the physical-organic chemtstry of surfaces, and its

Post on 16-May-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

THE PHYSICAL-ORGANIC CHEMTSTRY OF SURFACES, AND ITSRELEVANCE TO MOLECUI,AR RECOGNITTON

G . M . W h i t e s i d e s a n d H a n s B i e b u y c k

Department of Chemist ryHarvard Un ive rs i t yC a m b r i d g e , M a s s a c h u s e t t s 0 2 1 3 8

Molecu la r recogn i t i on in mos t b io log ica l sys tems i sthe resu l t o f summing la rge numbers o f sma l l , compensa t ingenerg ies be tween the par ts o f the in te rac t ing con lonen ts .r n b i o l o g i c a l s y s t e m s , t h e r e a r e , a s a r u r e ,

- t h r e l n a j o r

in te rac t ing componen ts a p ro te in (a recep to r o re n z y m e ) , a l i g a n d ( t h e m o r e c u r a r b e i n g r e c o g n i z e d ) , a n dwate r (F igu re 1 ) . o the r pa r t i c ipa t ing morecu les - - i ons ,m e m b r a n e s , s m a l l o r g a n i c m o r e c u r e s , a d d i t i o n a r l i g a n d sm?y be impor tan t i n some c i r cumstances , bu t canr dS af i r s t approx i rna t ion , be neg lec ted .

How should one th ink about the in teract ions betweenthese th ree rna jo r pa r t i c ipan ts? Pro te in -wa te r and l i gand-wate r i n te rac t ions shou ld be eas ie r to unders tand thanpro te in - l i gand in te rac t ions , s ince wa te r i s a homogeneousmed ium (o r a t l eas t more homogeneous than p ro te in 5 rI i gand) . Even fo r i n te rac t ions invo lv ing la te r , however ,the in tu i t i on o f the chemis t o r b iochemi l t i s l ess thanp e r f e c t . r n p r i n c i p r e , a n d i n d u e c o u r s e , a l r w i r l b ecarcurated by the cornputer , and advances in molecularmechan ics and mo lecu la r dynamics have been rap id in thel a s t y e a r s . I r h e f a c t r " i u i n s , h o w e v e r , t h a t a t t h epresen t t ime mos t o f the success in p rac t i ca t app l i ca t ionso f mo lecu la r recogn i t i on espec ia r l y to d rug aLs ign andmolecurar pharmacology have been based on tne t i f re-honored pa t te rns o f c lass ica r med ic ina r chemis t ry .

we have been in terested in a problen whose re levanceto mo lecu la r recogn i t i on apparen t l y l i es a t the fa r thes tboundar ies o f the sub jec t tha t i r , t he phys ica r -o rgan ic chemis t ry o f we t t i ng . ou r in te res l i s to.unders tand how f l u ids , espec ia t I y wa te r , i n te rac t w i th

F i g u r e 1 .

Hzo ---_Lb....-

van der \Vaals

H-Bond

Electrostat ic

Water

Conformational ChangeAG=AH-TAS

A schernat ic i l lus t ra t ion o f thebetween a protein and a l igand

+ HzO

in teract ioni n w a t e r .

//

/

s o l i d s o r i n n i s c i b l e I i g u i d s . 2 r n b r i e f , w h a t r n o l e c u l a rin te rac t ions de te rmine the energ ies o f i n te r facesl i g u i d - s o r i d , s o r i d - v a p o r , a n d l i q u i d - v a p o r ? T h e s econ f igu ra t ions a re re levan t to rno lecu la r recogn i t i on andrecep to r - l i gand b ind ing , because the same in te rac t ionsde te rmine we t t ing and recogn i t i on . rn we t t i ng , however ,the sys tems a re s t ruc tu ra r l y ve ry s impre in p r inc ip reno more than one mo lecu la r l y homogeneous , smooth l i qu iain te rac t ing w i th an equa l ry ho rnogeneous , smooth su r face( o f a s o l i d o r . r i q u i d ) . r n m o r e c u r a r r e c o g n i t i o n , b ycon t ras t , the in te rac t ing componen ts a re rough (on am o l e c u l a r s c a r e ) a n d h e t e r o g e n e o u s . N o n e t h e r e s s , b yu n d e r s t a n d i n g t h e i n t e r a c t i o n o f a l a r g e , h o m o g e n e o i = ,m o d e l s u r f a c e w i t h w a t e r r w € s h o u r d b e - a b r e t o h e l p t ounders tand the in te rac t ion o f a s rna l r pa tch o f p ro le inh a v i l g s i m i l a r p h y s i c a l c h a r a c t e r i s t i c s w i t h w a l e r . B yexamin ing a number o f su r faces mode l t i ng d i f fe ren t pa r tso f the p ro te in , we may be ab le to con t r ibu te tounders tand ing the g robar in te rac t ions o f a p ro te in (o r al i g a n d ) w i t h w a t e r , a n d , u l t i m a t e r y , o f a p i o t e i n w i t h al i gand . conversery , i f we canno t unders tand thein te rac t ion o f homogeneous su r faces w i th pure wa te r , ou rab i l i t y to unders tand the much more comp l l x i n te ra " t ionsoccur r ing in b io log ica l sys tems w i I I rema in unsa t i s fac to rya t any rever deeper than emp i r i ca l rnode l l i ng .

