tendinopathy, tendon healing & tendon regeneration

Post on 04-Jul-2022

30 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Tendinopathy, Tendon Healing & Tendon Regeneration

Alayna E. Loiselle, PhDAssociate Professor

IND 464 Musculoskeletal Basic Science CourseOctober 21, 2019

Outline

• Review of homeostasis• Effects of Aging• Disruptions in homeostasis• Pathogenesis of tendinopathy/ tendinitis• Mechanisms of regeneration and healing

!"#$%#&'()*%)+,-.-&,*"&#%.&,&/#('%*0&1%1/+,.(%#

23456(#&2788,9:&&234:;2788,9:&<=>?@"-.&A=2B@&C87D

!"#$%&$"'!"#$%(')*+',-./

0"1%" !"#$%(')*+',-./

23%4&$5%4'!"#$%(')*+',-./ +6"4&74'5$'"1(8'!%7*9%:(',-./

;7%&5115';"<8'#4=#<1%&>5?'?"$"

Tendon Cell Proliferation During Growth

Grinstein eLIFE 2019

Tendon Cell Proliferation During Growth

Grinstein eLIFE 2019

!"##$%&'%(%)*+!"#$%&'()*+)(,%-,./0()%,1%%/(2344523678*")$%9(&,+*-:;%'.#(2<=>%/9*/(&/9(+"-#$%().*:-.%-(?'*+(:&,.%/,-()*'/(@23<A523BAC--%--+%/,(*?(,.--"%(,"'/*D%'('&,%

,("-"*-".(&./&0.10&-%#-"(2

!%#-&0*(&-3%*-4

Tendon HomeostasisYoung Aged

• Matrix composition and organization is not dramatically different• Decreased proteoglycan content• Changes in cell morphology

Functional Consequences of Aging?

Tendon is not mechanically sensitive to aging

Ackerman et al., 2017. JOR

TT Fa

scicl

eFD

LFC

U

!"#$%#&'&()*#)! !"#%+,-" ./*"0+"#+"&1#$&2%3456"./"#+,&789&

-/6#%:"6;&$"+6"10"$&0"#0*-*:*-,&-%&1)*#)&<:0=&>%#"?

! @%3":"6A&1)*#)&*0&100%+*1-"$&3*-BC&*#+6"10"$&-"#$*#%D1-B,A&*ED1*6"$&B"12*#)

! FD%#&+B122"#)"&<*#G/6,A&+%E%6>*$*-*"0?&1)"$&-"#%+,-"0&B1:"&*ED1*6"$&1>*2*-,&-%&6"0D%#$&6"0/2-*#)&*#&1)"46"21-"$&-"#$%#&D1-B%2%),

!"#$%#&'()*+!"#$%#$&'(&)*$&)$+,'+

! -%"+(./! 01%2$34%)$,&45&%2)"6")5! 7'#)&2'88'+&"+&)*$&92*"//$#! :$+,'+")"#;&%2.)$&"+(/%88%)"'+&%+,&"+<.35;&%2.)$&"+(/%88%)"'+&%+,&"+<.35

=2"6$)>2'8

!"#$%#&'()*+!"#$%#$&'(&)*$&)$+,'+

! -%"+(./! 01%2$34%)$,&45&%2)"6")5

! 7$+,"+'#"#8&2*3'+"2&9")*&,$:$+$3%)"6$&2$//./%3&2*%+:$#;&+'&"+(/%<<%)"'+

! ='3$&2'<<'+&)*%+&)$+,"+")"#! >'+)"+."+:&('3&/'+:$3&)*%+&?&<'+)*#

@2"6$)A2'<

8&2*3'+"2&9")*&,$:$+$3%)"6$&2$//./%3&

!"#$%&'()*+&,')-'.+"*#")/%012'3'4+%&#"567/8%,/#"%07,'98)0%0)8':7--; !:1#&&+,'.+"*)" <%0+&&%8'.+"*)" =&+>)8'.+"*)"

()7,+?%"#"+?1#:@+"A%0A%BB#04)8,+<#5

()7,+A%0A%BB#0

()7,+A%0

CD+8'EF'%"#$%&,':1%8%:0+8#G+*H

$),0':)$$)"IA%0

()7,+

9H; 6),&)J,@2 KLM'+0'%&NM'L'61)7&*+8'O&B)J'6785 HPPQRSIETEUEPV9V; .1)$)/)7&), +0'%&NM'LCAN'VFHS'98+D#+J;

(+:1%"#:%&':1+$#:%&'

