tema 1: conjuntos - universidad de sevilla...tema 1: conjuntos miguel angel olalla acosta...

Post on 31-Dec-2019

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Tema 1: Conjuntos

Miguel Angel Olalla Acostamiguelolalla@us.es

Departamento de AlgebraUniversidad de Sevilla

Septiembre de 2019

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 1 / 78

Contenido

1 Conjuntos. Operaciones basicas

2 Aplicaciones

3 Relaciones de equivalencia. Conjuntos cocientes

4 Conjuntos finitos y conjuntos infinitos

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 2 / 78

Conjuntos. Operaciones basicas

Georg Cantor

Georg Cantor - https://www.youtube.com/watch?v=lL19Edn1QEI

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 3 / 78

Conjuntos. Operaciones basicas

Conjuntos

¿Que es un conjunto?

Definicion (Conjunto)

Llamaremos conjunto a una coleccion de objetos, distintos entre sı, quecomparten una propiedad. Para que un conjunto este bien definido debeser posible discernir si un objeto arbitrario esta o no en el.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 4 / 78

Conjuntos. Operaciones basicas

Conjuntos

¿Que es un conjunto?

Definicion (Conjunto)

Llamaremos conjunto a una coleccion de objetos,

distintos entre sı, quecomparten una propiedad. Para que un conjunto este bien definido debeser posible discernir si un objeto arbitrario esta o no en el.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 4 / 78

Conjuntos. Operaciones basicas

Conjuntos

¿Que es un conjunto?

Definicion (Conjunto)

Llamaremos conjunto a una coleccion de objetos, distintos entre sı,

quecomparten una propiedad. Para que un conjunto este bien definido debeser posible discernir si un objeto arbitrario esta o no en el.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 4 / 78

Conjuntos. Operaciones basicas

Conjuntos

¿Que es un conjunto?

Definicion (Conjunto)

Llamaremos conjunto a una coleccion de objetos, distintos entre sı, quecomparten una propiedad.

Para que un conjunto este bien definido debeser posible discernir si un objeto arbitrario esta o no en el.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 4 / 78

Conjuntos. Operaciones basicas

Conjuntos

¿Que es un conjunto?

Definicion (Conjunto)

Llamaremos conjunto a una coleccion de objetos, distintos entre sı, quecomparten una propiedad. Para que un conjunto este bien definido debeser posible discernir si un objeto arbitrario esta o no en el.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 4 / 78

Conjuntos. Operaciones basicas

Conjuntos

Los conjuntos se definen entre llaves citando todos los objetos de los queconsta o describiendolos.

A = {1, 2, 3, 4, 5},

A = {x | x es un numero natural par}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 5 / 78

Conjuntos. Operaciones basicas

Conjuntos

Los conjuntos se definen entre llaves citando todos los objetos de los queconsta o describiendolos.

A = {1, 2, 3, 4, 5},

A = {x | x es un numero natural par}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 5 / 78

Conjuntos. Operaciones basicas

Conjuntos

Los conjuntos se definen entre llaves citando todos los objetos de los queconsta o describiendolos.

A = {1, 2, 3, 4, 5},

A = {x | x es un numero natural par}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 5 / 78

Conjuntos. Operaciones basicas

Conjuntos

Ejemplo

Uno de los conjuntos mas importantes de las Matematicas es el de losnumeros naturales

N = {x | x es un numero natural} = {0, 1, 2, 3, . . . }.

Para referirnos al conjunto de los naturales estrictamente positivosutilizaremos la siguiente notacion

N+ = {x ∈ N | x > 0} = {1, 2, 3, . . . }.

Otro conjunto igualmente importante es el conjunto de los numerosenteros

Z = {x | x es un numero entero} = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 6 / 78

Conjuntos. Operaciones basicas

Conjuntos

Ejemplo

Uno de los conjuntos mas importantes de las Matematicas es el de losnumeros naturales

N = {x | x es un numero natural} = {0, 1, 2, 3, . . . }.

Para referirnos al conjunto de los naturales estrictamente positivosutilizaremos la siguiente notacion

N+ = {x ∈ N | x > 0} = {1, 2, 3, . . . }.

Otro conjunto igualmente importante es el conjunto de los numerosenteros

Z = {x | x es un numero entero} = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 6 / 78

Conjuntos. Operaciones basicas

Conjuntos

Ejemplo

Uno de los conjuntos mas importantes de las Matematicas es el de losnumeros naturales

N = {x | x es un numero natural} = {0, 1, 2, 3, . . . }.

Para referirnos al conjunto de los naturales estrictamente positivosutilizaremos la siguiente notacion

N+ = {x ∈ N | x > 0} = {1, 2, 3, . . . }.

Otro conjunto igualmente importante es el conjunto de los numerosenteros

Z = {x | x es un numero entero} = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 6 / 78

Conjuntos. Operaciones basicas

Pertenencia

Definicion (Relacion de pertenencia)

Los objetos de los que consta un conjunto se denominan elementos delconjunto y decimos que pertenecen a el. La pertenencia es la relacionfundamental de la Teorıa de conjuntos. Si A es un conjunto y a es unelemento que pertenece a A escribiremos

a ∈ A, que leeremos “a pertenece a A”.

Si b no pertenece a A escribiremos b /∈ A.

Ejemplo

-) si A = {1, 2, 3, 4, 5} se tiene: 1 ∈ A y 6 /∈ A.

-) Si A = {x | x es un numero natural par} se tiene: 2 ∈ A y 3 /∈ A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 7 / 78

Conjuntos. Operaciones basicas

Pertenencia

Definicion (Relacion de pertenencia)

Los objetos de los que consta un conjunto se denominan elementos delconjunto y decimos que pertenecen a el. La pertenencia es la relacionfundamental de la Teorıa de conjuntos. Si A es un conjunto y a es unelemento que pertenece a A escribiremos

a ∈ A, que leeremos “a pertenece a A”.

Si b no pertenece a A escribiremos b /∈ A.

Ejemplo

-) si A = {1, 2, 3, 4, 5} se tiene: 1 ∈ A y 6 /∈ A.

-) Si A = {x | x es un numero natural par} se tiene: 2 ∈ A y 3 /∈ A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 7 / 78

Conjuntos. Operaciones basicas

Familias de conjuntos

En ocasiones hay que considerar varios conjuntos simultaneamente. Enestos casos es frecuente denotar los distintos conjuntos con la misma letray un subındice que los diferencia. Por ejemplo:

1) Para cada i = 0, 1, . . . , 9, definimos los conjuntos Xi como

Xi = {Espanoles cuyo ano de nacimiento termina en i}.

2) Para cada n ∈ N, definimos el conjunto

An = {m ∈ Z |m es multiplo de n}.

De esta forma se tiene una familia infinita {An}n∈N de conjuntos. Enparticular, si n = 5 se tiene

A5 = {. . . ,−10,−5, 0, 5, 10, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 8 / 78

Conjuntos. Operaciones basicas

Familias de conjuntos

En ocasiones hay que considerar varios conjuntos simultaneamente. Enestos casos es frecuente denotar los distintos conjuntos con la misma letray un subındice que los diferencia. Por ejemplo:1) Para cada i = 0, 1, . . . , 9, definimos los conjuntos Xi como

Xi = {Espanoles cuyo ano de nacimiento termina en i}.