rn o rder to s tudy so l id - I i gu id in te rac t ions us ing theapproaches o f phys ica l -o rgan ic chemis t ry r w€ mus t be ab leto p repare su r faces hav ing wer l -de f ined s t ruc tu res , tovary the st ructures of these sur faces, and to measure oneor more p roper t ies o f the sys tem tha t g i ve in fo rmat ionabou t the energe t i cs o f the in te r faces o f i n te res t . ou rwork has been addressed p r ina r i l y to two sub jec tsdeve lopment o f rne thods fo r the p iepara t ion o f s t ruc tu ra l l ywer l -de f ined o rgan ic su r faces us ing a g roup o f techn iquescar led co l lec t i ve ly ' tmo lecura r se l f -as iembry , t r and thein fe rence o f l i qu id -so l id in te rac t ions th rough themeasurement o f con tac t ang les .3 ,4

se l f -Assernb led Mono layers . The p r inc ip res o f se l f -assembry a re wer l i r tus t ra ted by the bes t deveroped andmost thoroughly invest igated of the systems that formorgan ic mono layers long-cha in a tky l th io rs HS (cH2 ) nxadsorbed on gord . rn th i s techn ique , one exposes a c reango ld f i l n to a so lu t ion o r vapor o r an o rgan ic th io l( F igure 2 ' ) .5 The sul fur atonl o f the th io l coord inate tothe go ld and a re conver ted (by p resen t ry unde f inedmechan isms) to go ld th io la tes hav ing a geomet ry de te r rn inedby the roca l coord ina t ion chemis t ry o f tne su r iu r and.go ld . The a rky l cha ins a r range themse lves to n in in i ze

BA

F igure 2

lll)' ') r

/

/C

There are two approaches to forn ing sel f -assemb led mono layers on go ld . rn i cheme A , ago ld f i rm i s immersed in a d i l u te so lu t ion o fa n a l k a n e t h i o l ; f i l m f o r m a t i o n i s t y p i c a r l ycornplete, as j udged by macroscopic p ioper t i .=o f the f i l n , i n one o r two minu tes . rn schemeB ' the gord f i rn i s exposed to an a lkane th io rin the gas phase , e i the r i n a i r o r under vacuumcondi t ions. Both rnethods of preparat ion resur ti n c r y s t a r l i n e f i l m s w i t h a c i n t - a n g r e o f 3 0 " ;c . F i lm fo rmat ion i s d r i ven by the s t rong ,spec i f i c i n te rac t ion o f the th io l w i th th6 gords u b s t r a t e .

20

t5

Aro

oo

Vapr Phase formatlon of I\f onolayerSolutlon phase formatlon of l\tonolaver

18 20

Number of Carbons in Alkanethiol

The th i ckness o f the f i l n on go ld i s eas i l ycontro l led by changing the length of thea lkane th io l . The average th i ckness o f the f i lmin angstroms, der ived f rom the measurement ofthe in tens i t y o f the pho toe lec t ron s igna l o fgo ld us ing an X- ray pho toe lec t ronspectrophotorneter ( XPS ) , is pI o t ted as afunct ion of to ta l number of carbons in thealkaneth io l . F i lms hrere made e i ther byexposing the substrate to a vapor of thea l k a n e t h i o l i n a i r ( b 1 a c k d o t s ) o r t o aso lu t ion o f the a lkane th io l i n e thano l (wh i ted o t s ) . T h e l i n e r e p r e s e n t s t h e b e s t f i t o f t h etwo se ts o f da ta i t he s lope o f th i s l i ne showsthat the th ickness of the f i lm changes byapproxinate ly an angstrom per carbon in thea lkane th io l . Techn iques used to in fe r theth ickness of a monolayer f rom the photoelect ronin tens i t y measured by XPS a re g iven in C .D,B a i n a n d G . M . W h i t e s i d e s , J . P h y s . C h e m , l - 9 8 9 ,9 3 , L 5 7 0 .

t6l 4t210

F igure 3 .