?)$/&+0+'08%",+:0#)"WXY 8+/%#8

<%80#%&'08%",+:0#)"Z#)/,2'/7":1

.+"*#")/%012

4+%&#"5

67/8%,/#"%07,'98)0%0)8':7--; !:1#&&+,'.+"*)" <%0+&&%8'.+"*)" =&+>)8'.+"*)"

Z#)/,2'/7":1?)$/&+0+'08%",+:0#)"

W'8+/%#8<%80#%&'08%",+:0#)"

Z#)/,2'/7":1

(+:1%"#:%& =%0#57+'&)%*#"5

=7&&'01#:@"+,,M'/%80#%&'J#*01.+"*)"'0)'B)"+'1+%&#"5

[#%B+0#:'0+"*#")/%012

!"#$%&'()*

!"#$%&'#(')#!*#+(,,-.(/0##1&2%-)3#4'#$&,,#54-,-6/7#8-,9:&#;<=7#>?;@7#>AAB<>?

!"#$%&&%'()"*(+*%*,)'-"'*&-.(%')/*)#*'-".("),%'01

!"#$%$&'()'$*+,'-./01 2345+

!"#$%&'()*+,-(,#'.#"#/*!".0('(#

1,2'$,3 !".0('"4

! !"#$%&%'%&()'*+%"$),()&"#-.#/! 01"2.+$)*+")3.$&)$"#$%&%'"! 4*&5.1.6%7*1)75*#6"$)%#7+"*$")8%&5)-%$"*$")-9+*&%.#

! :(;")<)*#-)&(;")<<)-%*,"&%7$)*+")"=9*11()$9$7";&%,1")&.)>1"2.+)&"#-%#.;*&5(

! <#7+"*$"-)+*&").>)+9;&9+"! :?@A)>9+&5"+)%3;*%+$)&"#-.#)5"*1%#6)*>&"+)+9;&9+").+)%#B9+(

Collagenase Induced Tendinopathy

LD= low doseHD= high dose collagenase

Induces degenerative changes via collagen degradation

Orfei C et al. (2016) PLOS ONE 11(8): e0161590.

Mechanically Induced Tendinopathy• Fatigue loaded under anaesthesia• Uphill treadmill running• Downhill treadmill running

Neviaser A. 2012. J Shoulder Elbow Surg. N Andarawis-Puri et al., 2014. JOR

UnloadedLow levelloading

Moderateloading

High levelloading

Fatigue Loading Induces Apoptosis

Induces matrix and cellular changes

!"#$%&#$'()(%! !"#$%&&%'()"*)#*'+,*-+,%'+! .%/-,-0*("#$%&&%')12*3(-,%-,-4*("#,5'()"4*("6/12! 7)-'*5)&&)"$2*("*+%"38*91(-'

:5(;,'<5)&

!"#"$%&'()*+*,%-."*,%/"$*%0*&1%)"('2*3"(%.1(%#'3'.!"#"$%&'()*+*,%-."*,%/"$*%0*&1%)"('2*3"(%.1(%#'3'.4%(35%$

6"(/%(

78"+38*.&+2"

9%("

:(0"23"/

6"(/%(

9%("

!"#"$%&'()*"+,')-'$"#*%#)./$01230+"4,56/#+),'71#*4)("

! !"#$%&'()*+,"-#.#%(&/$0&1+*23*$%&0#4."5/%#"$4! 63%/%#"$&#$&7".8! 9*$0"$:4)*5#1#5&7".8 ;<: =>?" @-$"+,/.&A/#%B&C"#$%&./D#%(B&/.%*+*0&5"../A*$&4%+35%3+*

! 7".8EF: /.%*+*0&%*$0"$&4%+35%3+*B&#,)/#+*0&%*$0"$&'*/.#$A

?3$&*%&/.GB&@!HG&IJKLB&!"'$4%"$&*%&/.GB&!<MG&IJKN

/.%*+*0&%*$0"$&4%+35%3+*B&#,)/#+*0&%*$0"$&'*/.#$A

Summary of Tendinopathy

Future Directions• Continue to identify co-morbidities that predispose or accelerate tendinopathy

• Most clinical data are from late stage pathology

• Beginning to use genetic animals models to better understand tendinopathy

Remodeling BalancePhysiological exercise increases: proliferation

collagen productiontenocytic gene expression (w/o chondro/ osteo/adipo)

Overuse/ Fatigue: Matrix DamageTenocyte apoptosis

Effects of pathology and/ or co-morbidities: promote degeneration +/- inflammationSmokingobesityhigh cholesterol

