL=CD

GCC333? ENCU~loa,'p9!9F'3Z) PFDZ _____________

OC0 1.6 PwCA i043326 NCf(.,1.CU)coJazcc:3 3E GO TO 23-4___

00334.1 R F d 1=ASTGG9323i Cud Z =A ST cE.1 ___ ________ ____

20,6

vU VERS O04 JUL ?I ±IsS ?ll3ef2;o

0033.3 OT3 233UC 33 3 2 A.IACJLxT.1..U1(AfqZ:-JOtTj 2A8ZSA!.;5CljojN!29)

230350 ttFP;La 1bLt~tLZE*OIADliATA3i3YLP4TZOI* coassu. biCACOLs(1. 32*ACA..OLS/(AREAOftFDLI

OGGSS7 inCs.IQAC0L*AC________________44~0361 CALL INLjv(~A4CMACI4pPqWC 9)g3i*09RGoFELTGC036SG5 ~~IC3367 9E-ENC0hJtj#:Iqstvol RFOL463C376 ENOit.#o;9GwO WCACOL

64446 -NC30E~l1i39;l9COOLI COOL

*000421 C081SASTH46100.22 -2 U. OUT ItjIJaNC ___________________

060426 QUT3lJ~atFOL

904%31 OU17 tj)a~tjz

00:434.O~l~~36GO435 F((J.LT.1:).ANO~i( to.T.NT4A .4)) GO TO 330

C OUIPJT RiCOVER1 HAPOC044.5 LAeL(l)aI'4IlNLET R-NO

* 6044. LAl3L(Zlxl44dERY ;IAPsc;4Sc WRIT 7(tt 4; 3 LAt3L't T TLE IXMAC"St,."C163463 WRITL"b 1,461 OTil ABl.L __________

1 00511 wRI(.;tb,3Go (0Uf4(L),LCItJlC058 jRTij4.'j3.lj c"T~n(0L=& L2,)OM~3 IT WIHlbo~ioi COJT'/(L) 9LaLJCooSS2 11RTc t,930 (PLAdLEPL8IJ)_056_0 24.C Kxjl&c;566 uG'Utc6,1313 OUT%(K),(0UT3(LIOLx1,J)000634 24) CONTINUE

c OUIP~JM 44-APcca63,Ay L*AE641zlANL4f OIAG4 00616 LA0iL(2lx1;4 MAP

601 lft_____I LA*lLT1~.jL!4q $ kA JAC________* c36?5 witIT-* I b3.'.) (LJUTl(LltLUJP

CC3053 aiRITE(Ft9LI) (OUrTAbL) IJ

GG372b00 25 019NE966?30 WRIT-'(69)131 OUT'e(K),(OJTlJ(LK)vLxaiJ)

07 6 250 -G-ONTitLN E ______________________________

gCw?i2 3-. CCKTLNUE063755 STOP ___ __ __

CUM7 8;1 FCRAiATt~lAA',HN th.10:R ARRAY*)0C66'412 FORAAT(#:COiR-CTr-* AIPFLOO POZITif I'( 7i1I~ITIALjl2X Se1ODLTA, 124

I,0

A34FI,4AL /ZSX93FPl?'l Jr S $1 F OR"H414 1 OF7 ?___o______1

U~~27? M2 FOr?4AT tiA13.) ____

cOcO?3 9CI F UNA T~i4c (FIK,1 F1to)

OCC?7 );i3 FORtIAT(1.CIS-tT~oodq~~tlcn ?A H.G9SJ~xl'CP E Ak______

O&C737 9j4 FOR,447(SLtBUZ 44CIH 4tIZX,1C4(CCACILx121

SC2r?5 90 FORMT It1EF112,6K,1FC.4- IM )19;(WCAILXýA1op~a7s7 911? FORMA T EIO C UZ IMIT / X 91UAO ___(W_____ACI_4_t_?____13_AtC

fACGI5? 912 FO-A 5s64GU L)9IA0OCO?57ENO

-- - - -- - =

IL

(

g

4

(I. *�

S.

I-.-a

IL. W�uo a

TI-.

S..

-he'*4 04.0-.L'*-12

0 14

C, �4I., *�L1.�"'14

. a.�. z.� 0� -J

4 iv144

tLI tIj� �

!Ll ; 0 V

I~I IL I 9I S

is 0 .4 .4fl w C 4y P o --. g

Wm ci W% CtW , " "C pC jc ,r ,4j C

1 0- tif 0 9 1 0 . o

Pj .e .1 .1 -7 C2 CA cl vsd Z.e ElI PS' * *1 1. Il

CA alC, " CAC rj c, e. C., 440 cV CAI cm 196) 'rb~' ast Cft

4.91 9C r A w CI 4., a-Lw to " "iLI go CA Li

4(C3 go c% C. ja & C AI go ( CC CAc Up %;,W go CA 6. 2 a. C .' C. ILi LI C: . . 4 i LI CI 9.:. -CA LI

- ot - Pc pc l. 9j ft** * c- CA C3 4 . l c. 40 C2** .j P . , 4.