t he i r energy . Themonolayers havingc r y s t a l l i n e o r d e r .

sys tems can be shown to beI o c a l l y ) w e I l - d e f i n e d

r e s u l t i n g

Iua leas t

The advan tages o f th i s p repara t i ve techn igue( re la t i ve to Langmui r -B todge t t p rocedures o r to thef u n c t i o n a l i z a t i o n o f p r e - e x i s t i n g s o l i d s ) f r o m t h e v a n t a g eo f o rgan ic su r f ace chemis t ry a re many . i f r . mono layers a reunder thermodynanic contro l , and the ord.er that theyexhib i t represents a rn in imum in energy. They arere ra t i ve ry f ree o f de f ec ts . They w i r l f o r rn on anyappropr ia te l y exposed su r face , even on the ins ides o fob jec ts and on ve ry rough o r po rous su r faces . Assembly i se a s y t h e g o r d s u r f a c e i s s i m p l y e x p o s e d t o t h e t h i o lfor one or two hours at room temperature, renoved, andwashed . Mos t i rnpor tan t l y , morecura r se r f -assenb lyp rov ides g rea t con t ro l over ce r ta in o f the phys ic l rp roper t ies o f the monorayers . rn par t i cu rd r , theth ickness o f the mono layer can be con t ro l red inapprox imate ly one-angs t rom s teps by va ry ing the leng th o ft h e p o l y m e t h y l e n e c h a i n s ( F i g u r e 3 ) , a n d t h e s t r u c t u r e o fthe so r id - l i qu id in te r face can be con t ro l red by va ry ingthe terrn inal group X.

on ly some o f the ru les fo r bu i rd ing wer l -o rderedmono layers a re p resen t ry known. rn par t i cu la r , thegues t ion o f the in f luence o f i ncommensura te s i zes o f theth io la te head g roups and the ta i l g roup x on the s t ruc tu reo f the mono layer i s no t we l l unders tood , and a lmos t a r Is t u d i e s h a v e u s e d t h i o l s o f t h e s t r u c t u r e H S ( c H 2 ) n X .None theress , f o r re la t i ve ly smar r o rgan ic func t lo i i a lg r o u p s ( X = F , C l , B r , I , C N , C O 2 H , C O N H 2 , e t c . ) t h e s emono layers cons t i tu te read i ry ava i lab le -ys tems tha tp resen t shee ts o f o rgan ic func t iona l i t y to I i qu id wa te r .B y w o r k i n g w i t h a n e x t e n d e d r a n g e o f t n i o t s H s n x ( y , 2 . . . ) ,both as pure compounds and as mixtures , vJe bel ieve that i tw i l l even tua t l y be poss ib le to make a ve ry b road range o fsu r faces .

- we t t i ng and con tac t Anqre . we have exp lo red theinteract ion between sol id and f iqu id by nealur ing contactangres (F igu re 4 ) . Th is techn ique has th ree g re i tadvan tages : F i r s t , i t i s exper i rnen ta l l y ve rys t r a i g h t f o r w a r d ( a t l e a s t f o r s t a t i c d r o p s ) . s e c o n d , i tis very sensi t ive to the st ructure and composi t ion o i theou te rmos t pa r t o f the su r face . we w i l l show be low tha tthe wa te r f r senses ' the so l id to a dep th ress than l_o E ,and p robabry less than 5 A a dep th sens i t i v i t y g rea te rthan that of many of the much more complex techniques ofvacuum phys ics . Th i rd , i t i s app l i cab le to the

F igure 4

'Ilvcos(e)=Ysv-YSL

The f igure shows the egui l ibr ium shape of ad r o p o f a l i q u i d o n a f l a t , s o l i d s u r f a c e . T h econ tac t ang le o f the l i qu id i s the ang lebetween the sur face and the l ine drawn tangentto the sphere o f l i qu id where the l i qu id meetsthe su r face . Young 's equa t ion desc r ibes there lat ionship between the contact angle of theI iqu id and the su r face tens ions be tween each o ft h e t h r e e p h a s e s ( s o l i d , l i q u i d , a n d 9 a s ) ,w h e r e 7 S L , ' / S V , a n d ' y L V a r e t h e s o l i d - I i q u i d ,so l id -vapor , and l i qu id -vapor su r face tens ions .