!"#$%#&'"()*#+! ,-../...&0"#$%#&1"2(*1&21%3"$41"5&2"1&6"(1

! 78"1&9:.&;*))*%#&*#&(55%3*(0"$&<"()0<&3(1"&3%505

! '"()*#+&*5&3%=2)*3(0"$&>6&53(1&?%1=(0*%#

@%1=()&0"#$%# A3(1&!*554"

!"#$%&'#()*+,#-"&&./. ())(,#0"1"!2.34.5& ())6,#7"815&9% ())+

!"#$%#

B$<"5*%#

C"$53(2"D3%=

!"#$%&%'%()*(+*,-"./)%"/0*12(3-2'%-&

Maximum Load at Failure

14 21 28 35 42 49 63 0

2

4

6

8

10

Days Post-Surgery

[N]

Control

40-5(2*6-)7()

!"#$%&&%'%(')&*+',--.*'/01 2'3&#)$$"4 %(')&*+',--.*'/'566& 278$*'

94&"):%: &"):%:

!".%00-&*6-)7()

Similarities between wound and tendon healing

AJ Jomas et al. 2014. Advanced Drug Delivery ReviewThiruvoth et al. 2015. Plastic and Aesthetic Research

Similarities between wound and tendon healing

Nichols, Best, Loiselle. 2019

Well-regulated inflammation is beneficial-activates healing cascade

-recruitment/activation of cellsExcessive/ Chronic inflammation is pathological

-degenerative matrix changes-fibrotic healing

Inflammation

Benefits of Anti-inflammatory therapy is controversialTiming may be key!

Generally effective at preventing excess scar formationEarly inhibition decreases mechanicsDelayed healing maintains mechanics

Cell-type specific considerations

Virchenko et al., 2004. Am J Sports Med, Geary et al. 2015. PlosOne

Proliferative/ Granulation Phase• Lasts a few weeks• Begins ~day 7 in mouse model• Proliferation of ‘fibroblasts’• Bridging on injury site• Production of ECM components (Col1/ Col3)• Rapid deposition of disorganized ECM

Day 3 Day 14

Thomopoulos et al., 2009. JOR, Thomopoulos et al., 2010. JBJS, Katzel et al. 2010. JOR, Awad Lab, Loiselle Lab

Col3a1 ISH

Tendon

Tendon

ScarTissue

Remodeling Phase• Lasts many months• Begins ~day 21 in mouse model• Reorientation of ECM• Mmp-mediated remodeling

Day 21 Day 28 Day 35

!"#$%&'())*+,-$)./0+%-123/1-

4/#%-$1-5+6-/53/+1.7-8+9():

4;2$.%-5+0).5./0+'(/#6.3/+<+16%-/06,

=.13%0$/.7-5+>?6%$#-))()$%+@$6%.?+A>B@C

>?#-11.D-+>B@+E%35(#6.3/ 4/1(''.#.-/6+>B@+F-;35-)./0

B3)G8+B3)H

>B@+E%35(#./0+B-))1 @@E+E%35(#./0+B-))1

I-/53/+4/J(%K

@$6%.?+@-6$))32%36-./$1-1

'())*+,-$)./0+%-123/1-

4;2$.%-5+0).5./0+'(/#6.3/+<+16%-/06,

4/#%-$1-5+6-/53/+1.7-8+9():

=.13%0$/.7-5+>?6%$#-))()$%+@$6%.?+A>B@C

>?#-11.D-+>B@+E%35(#6.3/ 4/1(''.#.-/6+>B@+F-;35-)./0

B3)G8+B3)H

>B@+E%35(#./0+B-))1

@-6$))32%36-./$1-1

@@E+E%35(#./0+B-))1

!"#$%&'&$( )"*$+",&(-

"(##-11'()+F-2$.%L+M+=-).#$6-+9$)$/#-+3'+5-231.6.3/+$/5+%-;35-)./0

Double-edged sword of tendon healing

Matrix deposition Mechanical properties

Fibrosis

• Thickening and/or scarring of connective tissue• Typically in response to injury• In response to injury fibrosis= scar tissue• Excess matrix deposition• Disorganized matrix• Exuberant healing response

Inflammation Matrix Deposition

!"#$%&'()'*+,&'+-./%,.'01,2+&3'$-.'43#,'!!'*+$1,&,2'(-'4,-.(-'5,$6+-7

!"#$%&'$()*'$+!%(,-$./0$12&3$45"6$4&'7$3*&8$2"8'5"3$

9):;$%&'$()*'$+9%(,-$</0$12&3$45"6$4&'7$=>(?