42 Cie ,, = 42 El? c- " i CA c, cil C2 'Ir O c .9 Ci A 2 4, 92 g C S C A C % C3 =i cis c- to r, PCA W1 5

. . .C 4 .I6, is . . . e: p C mc : egoo - cg. 4 :- c -,i .t~aJ Lit*L: c:cp W1 CJdoo (.9m4 & 943, Ca if CA C.9 £p P5 6 go mc C0a cm to C~ ep 4; 4. ;111c C2 w 43 (.1 LI4i C.,

]e np' C-1 lO-0 Or to SO e C 4D 9 GP1VC latA6JCOA

., ,~ OfI 0g

CA cICC l ICC£ i o onL D I CC 41 CD Orp 02 LI 2AMe ISI 11M VI I C AI CAL 9_# at CIO CI go(dC wIID3DIJ).Lt i ~ C L I lliiLt L ILLLC I L

(D L C 446. I~iici C I I so 4p f.3 C* ca 4 C2 14.1 lip Us *4 LI LI i La LI 'p LI

~~"~~' 0 . .46 3 A, .3 .9 0 .D( ~ Lii3LL A, L

CLI-. CIO4LIIILI3~ co to 4:5 CSI ills CIO

CC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 C.U up V14 LI 4.1C Qp. Ci L 3C C II tlCiL iL I L I 'C I L

(3 C 143L % IA do us A iiL 3 C , 4 i QU a£ Ib L W. up C.P . P. I. 3L II I LCID o% I.4 00'P.P t .NO 14 . v 01 CICo L4 I. IsP CD "914 gC CL I EE

P. WA A~.fI. 4~ . 01 C3 04 C I 4 .0 wIll CP Cs C 43 g.4 CIDU r3~ i.

41.2 0p SO A, COP U S Oil1 C I L

C IA ( 5 0 4 t t 4 3 4 C 4 3 4 9 E Cs L i

%.1 0 4 .g oL I I £ L C L I )C C C I F

9-V( 6p 421 A9 £406 I. 6.0 444 93 P LI a. 4.0 4.0. GA4 1. Its cit: 64.4 p 6.1 '. C2 C2 CO 4 4 j C

cii LCP5 ~ i.Iq,* CO l I V,~ EicmCti4 l `,c IC ~ CA

641 C, PtV . 4.01,1 46! %JV U%436

460 A *0 AM ;I -. * .7 .0 M. c . . .

4j "T :: " r'mcm LI Cs EDiICII C~6 c- r9 CLI CC CO2I CA 1.0~ r CAc PC3 120

Cci-oAWI1 ItsI 42 Cic 41 992P i CI coc eCI C '. CP ft WI 41 c C

In CA I .. .. ~ .0 P.0.0 14 VA 0b 40 CD Wll v-4 LI Pp ;o CF C ICP "7.-a . 53 4-*4

IAAL do P.b 06 ' Ol.'11 P.O 4p ow . I P.1 4 dP B_.4L JLI. C. II. i

lii 0, n~ is tv e.o.

ID ci..

W. L0. p 4 .. .P

%J Is go 13 g.9

6 2 4 goC P . 2 z D 0" 4 11 C" % Pl SD.0 4D * . :o. C 1o,. On V3 L

"I*p & -9 WI.110P. P. Is pal SGO: PIA. tA.,. -2 " URVII W% in ~ * C -0 91 " IrAM `-

PA 0% SI~I 0L K 0. 00d i 0 0 Al-1 U 0<

r9 ci a " %js -.0. up 0.11 us It Ait Li a. aJ% CIO "4.