expro ra t ion o f so l id - r iqu id in te r faces and i s no tres t r i c ted to so l id - , r l po r ( vacuum) in te r faces . I t su f fe rsf rom two co r respond ing d isadvan tages . I t i s a macroscop icra ther than a morecu la r techn ique tha t i s , i t measures? p roper ty de te r rn ined by the gp l leq l i ve behav io r o f ala rge number o f mo lecures ( 1o r2 -1o l -3 o rgan ic func t iona lg roups occupy the in te r face be tween so l id and l i gu id fo r ad rop o f vo lume 1 pL) . r t a l so measures a ra t io 6 r su r faceenerg ies ra ther than any s ing re energy . rn p rac t i ce , thel igu id -vapor in te r fac ia l f ree

c o s 0 - ( r S V ^ / S L ) / t 6 V

e n e r g y ( t h a t i s , t h e s u r f a c e t e n s i o n ) i s w e r r k n o w n r s o- tha t the p roper ty measured d i rec t ry i s the d i f fe renceb e t w e e n t h e s o r i d - v a p o r a n d s o l i d - r i q u i a f r e e e n e r g i e s .Vary ing the p roper t ies o f the con tac€ ing r iqu id - - - i o ,exampre the s i ze o f i t s cons t i tuen t no recures o r i t shydroph i l i c i t y can p rov ide some ins igh t i n to the na tu reo f t h e f o r c e s d u e t o t h e s o l i d .

en t I ave S e v i to f Wet t ing . We have used nono lJyerscomponent to invest igate a number of

c o m p r i s i n g a s i n g l ephenomena. One o f

the deptha s o l i d d o e s a

re levance to mo lecu la r recogn i t i on i ssens i t i v i t y o f we t t i ng . Ho* fa r i n tol i q u i d r f s e e r r ?

Two exper iments i l lust rate the approach that we haveused in s tudy ing th i s ques t ion . rn on6 , we p reparedm o n o r a y e r s o f a s e r i e s o f t h i o l s H S ( c H 2 ) r r o ( L H z j n c H r i nwhich a potar oxygen funct ionat i ty was- ;6; i t io f f i : i i u i , ac o n t r o r l e d ( b y n ) d i s t a n c e f r o m t h e s o l i a - r i q u i din te r face , and examined the we t tab i r i t y o f thesenono layers as a func t ion o f the ca rbon number D . We foundtha t / the in f luence o f the leng th o f the cha in becameconstant for nwet tab i f i t y o f the e ther -con ta in ing mono iayer su r face wasthe same as the we t tab i l i t y o f a pu re hydr6carbonmono layer (such as tha t f rom HS(cH2) rzcHg) . we conc ludethat the l iqu id water was able to sense the nbur iedr f e thergxygen (by wha tever mechan ism d ipo le -d ipo le in te rac t ionth rough the super f i c ia l a tky l g roups o r pene t ra t ion o fwa te r i n to the mono layer l on ly - th rough r l ss than 5 - to A o fa l k a n e .

fn the second-exper iment r w€ examined the we t tab i f i t y: l l ono l ,Ry : r= o f s inp le a lky r th io l s HS (cH2 ) ncHs on go td .we found f , tha t the we t tab i r i t y o f these-mof ro lay6r= u i=o.began to increase f or n

120

90

60

30

e

0.0

-1.0 0

-cos e

F igure 5

s ss d\ -$ o$."$ .F

water ,/t ';--o-a

,/

hexadecane

//

I Ether I

Fi lns on gord f ormed f rom ar -rr€rcaptoethers ,HS ( CH2 ) fOO ( CHZ ) nCHg , have in te r fac ia lproper t ies that change as the polar ether groupis bur ied underneath the in ter tace. Theadvanc ing con tac t ang les o f wa te r andhexadecane a re p lo t ted as a func t ion o f n , thenumber of rnethyrenes between the ether and thein te r face . A lso shown a re the con tae t angreson po lye thy le le g ryco l (pEG) and on a monorayero f docosane th io r on go ld . The fo rmer su r faceis one in which the ether groups are fu l lyexposed to the con tac t ing l i qu id ; the la t le r i sone in wh ich the re i s no con t r ibu t ion o f ane ther to the in te r fac ia l p roper t ies o f thes u r f a c e .

0.0

120

ea

300

t2 l4 16 18 20

Number of Carbons in Alkanethiol

The contact angles on monorayers on gold formedf rom a lkane th io l s show p rogress ive ly lessdependence on the underry ing gold substrate asthe leng th o f the a lkane th io r

- i nc reases . The

advancing contact angles of water andhexadecane a re p lo t ted as a func t ion o f thenumber o f ca rbons in the a lkane th io l . The l i nethrough the data is incruded as a guide for thee y e .