2) Para cada n ∈ N, definimos el conjunto

An = {m ∈ Z |m es multiplo de n}.

De esta forma se tiene una familia infinita {An}n∈N de conjuntos. Enparticular, si n = 5 se tiene

A5 = {. . . ,−10,−5, 0, 5, 10, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 8 / 78

Conjuntos. Operaciones basicas

Familias de conjuntos

En ocasiones hay que considerar varios conjuntos simultaneamente. Enestos casos es frecuente denotar los distintos conjuntos con la misma letray un subındice que los diferencia. Por ejemplo:1) Para cada i = 0, 1, . . . , 9, definimos los conjuntos Xi como

Xi = {Espanoles cuyo ano de nacimiento termina en i}.

2) Para cada n ∈ N, definimos el conjunto

An = {m ∈ Z |m es multiplo de n}.

De esta forma se tiene una familia infinita {An}n∈N de conjuntos. Enparticular, si n = 5 se tiene

A5 = {. . . ,−10,−5, 0, 5, 10, . . . }.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 8 / 78

Conjuntos. Operaciones basicas

Igualdad de conjuntos

Definicion (Igualdad de conjuntos)

Dos conjuntos son iguales si y solo si tienen los mismos elementos. Odicho de otra forma, para que dos conjuntos sean distintos es necesarioque uno de ellos tenga algun elemento que no pertenezca al otro.

En forma simbolica, dados dos conjuntos A y B se tiene:

A = B ⇔ (x ∈ A⇔ x ∈ B) .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 9 / 78

Conjuntos. Operaciones basicas

Igualdad de conjuntos

Definicion (Igualdad de conjuntos)

Dos conjuntos son iguales si y solo si tienen los mismos elementos. Odicho de otra forma, para que dos conjuntos sean distintos es necesarioque uno de ellos tenga algun elemento que no pertenezca al otro.En forma simbolica, dados dos conjuntos A y B se tiene:

A = B ⇔ (x ∈ A⇔ x ∈ B) .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 9 / 78

Conjuntos. Operaciones basicas

El conjunto vacıo

Definicion (El conjunto vacıo)

El conjunto que carece de elementos se denomina conjunto vacıo y sedenota por ∅:

∅ = {}.

Un conjunto con un unico elemento se denomina unitario.Notemos que, si X = {x} es un conjunto unitario, debemos distinguirentre el conjunto {x} y el elemento x :

x 6= {x}.

¿Debemos distingir entre ∅ y {∅}?

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 10 / 78

Conjuntos. Operaciones basicas

El conjunto vacıo

Definicion (El conjunto vacıo)

El conjunto que carece de elementos se denomina conjunto vacıo y sedenota por ∅:

∅ = {}.

Un conjunto con un unico elemento se denomina unitario.Notemos que, si X = {x} es un conjunto unitario, debemos distinguirentre el conjunto {x} y el elemento x :

x 6= {x}.

¿Debemos distingir entre ∅ y {∅}?

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 10 / 78

Conjuntos. Operaciones basicas

El conjunto vacıo

Definicion (El conjunto vacıo)

El conjunto que carece de elementos se denomina conjunto vacıo y sedenota por ∅:

∅ = {}.

Un conjunto con un unico elemento se denomina unitario.Notemos que, si X = {x} es un conjunto unitario, debemos distinguirentre el conjunto {x} y el elemento x :

x 6= {x}.

¿Debemos distingir entre ∅ y {∅}?

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 10 / 78

Conjuntos. Operaciones basicas

Subconjunto

Definicion (Subconjunto)

Dados dos conjuntos A y B, diremos que A es un subconjunto de B sitodo elemento de A es tambien un elemento de B. Lo notaremos porA ⊂ B, en caso contrario escribiremos A 6⊂ B.

En forma simbolica:

A ⊂ B ⇔ (x ∈ A⇒ x ∈ B) .

Dos conjuntos son iguales si se verifica que A ⊂ B y B ⊂ A.

Habitualmente se utiliza la prueba por doble inclusion para demostrarque dos conjuntos son iguales.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 11 / 78

Conjuntos. Operaciones basicas

Subconjunto

Definicion (Subconjunto)

Dados dos conjuntos A y B, diremos que A es un subconjunto de B sitodo elemento de A es tambien un elemento de B. Lo notaremos porA ⊂ B, en caso contrario escribiremos A 6⊂ B.En forma simbolica:

A ⊂ B ⇔ (x ∈ A⇒ x ∈ B) .

Dos conjuntos son iguales si se verifica que A ⊂ B y B ⊂ A.

Habitualmente se utiliza la prueba por doble inclusion para demostrarque dos conjuntos son iguales.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 11 / 78

Conjuntos. Operaciones basicas

Subconjunto

Definicion (Subconjunto)

Dados dos conjuntos A y B, diremos que A es un subconjunto de B sitodo elemento de A es tambien un elemento de B. Lo notaremos porA ⊂ B, en caso contrario escribiremos A 6⊂ B.En forma simbolica:

A ⊂ B ⇔ (x ∈ A⇒ x ∈ B) .

Dos conjuntos son iguales si se verifica que A ⊂ B y B ⊂ A.

Habitualmente se utiliza la prueba por doble inclusion para demostrarque dos conjuntos son iguales.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 11 / 78

Conjuntos. Operaciones basicas

Subconjunto

Definicion (Subconjunto)

Dados dos conjuntos A y B, diremos que A es un subconjunto de B sitodo elemento de A es tambien un elemento de B. Lo notaremos porA ⊂ B, en caso contrario escribiremos A 6⊂ B.En forma simbolica:

A ⊂ B ⇔ (x ∈ A⇒ x ∈ B) .

Dos conjuntos son iguales si se verifica que A ⊂ B y B ⊂ A.

Habitualmente se utiliza la prueba por doble inclusion para demostrarque dos conjuntos son iguales.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 11 / 78

Conjuntos. Operaciones basicas

Subconjunto

Proposicion (1.1.2)

Sean A, B y C tres conjuntos cualesquiera. Se tienen las siguientespropiedades:

a) A ⊂ A, ∅ ⊂ A.

b) Si A ⊂ B y B ⊂ C , entonces A ⊂ C .

Los subconjuntos de A distintos de ∅ y de A se denominan subconjuntospropios de A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 12 / 78

Conjuntos. Operaciones basicas

Subconjunto

Proposicion (1.1.2)

Sean A, B y C tres conjuntos cualesquiera. Se tienen las siguientespropiedades:

a) A ⊂ A, ∅ ⊂ A.

b) Si A ⊂ B y B ⊂ C , entonces A ⊂ C .