@A#B$"3C$?&3*

DEFG!H<I$?)2*

!%($

9%(

/

()*'$)8)')&')"8

J**BKL F ./ .@ >. >M

(&NK$O"K'APQ5:*5N

9&5R*K'KPQ5:*5N

.>

S2B*56&8T O3"KU8*V$>/.FV

Body Weight

LFD HFD 0

10

20

30

40

50

Bo

dy

Wei

gh

t (g

)

Diet

LFDHFD

*Fasting Blood Glucose

LFD HFD0

50

100

150

200

250

Diet

mg

/dL

*Glucose Tolerance Test

0 15 30 60 120 0

200

400

600

Blo

od

Glu

cose

[mg

/dL

]

LFDHFD

* **

Time Post-Glucose Bolus

Body Weight

LFD HFD 0

10

20

30

40

50

Bo

dy

Wei

gh

t (g

)

Diet

LFDHFD

*

LFD HFD0

20

40

60

Diet

Bod

y Fa

t [%

]

Percent Body Fat

****

T2DM Impairs Tendon Healing

Ackerman+ PlosOne. 2017.

MTP Flexion Angle

10 14 21 280

10

20

30

40

50

MTP

Fle

xion

Ang

le [D

egre

es]

Days Post- Repair

LFDHFD

**

Gliding Resistance

10 14 21 280

20

40

60

80

Days Post- Repair

Glid

ing

Res

ista

nce

[A.U

.]

*

Max Load at Failure

10 14 21 280

1

2

3

4

Days Post- Repair

Max

Loa

d at

Fai

lure

[N]

LFD HFD **

Col3a1

3 7 10 14 21 280

2

4

6

Days Post-Repair

Rel

ativ

e m

RN

A E

xpre

ssio

n

* *

*HFDLFD

Col1a1

3 7 10 14 21 280

1

2

3

4

Days Post-Repair

Rel

ativ

e m

RN

A E

xpre

ssio

n

*

**

*

!"#$%&'()(*+,%-*.%/)01',%2*3)-44-05(*!"#$%&'()*&+ ,-./

01234

012345555.678 012345555.678

!"#$%#!"#$%#

*

*

*

*

6+9):;'#< 7=">?#)@5-4AB@

F4/80

7 14 21 280

1

2

3

4

5

6

7

Days Post-Repair

Rel

ativ

e E

xpre

ssio

n

Non-T2DMT2DM

*

*

*

&#'(")*"$+,)'(%-.)/"+'%#0"#01(%2%#/"$+,)'(%-.)/"+-("*"#'"&#'(")*"$3+-(%2%#/"$+-(%45#62),,)0%(7+89+,)'*&#'(")*"$3+")(27+)#0545#62),,)0%(7:+8;+,)'*

Aging decreases fibrotic tendon healing (too much)

Ackerman et al., JOR. 2017.

Aging decreases fibrotic tendon healing (too much)

Ackerman et al., JOR. 2017.

No change in proliferative capacityDecreased matrix production on a per cell basisIs the cellular environment the same?

!"#$#%&'(&)*++,&-."#%$&/*%0'%&1*2+#%$3&4%5"#%,#6&7&895"#%,#6

/:*&6*++.+2"&6';<'%*%5,&'(&5*%0'%&:*2+#%$&2"*&%'5&=*++&6:2"265*"#>*0543

TH E JO U R NA L OF BONE & JOINT SURGER Y · JBJS .ORG

VO LU M E 85-A · NU M B ER 3 · MARCH 2003BIOLOG I C AS P E C T S OF FLEXOR TENDON LA CER A T I ON A N D REPAIR

response observed clinically is a combination of extrinsic andintrinsic mechanisms (Fig. 4)1.

The differences between the extrinsic and intrinsic mech-anisms extend beyond the site of origin of the healing cells. Theextrinsic mechanism appears to be active earlier in the healingsequence, whereas the intrinsic mechanism is often delayed10,11.Some studies have demonstrated that the synovial sheath reactswith a greater proliferative and inflammatory response com-pared with the endotenon and tendon proper12. Other studieshave shown the synovial fibroblasts to be more reactive to cy-tokines and to have a greater capacity for degradation of theextracellular matrix11. In addition, it is thought that predomi-nance of the extrinsic mechanism of healing leads to increasedcollagen content at the injury site as well as to a reduction inthe level of collagen organization and material properties of thereparative tendon tissue13,14. For these reasons, it is believed thatthe predominance of the extrinsic mechanism of healing leadsto scar formation and adhesions between the tendon and sur-rounding peritendinous structures.