%A CD% P. N. PAPS dII LI, 4. r 1 3ii. . dA

a-... Ib *.@v.N * .r p I0 '. P VIl yOt

0~*fl~ 01. ',0 . f0 P t0 . As Al .~ Op A,

31 -D39 Is3 'a 4I C vs SO m Cp .31 ass op 41 ii qt,rpt 51,4 fII.3-,* -n 3#7 1

10 CA 4 %pt98ie %p %9 .4 j* %&V C-iv %, 4,19.0. i "~ a1 GA3 &#.. PL4%

A .4 old% A iP PAf. ft .30 OP a. 0 63 1 4oir ! P 'f 9%".1 [

41"~ 0 , .4 ~ 0 0 AviiIPLC L

"" .n %.%- 4V Pi% *,

1L N-= c W o 7;

X*r '5 .0r0 T. £2 10 dV.$w o - "l 1 .435-21,. 9 r,Li ,.. *11' ~110

4 4

gar C".l a C ,c

aa V~ OCl CP a al 42

C92 S Ooot) C 0 CS43 2 lpC

Cii Ow C'001 C01 0 cp 0 ap "" a co l0

4:C; 00 OlO 0 0'

r~~gs3 COso. O 01)C

* l 0 5 000 0 09 a IOtw

00 .~fDO )C, 0 r,00l W. C%"3 La0

02 0 W r4CbCA

ot C2 9, V4 00-100 t3003 a jC 00i

C: C;00 c C; C;

' 40 a *@ C 2 "

C3 es cii I j Ia Im m00

C3 03 a1 O 0

00 C 0 tO'cal vi0 00j *L3

L, .) 43 co ev QI -. @ 3 0*63 = UC i)00 . 30C

*0 P3 0.0 c C 3cm L03 OJ14o

00 00 44I*r

.I. C;

C, ~ 3 ~ *0 C3 43 'a % JO-C26J %30 0 % -1 400 .3 u C3

C30 1 .4 N s,

C2C

U) @0 (2. 3"

0 a - C -, * :1,ý11

"1, 01.. ' 061atvat0p6 oa- 0 c 4 11 0 4 4

a. m ,t o '.U ,U Aini %U %U num

43 b 0 .. ono nnM0 %%* *S 01000 0 000. o0O~*00 0 4 00 @04040a041

£ 0 "10 94 " I

C, INIl4: 0 t .4 N a a n~ a @ m v 0 l 0100j 00aIIIIV t9 Ill P at N (V -NN N N F.N . P N 4IN N N N ON .N iS M N t. 5. N N N i '0

w P)0 fy0 ee NO00a of... * 0 .000g@ @6 0010 90 *66

I I

IL U% C* 4 am I% I) T.44".

IN 4m I*M 111 0 % 43 a -4~~1-4 * 04N m*q4. 8 MI .4 0 N 4 Im -7 I's

a.jC

I; C; 4'0 '00 0 4DI NNN NN%00%Dl %D 1A O 0 ONM V% ty M

W4 O Ne No. @V0O* 0 0 N 0 0. N 0 1.940IL *V4 0n.f...I A ~ .. tN6 O9

0Y0 14:4494 Ole 1 * 0 6 1 * $ e o

01a . ft LA el,".a& y.,% t"p-0 f p11 3 -

P. 1 4, & C* .3 ') %0 %a %V*I .Nt 13t

~~L4 **

0 1'* 0

0 0 0 6 0 060 * 6 0 6

*1 % i aa *4%(*6% f1 nf~m10 m

fm 0 0 0 0 e-p 0 0 0 0 0 0 0 0 a 0 0 0 0 0 .N1.N

ceP3- 4 L3 111rfMN- dmn 1':k.DU 9 iN #1 V%1 Pj

jo0 1--212. 000000000Ol

CA -lm C' CA a"

Z a -sIOate oC I %C o Mr %f0V0t0(. S W c

gsgU 0 *, 0 6. * 0 &o~o 0aa 0g. 430 0 csuuc0uoa

10 92 CD a a a. ev 4f0e

49 *j *j a * CD Li ai L 4~.p)ip C7La j Ai r ti C A~ 42iL - CA %j %j Wi f: fLi L3 CA c% CI V t q to LiLI0 " 4p p to" 4: " wcofJ0CC)C

a 0 o 0 o 0 00 I0 010 0 ~ ai

N Dt IA S * 0 0 C U" EC CIO .4C 94 aL Ls a cm La 4 i0 Li=%74 C3L3~~O 0 0 No * a 0 0 91 0 0 aU aO i~CI oO

or 0 9 .4f N*..r NPP3ts.Phc

2F 14,0 %N .. ITNE1-t %0! U% f* La$

t* 02 I0 m 40I III04 C %04 .4 U 1"Opon0%U% a Na v0 e

go L3l %I0mW40 p% * .4 .0U naNtme n"* 0 AI % .t.4hAt & 4 N .4:4.4 aCos e ifL~fff i 43r1clGo