Los subconjuntos de A distintos de ∅ y de A se denominan subconjuntospropios de A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 12 / 78

Conjuntos. Operaciones basicas

Conjunto universal

Definicion (Conjunto universal)

El conjunto universal o de referencia, que lo notaremos por U, es unconjunto del que son subconjuntos todos los posibles conjuntos que originael problema que tratamos.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 13 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U, U = ∅, A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ =

U, U = ∅, A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U,

U = ∅, A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U, U =

∅, A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U, U = ∅,

A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U, U = ∅, A =

A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Complementario

Definicion (Complementario)

Supongamos que hayamos fijado un conjunto universal U. Dado unconjunto A se define el complementario de A, notado por A o Ac , como

A = {x | x ∈ U, x /∈ A}.

Se dan las siguientes igualdades: ∅ = U, U = ∅, A = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 14 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Definicion (Union de conjuntos)

Dados dos conjuntos A y B se define la union de A y B, notado porA ∪ B, como el conjunto formado por aquellos elementos que pertenecenal menos a uno de los dos conjuntos, A o B, es decir

A ∪ B = {x | x ∈ A ∨ x ∈ B}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 15 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

De igual forma se define la union de una familia finita de conjuntos

A1 ∪ · · · ∪ An =n⋃

i=1

Ai ,

o de una familia arbitraria A = {Ai}i∈I ,⋃A =

⋃i∈I

Ai = {x | ∃i ∈ I tal que x ∈ Ai}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 16 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

De igual forma se define la union de una familia finita de conjuntos

A1 ∪ · · · ∪ An =n⋃

i=1

Ai ,

o de una familia arbitraria A = {Ai}i∈I ,⋃A =

⋃i∈I

Ai = {x | ∃i ∈ I tal que x ∈ Ai}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 16 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Union de conjuntos

Proposicion (Propiedades de la union)

La union de conjuntos verifica las siguientes propiedades, para cualesquieraconjuntos A, B y C :

(a) Conmutativa: A ∪ B = B ∪ A.

(b) Asociativa: (A ∪ B) ∪ C = A ∪ (B ∪ C ).

(c) A ⊂ A ∪ B, B ⊂ A ∪ B.

(d) ∅ ∪ A = A.

(e) A ⊂ B si y solo si A ∪ B = B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 17 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Definicion (Interseccion de conjuntos)

Dados dos conjuntos A y B se define la interseccion de A y B, notadopor A ∩ B, como el conjunto formado por aquellos elementos quepertenecen a los dos conjuntos, A y B, es decir

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 18 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

De igual forma se define la interseccion de una familia finita de conjuntos

A1 ∩ · · · ∩ An =n⋂

i=1

Ai ,

o de una familia arbitraria A = {Ai}i∈I ,⋂A =

⋂i∈I

Ai = {x | x ∈ Ai∀i ∈ I}.

Si A y B son dos conjuntos tales que A ∩ B = ∅ se dice que A y B sondisjuntos.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 19 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

De igual forma se define la interseccion de una familia finita de conjuntos

A1 ∩ · · · ∩ An =n⋂

i=1

Ai ,

o de una familia arbitraria A = {Ai}i∈I ,⋂A =

⋂i∈I

Ai = {x | x ∈ Ai∀i ∈ I}.

Si A y B son dos conjuntos tales que A ∩ B = ∅ se dice que A y B sondisjuntos.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 19 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

De igual forma se define la interseccion de una familia finita de conjuntos

A1 ∩ · · · ∩ An =n⋂

i=1

Ai ,

o de una familia arbitraria A = {Ai}i∈I ,⋂A =

⋂i∈I

Ai = {x | x ∈ Ai∀i ∈ I}.

Si A y B son dos conjuntos tales que A ∩ B = ∅ se dice que A y B sondisjuntos.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 19 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.

(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Interseccion de conjuntos

Proposicion (Propiedades de la interseccion)

La interseccion de conjuntos verifica las siguientes propiedades, paracualesquiera conjuntos A, B y C :

(a) Conmutativa: A ∩ B = B ∩ A.

(b) Asociativa: (A ∩ B) ∩ C = A ∩ (B ∩ C ).

(c) A ∩ B ⊂ A, A ∩ B ⊂ B.

(d) ∅ ∩ A = ∅.(e) A ⊂ B si y solo si A ∩ B = A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 20 / 78

Conjuntos. Operaciones basicas

Diferencia de conjuntos

Definicion (Diferencia de conjuntos)

Dados dos conjuntos A y B se define la diferencia de A y B, notada porA \ B, como el conjunto formado por aquellos elementos de A que nopertenecen a B, es decir

A \ B = {x | x ∈ A ∧ x /∈ B}.

Si hay un conjunto universal U fijado, entonces A \ B = A ∩ B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 21 / 78

Conjuntos. Operaciones basicas

Diferencia de conjuntos

Definicion (Diferencia de conjuntos)

Dados dos conjuntos A y B se define la diferencia de A y B, notada porA \ B, como el conjunto formado por aquellos elementos de A que nopertenecen a B, es decir

A \ B = {x | x ∈ A ∧ x /∈ B}.

Si hay un conjunto universal U fijado, entonces A \ B = A ∩ B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 21 / 78

Conjuntos. Operaciones basicas

Diferencia simetrica de conjuntos

Definicion (Diferencia simetrica de conjuntos)

Dados dos conjuntos A y B se define la diferencia simetrica de A y B,notada por A4B, como el conjunto formado por aquellos elementos quepertenecen a uno solo de los conjuntos A y B, es decir

A4B = {x | x ∈ A \ B ∨ x ∈ B \ A}.

Se tiene que A4B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 22 / 78

Conjuntos. Operaciones basicas

Diferencia simetrica de conjuntos

Definicion (Diferencia simetrica de conjuntos)

Dados dos conjuntos A y B se define la diferencia simetrica de A y B,notada por A4B, como el conjunto formado por aquellos elementos quepertenecen a uno solo de los conjuntos A y B, es decir

A4B = {x | x ∈ A \ B ∨ x ∈ B \ A}.

Se tiene que A4B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 22 / 78

Conjuntos. Operaciones basicas

Diferencia simetrica de conjuntos

Si hay un conjunto universal U fijado, entonces

A4B = (A ∩ B) ∪ (A ∩ B).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 23 / 78

Conjuntos. Operaciones basicas

Propiedades de las operaciones entre conjuntos

Proposicion (1.1.7)

Sean A y B dos conjuntos. Se satisfacen las siguientes propiedades:

1 A ∩ (B \ A) = ∅.

2 A ∪ (B \ A) = A ∪ B (si A ⊂ B entonces A ∪ (B \ A) = B).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 24 / 78

Conjuntos. Operaciones basicas

Propiedades de las operaciones entre conjuntos

Proposicion (1.1.7)

Sean A y B dos conjuntos. Se satisfacen las siguientes propiedades:

1 A ∩ (B \ A) = ∅.2 A ∪ (B \ A) = A ∪ B (si A ⊂ B entonces A ∪ (B \ A) = B).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 24 / 78

Conjuntos. Operaciones basicas

Leyes distributivas y de De Morgan

Teorema (Leyes distributivas y de De Morgan)

Dados tres conjuntos A, B y C se verifican las siguientes igualdades:

(a) Leyes distributivas:

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ), A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ).