4

q

(JI

10

F i g u r e 6 .

water

,,g-O-O-O-Q-6-9'hexadecane

exper iment does no t d i s t ingu ish be tween d ipo le - inducedd ipore in te rac t ions invorv ing the wa te r ana the h igh rypo la r i zab le go ld subs t ra te f rom in te rac t ions resu l { , i ngf rom penetrat ion of water between the a lky l chains down tothe go ld . In e i the r even t , these exper i rnen ts con f i rm theconc lus ion tha t we t t i ng i s a shor t - range in te rac t ion . fnte rms re levan t to mo lecu la r recogn i t i on , the in te rac t iono f wa te r w i th a p ro te in o r r i gand i s domina ted by thestructure of the outerrnost few angstroms of thesem o l e c u l e s .

ReLa ted exper iments invorv ing func t iona l g roupspos i t i oned a t the su r face o f po rye thy lene p rov ideindependen t con f i rmat ion and i l l us t r l t i on o f the shor t -r a n g e c h a r a c t e r o f w e t t i n g . S

Mixed Monoravers . ou r mos t use fu l exper imenta lsys tems a re those based on mono layers incorpora t ing twod i f fe ren t componen ts , HS ( cH2 ) px ana HS ( cH2 ) ; y . By va ry ingx and Y f o r cha ins o f the same leng th (m = i i 1 , on l caninves t iga te in te rac t ions be tween X and 'y .9 bv mak ing thecha ins o f d i f fe ren t reng ths (m * n ) , one can in t rodu6econtro l led amounts of d isorder in to the outermost par ts oft h e m o n o l a y e r . 1 0 , 1 1

one type of exper iment based on rn ixed monolayers ispar t i cu ra r ry re leva i r t to mo lecu la r recogn i t i on . i { "p repared mono layers con ta in ing a m ix tu re o f n -a lky l th io l shav ing two d i f fe ren t l eng ths , and examined the we l t i ng o fth i s sys tem by l i qu id a lkanes . The ques t ion o f i n te res tconcerned in tercalat ion hras there any tendency forpar t i cu la r s i zes o r shapes o f a l kane mo lecu les to in te rac tpar t i cu la r l y favorab ly w i th these d iso rdered mono layersto f r comp le te f r the monorayer o r to f i l l i t t o a densL ,c rys ta l l i ne s ta te? Th is t ype o f shape-serec t i vein te rac t ion wourd , o f course , cons t i l u te a fo rn o fm o l e c u l a r r e c o g n i t i o n .

fn b r ie f , fo r th i s sys tem (F igure 7 ) , we found noev idence fo f th i s t ype o f shape-se lec t i ve we t t ing . Th isconc lus ion i s no t su rp r i s ing , s ince a I I i nd ica t ions a retha t shape se lec t i v i t y regu i res the p resence o f mo lecu la rcav i t i es hav ing de f ined s i ze and r ig id shape . There i s noreason to expect such r ig id i ty and order in a layer madeup o f l oose ly d i so rdered , f l ex ib le , a l ky l cha ins :

The exper iment does, however , po int to one futured i rec t ion fo r se l f -assemb led mono layers : tha t i s , towardthe deve lopment o f techn iques capab le o f assemb l ing r ig id.componen ts in to mono layers . The ab i l i t y to accomp l i sh

A 30r,'J-+-\. Izaf t\. II t-e-. - |

:J r-o-3-- -t

I'olltrL

o {

8o)

U

F

0.6

.a 4.7c)

0.8

0.9

1.0

r- Bicvclohexr' l\ - t -

\

C- Hexadaarna"_ -^"\:- . . .

\. \ \

\ _ i

\ \ ,

M ixed mono layers on gord fo rmed f rom so lu t ionscon ta in ing m ix tu res o f HS ( CH2 ) Z fCH: andH S ( C H 2 ) f f C H : . T h e a b s c i s s a i s t n e - r a t i o , R , o ft h e c o n c e n t r a t i o n s o f H S ( C H 2 ) Z f C H f t oHS ( CH2 ) f fCHf in so lu t ions o f e thano l . Theupper g raph p lo ts the e l l i psomet r i c th i cknessof the monolayers. The lower graph p lots theadvanc ing con tac t angres o f wa te r , hLxadecane ,?nd b icyc rohexy l . The l i ne th rough the da ta i sinc luded as a gu ide fo r the eye .

40

30

20(o-(a

Figure 7 .

//

/ ^ /

/t ,/'. /o

MoIecu Ia r Recoqn i t i on?