4 0 0 a4 0 *SO 0 c CC 55 90 0 i0*a

WO* Ieml hM 4- N0M"mvv041 C %VIL0 N A* MS0. NA A M00N N"9 M% N a 0' -t*anP,)

di ". .4 .4 rs 0 : a 2i : y C:1S O4 00 0 0 *j 0 5 .. j . * 0 0 * * I

*% t A a 01 47' M* mP P ýNN.4.. N .4.1 n.0 .4 N N0 % " N N. N N Ni

* 0 0 t o * CI'C) iO iJ O iirO )L C 1 ai 0 0 to Li ; Li;; ;

W 5s *ý * * 0 ai s I' C)3 LID Ui UM4' 300 Pic9~Ci )L 1 C -1=42'*)iiC

c~~p L3 -* )Cil C2 C iI0cl *CAt t43 IC112-. v Ir C 3 f r.

0C Li 0. Cl C ji 0 1 el m

-ý- '4 c~ll 7~jA. V.dL: C~Lc C~'lJ- 's 0 0 0 0 0 4*% CA a 9 2 9 3 3 S l 9 m l m -3 9 3 L30 (a 9' 9 3 CA 9 2 9 3 9 Cal

b44.4- ~ ~ N'.'N'',f N )CNJ£A '7I

IL J % Mi. ~~t.

4c 1 ~~ 23

Unclassified - P___$ecun2 Clasification

DOCUMENT CONTROL DATA • R & D(SPCIutaIy eta bslhcaloon of title. &..dp of ..h,rr,* ad ontd o Ing atm .. ,t ,, t - r foer o 'rrd .h. t vrtole 11f l 1 ,It I, ,CtSAsilled)

I ORIGINiAING AC TIVITY (Corporate authut) J20. NFIEOf4 td rUli Tv CLASSIFICATION

The Boeing Company UnclassifiedP. 0. Box 3999 .1 ,Seattle, WA 98124

"3 REPORT TITLE

Propulsion System Installation Corrections

Volume II: Programmers Manual.4 OESCgIP jIVE NOTES .'ry'p* oi report and nuelswev, date%#

Final Report 31 December 1971 to 31 December 19725 AU TNH lIR (First name. middle gntlal. last name)

William H. Ball

* MREPOMT OAtE '. TO?~ Al N O( 8'aGrs [th NO 0? Hl£rs

December 1972 xii + 216 = 229 .Ii. CONTRACT OR GRANT NO V.. OH1IGINA TOWS Fi4t 0004T N•uMIfl RIS

F33615-72-C-1580 AFFDL-TR-72-147b. PROjEC T N0O

C. 3 66S Oth-0Im N IPORT NOISI (Any oth .tnumheta thee may be asI•idesithis frtporl)

d.

10 DISTRIBUTION STATEMENT

Distribution limited to U.S. Government agencies only; test andev luation; statement applied 29 Degember 197 , Other r.quests forhis docuipe t must be re Qrred to Air Force F h Damics Laboratory,

11~1 SUPEETR-OEYsPbNfO0NG i LIAYATV~

Flight Dynamics LaboratoryAir Force Systems Command

-A Wright-Patterson Air Force Base, OH

AAThis report presents the results of a research program to develop aprocedure for use in calculating propulsion system installation losses.These losses include inlet and nozzle internal losses and external draglosses for a wide variety of subsonic and supersonic aircraft configu-rations up to Mach 4.5. The calculation procedure, which was largelydeveloped from existing engineering procedures and experimental data, issuitable for preliminary studies of advanced aircraft configurations.Engineering descriptions, equations, and flow charts are provided tohelp in adapting the calculation procedures to digital computer routinesMany of the calculation procedures have already been programmed on theCDC 6600 computer. Program listings and flow charts are provided forthe calculation procedures that have been programmed. The work accom-plished during the program is contained in four separate volumes.Volume I contains an engineering description of the calculationprocedures. Volume II is a programmers manual containing flow charts,listings, and subroutine descriptions. Volume III contains samplecalculations and sample input data. Volume IV contains bookkeepingdefinitions and data correlations.

DD ,o. ,1473 215 II7nr, + CI

Unclassifiedctruvity Classification

KIEY WORDS LaN. A .gtdFA LINK C

ROLE WT 1401 1 P 1Ot V VI

Afterbody DragBoattail Drag

Bookkeeping Aero-Propulsion ForcesBoundary Layer Bleed Drag

Bypass DragInlet PerformanceInlet Shock LossesNozzle/Afterbody Installation LossesNozzle Interference DragNozzle Thrust CoefficientProdulsion Installation Losses

Spillage DragSubsonic Diffuser LossesSupersonic Inlets

Total Pressure Recovery

iI

Unclassified_216 ,,,• .,,,, ,.. . .

top related