(b) Leyes de De Morgan:

C \ (A ∪ B) = (C \ A) ∩ (C \ B), C \ (A ∩ B) = (C \ A) ∪ (C \ B).

Fijado un conjunto universal U, tomando C = U, la leyes de De Morgannos dicen que: A ∪ B = A ∩ B, A ∩ B = A ∪ B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 25 / 78

Conjuntos. Operaciones basicas

Leyes distributivas y de De Morgan

Teorema (Leyes distributivas y de De Morgan)

Dados tres conjuntos A, B y C se verifican las siguientes igualdades:

(a) Leyes distributivas:

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ), A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ).

(b) Leyes de De Morgan:

C \ (A ∪ B) = (C \ A) ∩ (C \ B), C \ (A ∩ B) = (C \ A) ∪ (C \ B).

Fijado un conjunto universal U, tomando C = U, la leyes de De Morgannos dicen que: A ∪ B = A ∩ B, A ∩ B = A ∪ B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 25 / 78

Conjuntos. Operaciones basicas

Leyes distributivas y de De Morgan

Teorema (Leyes distributivas y de De Morgan)

Dados tres conjuntos A, B y C se verifican las siguientes igualdades:

(a) Leyes distributivas:

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ), A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ).

(b) Leyes de De Morgan:

C \ (A ∪ B) = (C \ A) ∩ (C \ B), C \ (A ∩ B) = (C \ A) ∪ (C \ B).

Fijado un conjunto universal U, tomando C = U, la leyes de De Morgannos dicen que: A ∪ B = A ∩ B, A ∩ B = A ∪ B.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 25 / 78

Conjuntos. Operaciones basicas

Partes de un conjunto

Definicion (Partes de un conjunto)

Dado un conjunto X , el conjunto de las partes de X , notado P(X ), esel conjunto cuyos elementos son todos los subconjuntos de X .De manera simbolica:

A ∈ P(X )⇔ A ⊂ X .

La consideracion del conjunto P(X ) transforma pues la propiedad “sersubconjunto de X” en ser “elemento perteneciente a P(X )”:

Notese que si B ⊂ C , se tiene P(B) ⊂ P(C ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 26 / 78

Conjuntos. Operaciones basicas

Partes de un conjunto

Definicion (Partes de un conjunto)

Dado un conjunto X , el conjunto de las partes de X , notado P(X ), esel conjunto cuyos elementos son todos los subconjuntos de X .De manera simbolica:

A ∈ P(X )⇔ A ⊂ X .

La consideracion del conjunto P(X ) transforma pues la propiedad “sersubconjunto de X” en ser “elemento perteneciente a P(X )”:

Notese que si B ⊂ C , se tiene P(B) ⊂ P(C ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 26 / 78

Conjuntos. Operaciones basicas

Partes de un conjunto

Definicion (Partes de un conjunto)

Dado un conjunto X , el conjunto de las partes de X , notado P(X ), esel conjunto cuyos elementos son todos los subconjuntos de X .De manera simbolica:

A ∈ P(X )⇔ A ⊂ X .

La consideracion del conjunto P(X ) transforma pues la propiedad “sersubconjunto de X” en ser “elemento perteneciente a P(X )”:

Notese que si B ⊂ C , se tiene P(B) ⊂ P(C ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 26 / 78

Conjuntos. Operaciones basicas

Pares ordenados

Definicion (Pares ordenados)

Dados dos objetos x e y , diremos que x (respectivamente y) es la primera(resp. la segunda) componente del par ordenado (x , y). Dos paresordenados son iguales si y solo si coinciden sus primeras componentes ycoinciden sus segundas componentes:

(x , y) = (x ′, y ′)⇔

x = x ′

∧y = y ′.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 27 / 78

Conjuntos. Operaciones basicas

Producto cartesiano

Definicion (Producto cartesiano)

Dados dos conjuntos A y B, se define el producto cartesiano de A y Bcomo el conjunto de pares ordenados formados (por este orden) por unelemento de A y uno de B y se denota

A× B = {(a, b) | a ∈ A, b ∈ B}.

Notese que ∅ × B = ∅ = A× ∅.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 28 / 78

Conjuntos. Operaciones basicas

Producto cartesiano

Tambien se puede definir el producto cartesiano de una cantidad finita deconjuntos de la forma natural

A1 × · · · × An =n∏

i=1

Ai = {(a1, . . . , an) | ai ∈ Ai , para i = 1, . . . , n}.

Cuando todos los Ai son iguales a un conjunto dado A notaremosAn = A× · · · × A (n veces).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 29 / 78

Conjuntos. Operaciones basicas

Producto cartesiano

Tambien se puede definir el producto cartesiano de una cantidad finita deconjuntos de la forma natural

A1 × · · · × An =n∏

i=1

Ai = {(a1, . . . , an) | ai ∈ Ai , para i = 1, . . . , n}.

Cuando todos los Ai son iguales a un conjunto dado A notaremosAn = A× · · · × A (n veces).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 29 / 78

Aplicaciones

Aplicacion

Definicion (Aplicacion)

Dados dos conjuntos X e Y , una aplicacion f de X en Y , lo notaremosf : X → Y , es una regla que asocia a cada elemento x ∈ X un elementode f (x) ∈ Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 30 / 78

Aplicaciones

Ejemplos

Ejemplo

1) Sea X un conjunto cualquiera. Siempre se tiene la aplicacion

f : X → X , definida por f (x) = x , ∀x ∈ X ,

que llamaremos aplicacion identidad y notaremos por 1X .

2) Sean X ,Y conjuntos cualesquiera e y0 ∈ Y un elemento fijo. Siemprese tiene la aplicacion

g : X → Y definida por g(x) = y0, ∀x ∈ X ,

que llamaremos aplicacion constante (con valor y0).3) Si X es un subconjunto de Y , X ⊂ Y , siempre disponemos de unaaplicacion especial iX : X → Y , definida por iX (x) = x para cada x ∈ X .Dicha aplicacion se denomina la inclusion de X en Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 31 / 78

Aplicaciones

Ejemplos

Ejemplo

1) Sea X un conjunto cualquiera. Siempre se tiene la aplicacion

f : X → X , definida por f (x) = x , ∀x ∈ X ,

que llamaremos aplicacion identidad y notaremos por 1X .2) Sean X ,Y conjuntos cualesquiera e y0 ∈ Y un elemento fijo. Siemprese tiene la aplicacion

g : X → Y definida por g(x) = y0, ∀x ∈ X ,

que llamaremos aplicacion constante (con valor y0).