I

t h i s t ype o f assemb ly wou ld p rov ide the bas is fo r bu i ld ing

sur faces hav ing shape-se lec t i ve cav i t i es '

unders tand ing we t t ing w i l l ce r ta in l y he lp in

unders tand ing so lva t ion o f p ro te ins and l i gands by wa te r ,

and perhaps i t t unders tand ing p ro te in - l i gand b ind ing 'Whether the f i e ld o f mo lecu la r recogn i t i on pers is ts fo r

some t ime in i t s p resen t mode us ing gua l i ta t i vephys ica l -o rgan ic mode ls fo r impor tan t phenomena o r

rn " tn . t i t rnoves to a new mode based on (more ) success fu lguant i ta t ive methods f or cornputat ion and s imulat ioniema ins to be seen . I f t he io rmer , resu l t s f rom s tud ies

o f we t t i ng w i l l become a par t o f the comp lex p rocess o f

ana log re ison i tg , pa t te rn recogn i t i on , an l i n tu i t i on used

" " * by med ic ina i a r ra b io log ica l chern is ts in the des ign o f

new b ind ing agen ts . I f t he la t te r , we t t i ng w i l l p rov ide

da ta f ro rn we I I -de f ined su r faces rv i th wh ich to tes t

theor ies o f so lva t ion and po ten t ia l func t ions fo r

s imu la t ions . 12 Bo th conneL t ions be tween sur face chen is t ry

and we t t ing and recogn i t i on a re concep tua l l y . i nd i rec t .A re more d i rec t connec t ions poss ib le? I be l ieve the

answer to th i s ques t ion to be t t yes , t t and . p ropose !h "fo l l ow ing top ic j as a reas in wh ich the f i e lds w i I Ip robab ly g row c loser toge ther .

1 ) S t ruc tu ra l l y Complex Sur faces . A p ro te in 91n be

cons iaerea , to one ap f l rox ina t ion , as a la rge =?3 f f : ]9 used

to cons t ruc t a cav i t y o f mo lecu la r d imens ions . r J Th is

v iew o f a p ro te in as a r ig id en t i t y i s p robab ly la rge ly

cor rec t i n some cases ( i .6 . , immunog lob ins ) and incor rec t

in o thers . In any even t , the su r face suppor t ing a se l f -

assernb led mono layer wou ld , i n p r inc ip le , a l so se rve

admi rab ly the func t ion o f sca f fo ld . A t p resen t , we do no t

know how to assemble the cavi ty , but we understand the

pr inc ip les : Use rnu l t i p le r i g id_ componen ts in mak ing up

tne monolayer that wi l l c rysLal l ize on the suppor t in to a

thermoaynai r ica l ly s table, ln ixed, two-d imensional crysta l

w i th su i face roughness appropr ia te to b ind mo lecu les .

A t a more p r im i t i ve leve l , one o f the mos t ve rsa t i l e

approaches to r lcogni t ion employs . par t l t ig l chromatography

t o d e t e c t d i f f e r e n c e s i n r e c o g n i t i o n . I a T h e p r i n c i p l e s o f

se l f -assernb ly a re excep t iona l l y we l l su i ted to the

ra t iona l des ign o f soph is t i ca ted so l id phases to tes t

t h e o r i e s o f a d s o r p t i o n , a n d , h e n c e , o f m o l e c u l a rr e c o g n i t i o n .

2 ) u l t r a - T h i n L i s t i d F i l m s . r t i s c r e a r f o r m a n yl iqu ids tha t p rox in i t y o f the r iqu ia to a so r id suppor tmod i f i es the s t ruc tu re and p rope i t i es o f the l i gu ia :15T o t w a t e r , o n e , b u t n o t t h e o n l y , m a n i f e s t a t i o n o f t h i sin te rac t ion i s the hydrophob ic e f tec t . se l f -assembredmonorayers prov ide the oppor tuni ty for s tudying thein te rac t ion be tween o rgan ic su r fa les bear ing comp lexorgan ic func t iona l i t y and wa te r . These s tud ies n .y becar r ied ou t e i the r us ing we t t ing o r th rough vaporadsorpt ion and temperature-progiammed desorpt ion.

3 ) s t u d i e s u s i n g t h e F o r c e B a l a n c e . T h e f o r c eba lance , an ing l rument deve loped by faUor andr s r a e l a c h v i l i , t 0 p r o v i d e s r e m a r k a b i y d e t a i l e d i n f o r m a t i o nabou t the in te rac t ions be tween sur faces a t d i s lances o fnanomete rs . A11 tha t i s requ i red to me ld the t ypes o fs tud ies desc r ibed here us ing se l f -assernb led *on-o iayersw i th more guan t i ta t i ve s tud ies us ing the fo rce ba ] lnce oF ,p e r h a p s , u l t i m a t e l y , t h e a t o m i c f o r c e m i c r o s c o p e , l T i s t h edeveropment o f rou t ine p rocedures fo r p repar ing su i tab ryf l a t s u b s t r a t e s .