Modulating the healing process to enhance the intrinsicpathway (and augment end-to-end tendon healing) whilesuppressing the extrinsic pathway (and diminishing adhesionsof the tendon to surrounding tissues) could lead to improve-

ments in the treatment of these injuries. While investigationsinto the biology of tendon healing have shed some light on themechanisms by which tendon tissue heals, there has been rela-tively little progress toward the biologic enhancement of thehealing process after injury and repair. As a result, modulationof the process by which tendons heal remains an appealing,but not currently practicable, concept.

Biologic Solutions to Adhesion Formation: Historical PerspectiveIt is well recognized that motion prevents scar formation1,7,15-17.There is not a specific amount of motion that is needed, onlya relative amount�that is, enough to overcome the problemsof scarring and adhesion formation. If one could decrease theamount of scarring associated with a given amount of mo-tion, less motion would be required. This approach wouldeliminate the need for aggressive postoperative motion pro-tocols that place the tendon repair site at risk for dehiscence.If the ideal scar inhibitor could be found, the patient couldbe treated with postoperative immobilization in a cast orsplint until the tendon healed, allowing the repair to heal in amechanically protected environment without concern aboutadhesions.

Historically, prevention of adhesion formation has beenattempted on two fronts. The first method has been to place aphysical and mechanical barrier between the healing tendonand the surrounding tissues. The rationale for this approachis that limiting contact between the tendon and its sheathdiminishes the amount of adhesions around the repaired ten-don�that is, the tendon is allowed to heal to itself but not tothe sheath and surrounding tissues. The various barrier ma-terials that have been tried include silicone18, polyethylenemembranes19, alumina sheaths20, polytetrafluoroethylene21, andchondroitin sulfate-coated polyhydroxyethyl methacrylate mem-branes22, among many others. In spite of the many differentmaterials studied for this purpose, none are in routine clinicaluse at this time.

In a similar approach, many authors have attempted touse chemical modulation to diminish the amount of scar for-mation after repair. The chemical agents that have been usedin these efforts include local23,24 and parenteral25,26 corticoste-roids, dimethyl sulfoxide27, beta-aminoproprionitrile28, hyalu-ronic acid29,30, and 5-fluorouracil31,32, among many others. Thecommon principle of these methodologies is reduction of in-flammation. In the case of the corticosteroids and hyaluronicacid, the goal is to diminish inflammation by inhibiting lym-phocyte migration, proliferation, and chemotaxis as well asmacrophage motility. Similarly, 5-fluorouracil, an antimetab-olite, suppresses scar formation by inhibiting contraction ofcollagen lattice and proliferation of inflammatory cells31,32.

Researchers using barrier and chemical techniques havereported some degree of adhesion reduction in laboratory andclinical studies of tendon repair18,20,21,23,25,29,31,32. In spite of thesefindings, these methods are not widely used in clinical prac-tice. This suggests that none of them have been demonstratedto be effective in most clinical settings.

Fig. 4

Schematic representation of extrinsic (A) and intrinsic (B) pathways of tendon healing. (Adapted from: Gelberman RH, Vande Berg JS, Lund-borg GN, Akeson WH. Flexor tendon healing and restoration of the glid-ing surface. An ultrastructural study in dogs. J Bone Joint Surg Am. 1983;65:78-79.)

on October 7, 2006 www.ejbjs.orgDownloaded from

543

TH E JO U R NA L OF BONE & JOINT SURGER Y · J BJ S .ORG

VO LU M E 85-A · NU M B ER 3 · MARCH 2003BI O LO G I C AS P E C T S OF FLEXOR TENDON LA CER A T I ON A N D REPAIR

response observed clinically is a combination of extrinsic andintrinsic mechanisms (Fig. 4)1.

The differences between the extrinsic and intrinsic mech-anisms extend beyond the site of origin of the healing cells. Theextrinsic mechanism appears to be active earlier in the healingsequence, whereas the intrinsic mechanism is often delayed10,11.Some studies have demonstrated that the synovial sheath reactswith a greater proliferative and inflammatory response com-pared with the endotenon and tendon proper12. Other studieshave shown the synovial fibroblasts to be more reactive to cy-tokines and to have a greater capacity for degradation of theextracellular matrix11. In addition, it is thought that predomi-nance of the extrinsic mechanism of healing leads to increasedcollagen content at the injury site as well as to a reduction inthe level of collagen organization and material properties of thereparative tendon tissue13,14. For these reasons, it is believed thatthe predominance of the extrinsic mechanism of healing leadsto scar formation and adhesions between the tendon and sur-rounding peritendinous structures.

Modulating the healing process to enhance the intrinsicpathway (and augment end-to-end tendon healing) whilesuppressing the extrinsic pathway (and diminishing adhesionsof the tendon to surrounding tissues) could lead to improve-

ments in the treatment of these injuries. While investigationsinto the biology of tendon healing have shed some light on themechanisms by which tendon tissue heals, there has been rela-tively little progress toward the biologic enhancement of thehealing process after injury and repair. As a result, modulationof the process by which tendons heal remains an appealing,but not currently practicable, concept.