3) Si X es un subconjunto de Y , X ⊂ Y , siempre disponemos de unaaplicacion especial iX : X → Y , definida por iX (x) = x para cada x ∈ X .Dicha aplicacion se denomina la inclusion de X en Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 31 / 78

Aplicaciones

Ejemplos

Ejemplo

1) Sea X un conjunto cualquiera. Siempre se tiene la aplicacion

f : X → X , definida por f (x) = x , ∀x ∈ X ,

que llamaremos aplicacion identidad y notaremos por 1X .2) Sean X ,Y conjuntos cualesquiera e y0 ∈ Y un elemento fijo. Siemprese tiene la aplicacion

g : X → Y definida por g(x) = y0, ∀x ∈ X ,

que llamaremos aplicacion constante (con valor y0).3) Si X es un subconjunto de Y , X ⊂ Y , siempre disponemos de unaaplicacion especial iX : X → Y , definida por iX (x) = x para cada x ∈ X .Dicha aplicacion se denomina la inclusion de X en Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 31 / 78

Aplicaciones

Mas ejemplos

Ejemplo

4) Si X e Y son conjuntos, las aplicaciones p : X × Y → X ,q : X × Y → Y dadas por

p(x , y) = x , q(x , y) = y

se denominan respectivamente primera y segunda proyeccion.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 32 / 78

Aplicaciones

Aplicacion

Sean X e Y conjuntos y f : X → Y una aplicacion. Dado x ∈ X ,llamaremos imagen de x al unico elemento f (x) ∈ Y asociado con el. Aveces tambien llamaremos a f (x) el valor de f en x .

De esta notacion surge la terminologıa de llamar a X conjunto departida (o dominio) y a Y conjunto de llegada de la aplicacion f .Para dar una aplicacion debemos indicar:

-) su conjunto de partida,

-) su conjunto de llegada, y

-) la imagen de cada elemento del conjunto de partida, que habra de serun unico elemento del conjunto de llegada.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 33 / 78

Aplicaciones

Aplicacion

Sean X e Y conjuntos y f : X → Y una aplicacion. Dado x ∈ X ,llamaremos imagen de x al unico elemento f (x) ∈ Y asociado con el. Aveces tambien llamaremos a f (x) el valor de f en x .De esta notacion surge la terminologıa de llamar a X conjunto departida (o dominio) y a Y conjunto de llegada de la aplicacion f .

Para dar una aplicacion debemos indicar:

-) su conjunto de partida,

-) su conjunto de llegada, y

-) la imagen de cada elemento del conjunto de partida, que habra de serun unico elemento del conjunto de llegada.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 33 / 78

Aplicaciones

Aplicacion

Sean X e Y conjuntos y f : X → Y una aplicacion. Dado x ∈ X ,llamaremos imagen de x al unico elemento f (x) ∈ Y asociado con el. Aveces tambien llamaremos a f (x) el valor de f en x .De esta notacion surge la terminologıa de llamar a X conjunto departida (o dominio) y a Y conjunto de llegada de la aplicacion f .Para dar una aplicacion debemos indicar:

-) su conjunto de partida,

-) su conjunto de llegada, y

-) la imagen de cada elemento del conjunto de partida, que habra de serun unico elemento del conjunto de llegada.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 33 / 78

Aplicaciones

Igualdad de aplicaciones

Para probar que dos aplicaciones f , g : A −→ B son iguales debemosprobar es que las imagenes de cualquier elemento de A por f y por gcoinciden. Simbolicamente

f = g ⇔ f (x) = g(x) ∀x ∈ A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 34 / 78

Aplicaciones

Exponenciacion de conjuntos

Definicion (Exponenciacion de conjuntos)

Dados dos conjuntos X e Y , el conjunto Y elevado a X , notado Y X , espor definicion el conjunto cuyos elementos son todas las aplicaciones de Xen Y :

Y X = {f : X → Y | tal que f es una aplicacion.}.

Ejercicio

Dados los cojuntos X = {a, b, c} e Y = {0, 1} dar el conjunto Y X .¿Cuantos elementos tiene? ¿Guarda alguna relacion este numero con lacantidad de elementos de X

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 35 / 78

Aplicaciones

Producto cartesiano de aplicaciones

Definicion (Producto cartesiano de aplicaciones)

Dadas dos aplicaciones f : X → Y y f ′ : X ′ → Y ′, el productocartesiano de f y f ′ es la aplicacion que denotaremosf × f ′ : X × X ′ → Y × Y ′ definida por

(f × f ′)(x , x ′) = (f (x), f ′(x ′)), para cada (x , x ′) ∈ X × X ′.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 36 / 78

Aplicaciones

Imagen

Definicion (Imagen)

Dada una aplicacion f : X → Y y un subconjunto A ⊂ X , definimos laimagen de A (o imagen directa de A), notada f (A), como

f (A) = {y ∈ Y | ∃x ∈ A con f (x) = y} ⊂ Y ,

esto es, el conjunto de elementos del conjunto de llegada que son imagende un elemento de A. Si A = X se denota f (X ) = Im(f ) y se denominaimagen de f .

En general, si f : X → Y es una aplicacion, f (X ) 6= Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 37 / 78

Aplicaciones

Imagen

Definicion (Imagen)

Dada una aplicacion f : X → Y y un subconjunto A ⊂ X , definimos laimagen de A (o imagen directa de A), notada f (A), como

f (A) = {y ∈ Y | ∃x ∈ A con f (x) = y} ⊂ Y ,

esto es, el conjunto de elementos del conjunto de llegada que son imagende un elemento de A. Si A = X se denota f (X ) = Im(f ) y se denominaimagen de f .

En general, si f : X → Y es una aplicacion, f (X ) 6= Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 37 / 78

Aplicaciones

Anti-imagen

Definicion (Anti-imagen)

Dada una aplicacion f : X → Y y un subconjunto B ⊂ Y , definimos laanti–imagen (o contraimagen, o imagen recıproca o imagen inversa) deB, notada f −1(B), como

f −1(B) = {x ∈ X | f (x) ∈ B} ⊂ X ,

esto es, el conjunto de elementos del conjunto de partida cuya imagenpertenece a B.

Si f : X → Y es una aplicacion, se verifica siempre que f −1(Y ) = X .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 38 / 78

Aplicaciones

Anti-imagen

Definicion (Anti-imagen)

Dada una aplicacion f : X → Y y un subconjunto B ⊂ Y , definimos laanti–imagen (o contraimagen, o imagen recıproca o imagen inversa) deB, notada f −1(B), como

f −1(B) = {x ∈ X | f (x) ∈ B} ⊂ X ,

esto es, el conjunto de elementos del conjunto de partida cuya imagenpertenece a B.

Si f : X → Y es una aplicacion, se verifica siempre que f −1(Y ) = X .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 38 / 78

Aplicaciones

Notacion f (·)

Dada una aplicacion f : X −→ Y , la notacion f (·) se utiliza para dossituaciones distintas:

-) Cuando x ∈ X , es decir, x es un elemento que pertenece a X , f (x)denota la imagen de x por f , que es un elemento que pertenece a Y :f (x) ∈ Y .

-) Cuando A ⊂ X , es decir, A es un subconjunto de X , f (A) denota laimagen (directa) de A, que es un subconjunto de Y : f (A) ⊂ Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 39 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.5)

Sea f : X → Y una aplicacion. Se verifica

1 f (∅) = ∅.2 f −1(∅) = ∅.3 Si A ⊂ A′ son subconjutos de X entonces f (A) ⊂ f (A′).