. 4 ) M o d e l s o f c e r r s u r f a c e s . M u c h o f p r a c t i c a limpor tance invo lv ing 4q tecu la r recogn i t i on Lakes p lace a tt h e s u r f a c e o f c e r l ; . 1 8 r t i s u n c r e a r h o w i m p o r t a n t t h eprox i rn i t y o f the recep to r to the su r face m igh t be , o r howsur face a t tachment rn igh t be man i fes t . I t i ; p robab le tha tTany in te res t ing aspec ts o f recep to r - l i gand in te rac t ionsin v iYo w i l l depend on the res t r i c t i on

" f the recep to r to

a f l u id , quas i - two-d i rnens ionar p lane . Two con t ra=L ingexampres of e f fects expected to be important are s ter icinh ib i t i on to b ind ing o f l a rge l i gands to recep to rs , dueto prox i rn i ty to the cer l sur f ace ( and to the othercomponents on i t ) and enhancement of b inding of row-a f f i n i t y s y s t e m s ( . . g . v i r a r c e l l - s u r f a c e r e c e p t o r s ) d u eto a fo rm o f nu l t i -po in t , coopera t i ve a t tachmenta t t r i bu tab le to c lus te r ing o f l i gands by d i f fus ion on thece l l and c lus te r ing o f t i gands by s t ruc lu re on the v i rus .

overa l l , we a re conv inced tha t much o f morecura rrecogn i t i on i s due to in te rac t ion be tween mo lecura rs u r f a c e s ( o r m o r e p r o p e r l y , i n t e r f a c e s ) , a n d t h a t t h es tudy o f moder o rgan ic su r faces and in te r faces w i r lu r t i na te ly p rov ide in fo rmat ion o f g rea t va lue inunders tand ing and con t ro r r ing morecu la r recogn i t i on .

Acknowl edgernents

The work desc r ibed here has been ca r r ied ou t by anexcep t iona l ry ab re g roup o f coworkers , among whom a l "

I

II

IIIV

CoI in Ba in , Randy Ho lmes-Far ley , Pau I La ib in i s , and Kev inPr ime. Cer ta in par ts o f the work a re based on ac o l l a b o r a t i o n w i t h R a l p h N u z z o ( A T & T B e I I L a b o r a t o r i e s ) .Support was provided by the ONR and DARPA through theUn ive rs i t y Research In i t i a t i ve , and by the Na t iona lScience Foundat ion through suppor t o f the HarvardMate r ia l s Research Labora to ry .

Re fe rences

1 ) C . B . P o s t a n d M . K a r p 1 u s , J . A m . C h e m . S o c . , 1 9 8 6 ,1 0 8 , l . 3 1 - 7 . A . T . B r u e n g e r , G . M . C l o r e , A . M .G r o n e n b o r n , a n d M . K a r p l u s , P . N a t I . A c a d . S c i . U S A . ,1 9 8 6 , 8 3 , 3 8 0 1 . C . F . W o n g a n d J . A , M c C a m r n o n , J . A m .C h e m . S o c . , 1 - 9 8 6 t 1 0 8 , 3 8 3 0 . T . P . L y b r a n d , J . A .M c C a m m o n , a n d G . W i p f f , P r o c . N a t l . A c a d . S c i . U S A ,L 9 8 6 , 8 3 , 8 3 3 . J . A . M c C a m m o n , S c i e n c e t L 9 8 7 , 2 3 8 ,4 8 6 . J . D . M a d u r a a n d W . L . J o r g e n s e n , J . A m . C h e m .S o c . , l - 9 8 6 , 1 0 8 , 2 5 L 7 . J . P . B a r e m a n e , G . C a r d i n i ,a n d M . L . K l e i n , P h y s . R e v . L e t t . , 1 9 8 8 , 6 0 , 2 L 5 2 .

2 ) t C o n t a c t A n g l e , W e t t a b i l i t y a n d A d h e s i o n ' , F . M .Kowkes , Ed . , Advan . Chem. Ser . 43 , Amer ican Chemica lS o c i e t y , W d s h i n g t o n D . C . , L 9 6 4 . A . W . A d a m s o n ,I P h y s i c a l C h e m i s t r y o f S u r f a c € s ' , W i l e y - I n t e r s c i e n c e ,New York | 1 -976 | 3 rd ed . F . B rochard , Langmui r , l -986 ,5 , 4 3 2 . F . H e s l o t , N . F r a y s s e , a n d A . l ' 1 . C a z a b a t ,N a t u r e 1 9 8 9 , 3 3 8 , 6 4 0 .

3 ) C . D . B a i n a n d G . M . W h i t e s i d e s , A n g e w . C h e m . f n t e r n .E d . E n q . , i n p r e s s .