Biologic Solutions to Adhesion Formation: Historical PerspectiveIt is well recognized that motion prevents scar formation1,7,15-17.There is not a specific amount of motion that is needed, onlya relative amount�that is, enough to overcome the problemsof scarring and adhesion formation. If one could decrease theamount of scarring associated with a given amount of mo-tion, less motion would be required. This approach wouldeliminate the need for aggressive postoperative motion pro-tocols that place the tendon repair site at risk for dehiscence.If the ideal scar inhibitor could be found, the patient couldbe treated with postoperative immobilization in a cast orsplint until the tendon healed, allowing the repair to heal in amechanically protected environment without concern aboutadhesions.

Historically, prevention of adhesion formation has beenattempted on two fronts. The first method has been to place aphysical and mechanical barrier between the healing tendonand the surrounding tissues. The rationale for this approachis that limiting contact between the tendon and its sheathdiminishes the amount of adhesions around the repaired ten-don�that is, the tendon is allowed to heal to itself but not tothe sheath and surrounding tissues. The various barrier ma-terials that have been tried include silicone18, polyethylenemembranes19, alumina sheaths20, polytetrafluoroethylene21, andchondroitin sulfate-coated polyhydroxyethyl methacrylate mem-branes22, among many others. In spite of the many differentmaterials studied for this purpose, none are in routine clinicaluse at this time.

In a similar approach, many authors have attempted touse chemical modulation to diminish the amount of scar for-mation after repair. The chemical agents that have been usedin these efforts include local23,24 and parenteral25,26 corticoste-roids, dimethyl sulfoxide27, beta-aminoproprionitrile28, hyalu-ronic acid29,30, and 5-fluorouracil31,32, among many others. Thecommon principle of these methodologies is reduction of in-flammation. In the case of the corticosteroids and hyaluronicacid, the goal is to diminish inflammation by inhibiting lym-phocyte migration, proliferation, and chemotaxis as well asmacrophage motility. Similarly, 5-fluorouracil, an antimetab-olite, suppresses scar formation by inhibiting contraction ofcollagen lattice and proliferation of inflammatory cells31,32.

Researchers using barrier and chemical techniques havereported some degree of adhesion reduction in laboratory andclinical studies of tendon repair18,20,21,23,25,29,31,32. In spite of thesefindings, these methods are not widely used in clinical prac-tice. This suggests that none of them have been demonstratedto be effective in most clinical settings.

Fig. 4

Schematic representation of extrinsic (A) and intrinsic (B) pathways of tendon healing. (Adapted from: Gelberman RH, Vande Berg JS, Lund-borg GN, Akeson WH. Flexor tendon healing and restoration of the glid-ing surface. An ultrastructural study in dogs. J Bone Joint Surg Am. 1983;65:78-79.)

on October 7, 2006 www.ejbjs.orgDownloaded from

!"#"$%&'(&)*+,--.

895"#%,#6&1*2+#%$ 4%5"#%,#6&1*2+#%$

?'%*&;2""'=@&6#"6.+25#%$&6*++,

A%0*(#%*0&B#+#*.CBD'(#E"'E+2,5, F!CGBHICG:*25:&FJ"$KI&C?2,*;*%5&;*;E"2%*

F+2;#%#%ICL

M*,#0*%5&/*%'6D5*,

G69C+#%*2$*

B26"'<:2$*,@&4%(+2;;25'"D&6*++,

!"##$#%&'(%)*)'+,'-"%#*./0'1.2&*.)*3'!"##)4".+352")0'637 &"8%*.)'9")2'8%&:"&';*2<'/"."2*3'2++#)

!"#$%%&$'&(%)*&+,-.)&/012$3

!"#$%%&$'&(%)*&+,-.)&/01$2'1310&4$5"6'7

89:$2' $'&(%)*&+,-;)&<%"7=2$)

>"17$%%$&$'&(%)*&+,,?)&@=4

/(A(B$ $'&(%)*&+,-C)&@DE)

E"2'61BF'1"2&"3&/0GH0$%%7&'"&I$(%12J&17&0"2'6"K$671(%&(2L&0"2'$G'&L$5$2L$2'

8(9&; 8(9&.