4 Si B ⊂ B ′ son subconjutos de Y entonces f −1(B) ⊂ f −1(B ′).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 40 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.5)

Sea f : X → Y una aplicacion. Se verifica

1 f (∅) = ∅.2 f −1(∅) = ∅.

3 Si A ⊂ A′ son subconjutos de X entonces f (A) ⊂ f (A′).

4 Si B ⊂ B ′ son subconjutos de Y entonces f −1(B) ⊂ f −1(B ′).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 40 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.5)

Sea f : X → Y una aplicacion. Se verifica

1 f (∅) = ∅.2 f −1(∅) = ∅.3 Si A ⊂ A′ son subconjutos de X entonces f (A) ⊂ f (A′).

4 Si B ⊂ B ′ son subconjutos de Y entonces f −1(B) ⊂ f −1(B ′).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 40 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.8)

Sean f : X → Y una aplicacion, A1,A2 ⊂ X y B1,B2 ⊂ Y . Se verifica:

(a) f (A1 ∪ A2) = f (A1) ∪ f (A2),f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2).

(b) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2),f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).

(c) f (f −1(B1)) ⊂ B1,A1 ⊂ f −1(f (A1)).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 41 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.8)

Sean f : X → Y una aplicacion, A1,A2 ⊂ X y B1,B2 ⊂ Y . Se verifica:

(a) f (A1 ∪ A2) = f (A1) ∪ f (A2),f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2).

(b) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2),f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).

(c) f (f −1(B1)) ⊂ B1,A1 ⊂ f −1(f (A1)).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 41 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.8)

Sean f : X → Y una aplicacion, A1,A2 ⊂ X y B1,B2 ⊂ Y . Se verifica:

(a) f (A1 ∪ A2) = f (A1) ∪ f (A2),f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2).

(b) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2),f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).

(c) f (f −1(B1)) ⊂ B1,A1 ⊂ f −1(f (A1)).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 41 / 78

Aplicaciones

Propiedades de la imagen y la anti-imagen

Proposicion (1.2.8)

Sean f : X → Y una aplicacion, A1,A2 ⊂ X y B1,B2 ⊂ Y . Se verifica:

(a) f (A1 ∪ A2) = f (A1) ∪ f (A2),f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2).

(b) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2),f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).

(c) f (f −1(B1)) ⊂ B1,A1 ⊂ f −1(f (A1)).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 41 / 78

Aplicaciones

Imagen inversa de un subconjunto unitario

Sea f : X → Y una aplicacion e {y} ⊂ Y un subconjunto unitario de Y .Con objeto de aligerar la notacion, en la mayorıa de los textos se escribef −1(y) en lugar de f −1({y}), es decir, la notacion f −1(y) se refiere a:

f −1(y) = {x ∈ X | f (x) ∈ {y}} = {x ∈ X | f (x) = y}.

Hemos de tener especial cuidado con esta notacion, pues puedeconfundirse con la imagen de y por la aplicacion inversa de f , cuandodicha aplicacion inversa exista (veremos algo mas sobre la notacion f −1(·)en la pagina 52).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 42 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Definicion (Aplicaciones inyectivas, sobreyectivas y biyectivas)

Sea una aplicacion f : X −→ Y .(a) f se dice inyectiva si dos elementos distintos de X siempre tienenimagenes distintas. Dicho de otro modo, si para x , x ′ ∈ X se tiene

f (x) = f (x ′)⇒ x = x ′.

(b) f se dice sobreyectiva (o sobre) si todo elemento de Y es imagen dealgun elemento de X . O sea, f es sobre si f (X ) = Im(f ) = Y , o dicho deotro modo, si

∀y ∈ Y ,∃x ∈ X tal que f (x) = y .

(c) f se dice biyectiva si es inyectiva y sobreyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 43 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Definicion (Aplicaciones inyectivas, sobreyectivas y biyectivas)

Sea una aplicacion f : X −→ Y .(a) f se dice inyectiva si dos elementos distintos de X siempre tienenimagenes distintas. Dicho de otro modo, si para x , x ′ ∈ X se tiene

f (x) = f (x ′)⇒ x = x ′.

(b) f se dice sobreyectiva (o sobre) si todo elemento de Y es imagen dealgun elemento de X . O sea, f es sobre si f (X ) = Im(f ) = Y , o dicho deotro modo, si

∀y ∈ Y ,∃x ∈ X tal que f (x) = y .

(c) f se dice biyectiva si es inyectiva y sobreyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 43 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Definicion (Aplicaciones inyectivas, sobreyectivas y biyectivas)

Sea una aplicacion f : X −→ Y .(a) f se dice inyectiva si dos elementos distintos de X siempre tienenimagenes distintas. Dicho de otro modo, si para x , x ′ ∈ X se tiene

f (x) = f (x ′)⇒ x = x ′.

(b) f se dice sobreyectiva (o sobre) si todo elemento de Y es imagen dealgun elemento de X . O sea, f es sobre si f (X ) = Im(f ) = Y , o dicho deotro modo, si

∀y ∈ Y ,∃x ∈ X tal que f (x) = y .

(c) f se dice biyectiva si es inyectiva y sobreyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 43 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Proposicion (1.2.10)

Sean dos numeros enteros m, n ≥ 1. Probar que existe una aplicacionbiyectiva f : {1, . . . ,m} × {1, . . . , n} → {1, . . . ,mn}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 44 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 45 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Nota (1.2.11)

En terminos de la imagen inversa de conjuntos unitarios tenemos lassiguientes equivalencias:

(a) f es inyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, a lo mas, de un elemento.

(b) f es sobre si y solo si para todo y ∈ Y , el conjunto f −1({y}) consta,por lo menos, de un elemento (es decir, es no vacıo).

(c) f es biyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, exactamente, de un elemento.

Solo en este ultimo caso tiene sentido hablar de aplicacion inversa.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 46 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Nota (1.2.11)

En terminos de la imagen inversa de conjuntos unitarios tenemos lassiguientes equivalencias:

(a) f es inyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, a lo mas, de un elemento.

(b) f es sobre si y solo si para todo y ∈ Y , el conjunto f −1({y}) consta,por lo menos, de un elemento (es decir, es no vacıo).

(c) f es biyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, exactamente, de un elemento.

Solo en este ultimo caso tiene sentido hablar de aplicacion inversa.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 46 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Nota (1.2.11)

En terminos de la imagen inversa de conjuntos unitarios tenemos lassiguientes equivalencias:

(a) f es inyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, a lo mas, de un elemento.

(b) f es sobre si y solo si para todo y ∈ Y , el conjunto f −1({y}) consta,por lo menos, de un elemento (es decir, es no vacıo).

(c) f es biyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, exactamente, de un elemento.