4 ) G . M . W h i t e s i d e s a n d G . S . F e r g u s o n , C h e m t r a c t s , 1 9 8 8 ,r , L 7 L .

5 ) S o l u t i o n : C . D . B a i n , E . B . T r o u g h t o n , Y . - T . T a o , J .E v a l l , G . M . W h i t e s i d e s , a n d R . G . N u z z o , J . A m . C h e m .S o c . , L 9 8 9 , 1 1 1 , 3 2 L . V a p o r : G . F . F e r g u s o n , H . A .B i e b u y c k , M . C h a u d h u r y , M . B a k e r , a n d G . M .W h i t e s i d e s , u n p u b l i s h e d .

5 ) M . D . P o r t e r , T . B . B r i g h t , D . L . A l I a r a , a n dC . E . D . C h i d s e y , J . A m . C h e m . S o c . , L 9 g 7 t L 0 9 , 3 5 5 9 .L . S t r o n g a n d G . M . W h i t e s i d e s , L a n g m u i r , l - 9 8 8 , 4 ,5 4 6 .

7 ' ) C . D . B a i n a n d G . M . W h i t e s i d e s , J . A m . C h e m . S o c . ,L 9 B 8 , 1 1 0 , 5 8 9 7 .

I ) 1 " 1 . W i l s o n a n d G . M . W h i t e s i d e s , J . A m . C h e m . S o c . ,L 9 8 8 , 1 1 0 , 8 7 1 8 . S . R . H o l m e s - F a r l e y , C . B a i n a n d G .M . W h i t e s i d e s L a n c r n u i r , l - 9 8 8 , 4 , 9 2 L . S . R . H o l m e s -F a r l e y , R . H . R e a m e y , R , N u z z o , T . J . M c C a r t h y a n d G . M .W h i t e s i d e s , L a n g r n u i r , 1 9 8 7 , 3 t - 1 9 9 .

9 ) C . D . B a i n a n d G . M . W h i t e s i d e s , J . A m . C h e m . S o c . , i np r e s s . C . D . B a i n , J , E v a l l , a n d G . M . W h i t e s i d e s ,

. i b i d . , i n p r e s s .

1 0 )

1 1 )

]-2)

C . D . B a i n a n d G . M . W h i t e s i d e s ,6 2 .C . D . B a i n a n d G . M . W h i t e s i d e s ,1 9 8 8 , 1 1 0 , 3 6 6 5S . D i e t r i c h , i n

S c i e n c e , L 9 8 8 , 2 4 O ,

J . A m . C h e m . S o c . ,

I Phase Trans i t i ons and Cr i t i ca lP h e n o m e n a ' I C . D o r n b a n d J . L . L e b o w i t z , E d s . , A c a d e m i cP r e s s , N e w Y o r k , l _ 9 8 8 , V o I . L 2 .

13 ) T . E . c re igh ton , r P ro te ins : s t ruc tu res and Mo lecura rP r o p e r t i e s t , W . H . F r e e m a n , N e w Y o r k , 1 9 8 4 .

1 4 ) s . A l l e n m a r k , r c h r o m a t o g r a p h i c E n a n t i o s e p a r a t i o n :M e t h o d s a n d A p p l i c a t i o n S , , W i l e y , N e w y o r k , 1 9 8 8 .

1 5 ) B . V . D e r j a g u i n a n d N . V . C h u r a e v , i n r F l u i df n t e r f a c i a l P h e n o m e n a t , C . A . C r o x t o n , E d . , W i l e y , N e wY o r k , 1 9 8 5 , C h a p t e r 1 5 ; C . T a n f o r d , l T h e H y d r o p h o b i cE f f e c t ' , W i l e y , N e w Y o r k I t 9 7 3 .

1 6 ) J . N . I s r a e l a c h v i l i a n d A . T a b o r , P r o c . R o v a l S o c . ,I 9 7 2 b I A 3 3 1 , L 9 . J . N . I s r a e l a c h v i l i , J . C o I I o i dI n t e r f a c e S c i . , l - 9 8 6 , l - 0 0 , 2 6 3 . J . N . f s r a e l a c h v i l ia n d H . K . C h r i s t e n s o n , P h y s i c a A , L 9 I G , 1 4 O A , 2 7 B .

1 7 ) O . M a r t i , B . D r a k e , a n d p . K . H a n s m a , A p p l . p h y s .L e t t . I L 9 8 7 , 5 1 , 4 8 4 .

1 8 ) A . D . L a n d e r , T r e n d s N e u r o s c i e n c e s , 1 9 8 9 , L 2 , 1 8 9 .G . M . E d e l m a n , A n n . R e v . C e l I B i o l , ] - 9 g 6 , 2 , g 1

top related