8(9&-M 8(9&+-

/0G

!"#$%%&$'&(%)*&+,-.)&/01$2'1310&4$5"6'7

!"#$%& $&'()*+',-./*'0)123%$

!"# !$%

&'()*+,-)+'(.'/.!"01*2#+3 &1003.)'.4120+(56.7151(1*2)+'(.2(8.!"2*.9'*:2)+'(.+3.;("012*

9-(")+'(.+3.0+<10=.)'.,1."'()1#).81>1(81()

!"#$%&$'()*+,-."/0

1234/5 6-77)$6(5*0/89*-$*($:0/;</5<$'(.97"*/(5$8#$!"#$%&

1234/5 !='>

?5+/5@90-; !"#$A$'()*+,-."/0

!"#$B%$'()*+,-."/0

!"

#$!% !$

CD3

&'()*+

, -EF .#

/)+0'121

A- ScxLin – Tmx Washout

3'1245467*1'88'49:;<34.,#=

!"#$%&!"#$%&'()*+,-./.

!"#$%&'((%)'*+,%-./012'3%4'*(567%8'6316%!+0'67+,

012'()"*&34056+,-./0

! !"##$"%$&'( ')**#$+#$,)-)%+'+.*$/"$*./)$0).*+-1

()"'

()"0

!"##$#%&'(%)*)'+,'-"%#*./0'1.2&*.)*3'!"##)

!"#$%&'()'"$*+',-..*'/$%012(

4%5*.*.

!+.2&*6$2*+.'+,'6%)"5".2'5"56&%."'7#%5*.*.89'3"##)'2+':"%#*./'%.;'%;:")*+.',+&5%2*+.

!"##$%&$'(&!)* )+,,-&.$/+&(0-10')1&-2$10$,&+*23+--04'&23450,+-&(630'7&.+$,0'7

89

899

:$;&<"

&=4-1>?

+2$03

!"

!""

#$%&'(#)**+,

>@"%

>A >%BC*

?+2$03

# DEF <"

G$3/+-1

!)*>83+H?1<I&?4-$>J0KI&&!"##$%>LM=234C41+3X

-./0121&3'/.44.156#7-18*)9

Cellular Basis of Healing: Extrinsic Cells

Fluorescence

Bone Marrow AblationBone Marrow Harvest

Bone Marrow Transplant

GFP Bone Marrow Chimeric Mouse

Tendon Injury and Repair

C57BL/6 GFP

!"##$#%&'(%)*)'+,'-"%#*./0'123&*.)*4'!"##)

5%6'78

!"#$%#

!"#$%#

&'()*!+,,-"

!+.3&+#

!"#$%#

(+."'9%&&+:'5"&*;"<'!"##)'9*/&%3"'=>"4*,*4%##6'3+'3?"'@">%*&'=*3"

.%+,"//"*"0*(/12*34531*6/%,7#"2*8(9+:(;(2*<1*"0*(/1*=%-)#(/*%>*?"//*6@A,+%/%BA1*344C

A.B*.C$&"< 5%6'D

! =>"4*,*4'=$EB>+>$#%3*+.)'&"F%*.'$.G.+:.

! H$.43*+.'.+3'I4#"%&

! DEFEGHI*,->>+'+"#0*>%)*($@",+%#*>%)G(0+%#

Future Work

• Delineate intrinsic vs. extrinsic contributions of cell types– Macrophages– S100a4

• Define functions of intrinsic & extrinsic populations• Understand how homeostatic populations change in response

to injury

!"#"$"%&'()"*+"&,($#-*./0%12$(3

!"#"$%&'(&)* +,-".-)(/0-1223/-4**)(5-67-!&68"$&9)(-:*;&*""#&*;

4"'&,*56""7 8&'9%"*56""7

:$;($

<9%"=

:$;($

<9%"=

>$<9%"=

>$<9%"=

!"#"$"%&'()"*+"&,($#-*./0%12$(3

!"#"$%&'(&)* +,-".-)(/0-1223/-456

789#:;*&<-)*$-)$=(.-."*$;*-&8>()*."$-&*-.;-.?"-9)<'-.;-$"."#8&*"-&@-"89#:;*&<-."*$;*A-<;=($-?")(-A<)#B("AA(: &*-)*-)$=(.-"*C&#;*8"*.