Solo en este ultimo caso tiene sentido hablar de aplicacion inversa.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 46 / 78

Aplicaciones

Aplicaciones inyectivas, sobreyectivas y biyectivas

Nota (1.2.11)

En terminos de la imagen inversa de conjuntos unitarios tenemos lassiguientes equivalencias:

(a) f es inyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, a lo mas, de un elemento.

(b) f es sobre si y solo si para todo y ∈ Y , el conjunto f −1({y}) consta,por lo menos, de un elemento (es decir, es no vacıo).

(c) f es biyectiva si y solo si para todo y ∈ Y , el conjunto f −1({y})consta, exactamente, de un elemento.

Solo en este ultimo caso tiene sentido hablar de aplicacion inversa.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 46 / 78

Aplicaciones

Composicion de aplicaciones

Definicion (Composicion de aplicaciones)

Dadas dos aplicaciones f : X −→ Y y g : Y −→ Z se define lacomposicion de f y g , notada g ◦ f : X −→ Z , que sera una aplicacion deX en Z , como

(g ◦ f )(x) = g(f (x)), para todo x ∈ X .

Obviamente g ◦ f : X → Z es una aplicacion.Ademas la composicion de aplicaciones verifica la propiedad asociativa:

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 47 / 78

Aplicaciones

Composicion de aplicaciones

Definicion (Composicion de aplicaciones)

Dadas dos aplicaciones f : X −→ Y y g : Y −→ Z se define lacomposicion de f y g , notada g ◦ f : X −→ Z , que sera una aplicacion deX en Z , como

(g ◦ f )(x) = g(f (x)), para todo x ∈ X .

Obviamente g ◦ f : X → Z es una aplicacion.

Ademas la composicion de aplicaciones verifica la propiedad asociativa:

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 47 / 78

Aplicaciones

Composicion de aplicaciones

Definicion (Composicion de aplicaciones)

Dadas dos aplicaciones f : X −→ Y y g : Y −→ Z se define lacomposicion de f y g , notada g ◦ f : X −→ Z , que sera una aplicacion deX en Z , como

(g ◦ f )(x) = g(f (x)), para todo x ∈ X .

Obviamente g ◦ f : X → Z es una aplicacion.Ademas la composicion de aplicaciones verifica la propiedad asociativa:

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 47 / 78

Aplicaciones

Aplicaciones invertibles

Definicion (Aplicaciones invertibles)

Diremos que una aplicacion f : X −→ Y es invertible cuando exista unaaplicacion g : Y −→ X tal que

g ◦ f = 1X , f ◦ g = 1Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 48 / 78

Aplicaciones

Aplicacion inversa

Proposicion (1.2.14)

Si una aplicacion f : X −→ Y es invertible, la aplicacion g : Y −→ X talque g ◦ f = 1X y f ◦ g = 1Y es unica.

A la aplicacion g de la proposicion anterior se la denomina aplicacioninversa de f y se denota por f −1 : Y −→ X .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 49 / 78

Aplicaciones

Aplicacion inversa

Proposicion (1.2.14)

Si una aplicacion f : X −→ Y es invertible, la aplicacion g : Y −→ X talque g ◦ f = 1X y f ◦ g = 1Y es unica.

A la aplicacion g de la proposicion anterior se la denomina aplicacioninversa de f y se denota por f −1 : Y −→ X .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 49 / 78

Aplicaciones

Invertible y biyectiva

Proposicion (1.2.16)

Sea f : X → Y una aplicacion. Las propiedades siguientes sonequivalentes:

(a) f es invertible.

(b) f es biyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 50 / 78

Aplicaciones

notacion f −1(·)

Al igual que ocurrıa con la notacion f (·), cuando f : X → Y es unaaplicacion, la notacion f −1(·) se utiliza para dos situaciones distintas quepueden dar lugar a confusiones de fondo:

i) Cuando B ⊂ Y , f −1(B) denota la anti-imagen de B por f , que es unsubconjunto de X .

ii) Cuando f es invertible e y ∈ Y , f −1(y) indica la imagen de y por lainversa de f , que es un elemento de X .

De hecho, tal como indicamos en la pagina 43 (Imagen inversa de unsubconjunto unitario), la notacion f −1(·) es tambien utilizada en unatercera situacion que puede confundirse facilmente con ii). Es puesfundamental saber en cada caso en que situacion estamos. En ii) estamossuponiendo que f es invertible (o, equivalentemente, biyectiva), mientrasque i) tiene sentido para cualquier aplicacion f , invertible o no.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 51 / 78

Aplicaciones

Restriccion de una aplicacion

Definicion (Restriccion de una aplicacion)

Dada una aplicacion f : X −→ Y y un subconjunto A ⊂ X , se define larestriccion de f a A como la aplicacion

f |A : A −→ Y

x ∈ A 7−→ f |A(x) := f (x) ∈ Y

Esto es, f |A actua exactamente como f , pero solo sobre los elementos deA. Notese que la restriccion f |A coincide con la composicion de f con lainclusion iA : A→ X :

f |A = f ◦ iA.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 52 / 78

Aplicaciones

Restriccion de una aplicacion

Definicion (Restriccion de una aplicacion)

Dada una aplicacion f : X −→ Y y un subconjunto A ⊂ X , se define larestriccion de f a A como la aplicacion

f |A : A −→ Y

x ∈ A 7−→ f |A(x) := f (x) ∈ Y

Esto es, f |A actua exactamente como f , pero solo sobre los elementos deA. Notese que la restriccion f |A coincide con la composicion de f con lainclusion iA : A→ X :

f |A = f ◦ iA.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 52 / 78

Aplicaciones Grafo de una aplicacion

Grafo de una aplicacion

Definicion (Grafo de una aplicacion)

Se llama grafo de una aplicacion f : X → Y al subconjunto de X × Y :

Grafo(f ) = {(x , y) ∈ X × Y | y = f (x)}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 53 / 78

Aplicaciones Grafo de una aplicacion

El grafo determina la aplicacion

Observese que el grafo de una aplicacion la determina completamente,pues asocia cada elemento con su imagen, conocidos los conjuntos departida y de llegada.Es decir, si f , g : X → Y son dos aplicaciones,

f = g ⇐⇒ Grafo(f ) = Grafo(g).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 54 / 78

Aplicaciones Grafo de una aplicacion

Cualquier cosa no es un grafo

Pero, evidentemente, no cualquier subconjunto de X × Y es el grafo deuna aplicacion.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 55 / 78

Aplicaciones Grafo de una aplicacion

Definicion formal de aplicacion

Definicion (Aplicacion)

Una aplicacion f de X en Y es una correspondencia f ⊂ X × Y dondecada elemento de X tiene asociado un unico elemento de Y . Esto es, ennotacion matematica, la correspondencia f es una aplicacion si y solo si severifica que

∀x ∈ X ∃!y ∈ Y tal que (x , y) ∈ f .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 56 / 78

Aplicaciones Grafo de una aplicacion

Aplicaciones y conjunto vacıo

Sean X en Y conjuntos.

-) Si X = ∅, la unica aplicacion de X en Y es la aplicacion vacıa, queidentificamos con el conjunto vacıo.