D$=(.E-F""'

789#:;*&<E-F""'

789#:;*&<G-F""'A

!"#"$"%&'()"*+"&,($#-*."/$&'&,

!"#$%%&$'&(%)*&+,-.&/012$3

!"#$%&'()*+),')%-./)0123/)4,5,-678,9'

!"#"$"%&'()"*+"&,($#-*."/$&'&,0%&1($#*2,(34,($"&#"*1",,5*&6'"%*"$'7"5(5 ($89%:

2,(;:,69%'%- ;6<9=)%><-'

Where do we go from here? (2017)üCritical mass of labs studying cell lineage/fate/functionüBig data and single-cell RNAseq• Development of tendon specific tools• Identification of new ‘tendon-specific’ markers

! !"#$%#&'"((&)"*"+%,"#"-*.! /"(-#"0*"&12#3*-%#4&%1&4256%62(0*-%#4! 7""$&*%&$"1-#"&3"((&%+-,-#8&(-#"0,"&0#$&10*"! 9#$"+4*0#$-#,&%1&3"((:3"((8&3"((:;0*+-<&-#*"+03*-%#&!6="#%*.6"

>="+"&$%&?"&,%&#%?@!"#$%#&'"((&)"*"+%,"#"-*.

A;;2#"&'"((4B"4-$"#*&!"#%3.*"4

C-5+%*-3&)"0(-#,

9#$"+4*0#$-#,&'"((:'"((&A#*"+03*-%#4/"1-#-#,&'"((&D-#"0,"&0#$&!"+;-#0(&C0*"

A#E2+.

FGHH0I(-#"0,"JK FGHH0I03*-L"J

FGHH0I(-#"0,"JK FGHH0I03*-L":K&MFNOJ

N.%1-5+%5(04*4

FGHH0I(-#"0,"JK FGHH0I03*-L"JK&MFNO:

7%#:;.%1-5+%5(04*4

Tenocyte transition to myofibroblasts?

Ø ”Specialized”/ Activated FibroblastsØ Involved in matrix deposition Ø Restoration of tissue integrity

!"#$%#&'#()*+ ,-.*%/-/

0%&!*"123"#2/

!"#%4+2"&5"2"*%6"#"-2+7$-88"*"#2-19&*"/:%#/"&2%&-#()*+

,-.*%/-/

;4)2"&'#8913312-%# <=4"//&<>?&@":%/-2-%#

?14*%:516"&A"*/-/2"#4">5*%#-4&9%B79"C"9&-#8913312-%#

?+%8-.*%.91/2&A"*/-/2"#4"<=4"//&<>?&A*%$)42-%#

Am J Respir Cell Mol Biol, 2019https://www.atsjournals.org/doi/abs/10.1165/rcmb.2018-0313OC

Fibroblast heterogeneity at baseline with differential contributions to myofibroblast fate

!"#$%&'#$()*+

!"#$%&'()*+,$-+./$*&)%$,0+1").&1+%2#3+&)4#

!"#$%&$'()*+,-./0.# !"#$12$'()*+,-./0.#

! ,34$'(

)*5

! ,34$6)

7&8

50 !m

50 !m50 !m

50 !m

9+,34$$$6)7&8 !4':

9+,34$$$ '()*5 !4': 9+,34$$$ '()*5 !4':

9+,34$$$6)7&8 !4':

4

;

<

!

'=05(*#7>?$"5@$A-5?*>(5"B$)=>A*)$(C0.$*>D0

!"#$%&'()&*#)+,-.$)#.-(,&'+",/$0#(1##'$2344-5$-'6$!7289

!"#$%%$&'($% $#)*+,)-./0)12345236515,)782119

! :#-).;$-..$6#)<-.$=,0)&0.-+(+$-)#$2344-5>?@7289>

! :&$%&7.&%-.,A-(,&'$+##'$,'$BC,#+%#'($&)$-%(,*-(#6$"#/-(,%$+(#..-(#$%#..+

2344-5 @7289 <#)D#

EF,0)&0.-+(?$(#'&%;(#G 8;&=,0)&0.-+(+

HI8$J#/&+,(,&'

HI8$I&'()-%(,&'

J#=,','D$("#$<;&=,0)&0.-+($/)#7%C)+&)+$6C),'D$(#'6&'$"#-.,'D

0

20

40

60

80

Fluo

resc

ent a

rea

[%]

**

S100a4Lin+; α-SMA+

S100a4-GFPpromoter+; α-SMA+

S100a4+ cells are not myofibroblasts in the healing tendonBut, S100a4-lineage cells become α-SMA+ myofibroblasts

Ackerman et al., eLife. 2019

!"#$ %&'()*+),'-./&+.-'!01.234/

567'8!"#93:;<!=9(97>

!"?@A%#3/93:)*+), =3"@

B%4@?/'&@CD.C'"@??/'&E%&'@#-A@//'!"# )*+),'D%1/'-./&+/FAG@A1

!"#$%

5@-%3A

&

H%AI@/&

(1C%03"'J.C&A34F&3.C'.2'!"#B3C %CD'!"# K#-A@//3.C'&.'=1.234A.4?%/&'6%&@

top related