-) Si Y = ∅, solo hay aplicacion si ademas X = ∅, que sera la aplicacionvacıa. En particular, si Y = ∅ y X 6= ∅, no existe ninguna aplicacionde X en Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 57 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (relacion)

Sea A un conjunto. Una relacion R definida en A es un subconjunto delproducto cartesiano A× A.

Si el par (x , y) ∈ A× A esta en R, diremos que x esta R–relacionado cony , o que esta relacionado con y por R. Esto se notara frecuentemente xRy(notese que el orden es importante).

Dos relaciones R y R ′ en el conjunto A son iguales si y solo si aRb ⇔ aR ′b:

R = R ′ ⇔ (aRb ⇔ aR ′b).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 58 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (relacion)

Sea A un conjunto. Una relacion R definida en A es un subconjunto delproducto cartesiano A× A.

Si el par (x , y) ∈ A× A esta en R, diremos que x esta R–relacionado cony , o que esta relacionado con y por R. Esto se notara frecuentemente xRy(notese que el orden es importante).

Dos relaciones R y R ′ en el conjunto A son iguales si y solo si aRb ⇔ aR ′b:

R = R ′ ⇔ (aRb ⇔ aR ′b).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 58 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (relacion)

Sea A un conjunto. Una relacion R definida en A es un subconjunto delproducto cartesiano A× A.

Si el par (x , y) ∈ A× A esta en R, diremos que x esta R–relacionado cony , o que esta relacionado con y por R. Esto se notara frecuentemente xRy(notese que el orden es importante).

Dos relaciones R y R ′ en el conjunto A son iguales si y solo si aRb ⇔ aR ′b:

R = R ′ ⇔ (aRb ⇔ aR ′b).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 58 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (Algunas propiedades de una relacion)

Sea R una relacion en un conjunto A. Entonces diremos que R es:

(a) Reflexiva cuando para todo x ∈ A se tiene que xRx .

(b) Simetrica cuando xRy siempre implica yRx .

(c) Antisimetrica cuando, si tenemos xRy e yRx , entonces x = ynecesariamente.

(d) Transitiva cuando, si tenemos xRy e yRz , entonces se tiene xRz .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 59 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (Algunas propiedades de una relacion)

Sea R una relacion en un conjunto A. Entonces diremos que R es:

(a) Reflexiva cuando para todo x ∈ A se tiene que xRx .

(b) Simetrica cuando xRy siempre implica yRx .

(c) Antisimetrica cuando, si tenemos xRy e yRx , entonces x = ynecesariamente.

(d) Transitiva cuando, si tenemos xRy e yRz , entonces se tiene xRz .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 59 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (Algunas propiedades de una relacion)

Sea R una relacion en un conjunto A. Entonces diremos que R es:

(a) Reflexiva cuando para todo x ∈ A se tiene que xRx .

(b) Simetrica cuando xRy siempre implica yRx .

(c) Antisimetrica cuando, si tenemos xRy e yRx , entonces x = ynecesariamente.

(d) Transitiva cuando, si tenemos xRy e yRz , entonces se tiene xRz .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 59 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (Algunas propiedades de una relacion)

Sea R una relacion en un conjunto A. Entonces diremos que R es:

(a) Reflexiva cuando para todo x ∈ A se tiene que xRx .

(b) Simetrica cuando xRy siempre implica yRx .

(c) Antisimetrica cuando, si tenemos xRy e yRx , entonces x = ynecesariamente.

(d) Transitiva cuando, si tenemos xRy e yRz , entonces se tiene xRz .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 59 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion

Definicion (Algunas propiedades de una relacion)

Sea R una relacion en un conjunto A. Entonces diremos que R es:

(a) Reflexiva cuando para todo x ∈ A se tiene que xRx .

(b) Simetrica cuando xRy siempre implica yRx .

(c) Antisimetrica cuando, si tenemos xRy e yRx , entonces x = ynecesariamente.

(d) Transitiva cuando, si tenemos xRy e yRz , entonces se tiene xRz .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 59 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relaciones de orden y de equivalencia

Definicion (Relaciones de orden y de equivalencia)

Las relaciones que son reflexivas, simetricas y transitivas se denominanrelaciones de equivalencia.

Las relaciones que son reflexivas,antisimetricas y transitivas se denominan relaciones de orden.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 60 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relaciones de orden y de equivalencia

Definicion (Relaciones de orden y de equivalencia)

Las relaciones que son reflexivas, simetricas y transitivas se denominanrelaciones de equivalencia. Las relaciones que son reflexivas,antisimetricas y transitivas se denominan relaciones de orden.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 60 / 78

Relaciones de equivalencia. Conjuntos cocientes

Clases de equivalencia

Definicion (Clases de equivalencia)

Si R es una relacion de equivalencia en A, denominamos clase deequivalencia de un elemento x ∈ A, que notaremos simplemente x (o [x ])si se sobreentiende R y no hay peligro de confusion, o R(x) si es necesarioprecisar a R, al conjunto de todos los elementos de A relacionados con x ,esto es,

R(x) = x = [x ] := {y ∈ A | xRy} (= {y ∈ A | yRx}) .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 61 / 78

Relaciones de equivalencia. Conjuntos cocientes

Particion de un conjunto

Definicion (Particion de un conjunto)

Dado un conjunto A 6= ∅, una particion de A es un subconjuntoQ ⊂ P(A) (los elementos de Q son subconjuntos de A) que verifica lassiguientes propiedades:

(a) Todos los elementos de Q son no vacıos.

(b) La union de todos los elementos de Q es A.

(c) Los elementos de Q son disjuntos entre sı.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 62 / 78

Relaciones de equivalencia. Conjuntos cocientes

Clases de equivalencia

Teorema (Las clases de equivalencia como una particion)

Sea A un conjunto y R una relacion de equivalencia en A. Entonces elconjunto de las clases de equivalencia de los elementos de A es unaparticion de A.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 63 / 78

Relaciones de equivalencia. Conjuntos cocientes

Relacion de equivalencia y particion

Por tanto, establecer una relacion de equivalencia es lo mismo querealizar una particion de un conjunto.Si tenemos una relacion de equivalencia sobre un conjunto, el conjunto delas clases de equivalencia es una particion del conjunto inicial.Recıprocamente, una particion de un conjunto define trivialmente larelacion de equivalencia “estar en la misma parte”.Si pensamos en una biblioteca, los conjuntos de libros de cada estante sonuna particion de los libros de la biblioteca. Esto lleva a la relacion deequivalencia “estar en el mismo estante”.En ambos casos, mediante una relacion de equivalencia o mediante unaparticion del conjunto, lo que se consigue es realizar una clasificacion delos elementos del conjunto.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 64 / 78

Relaciones de equivalencia. Conjuntos cocientes

Igualdad de clases de equivalencia

Corolario (1.3.4)

Sean A un conjunto y R una relacion de equivalencia en A, Sean loselementos x , y ∈ A. Se tiene que las clases de equivalencia de x e y soniguales, R(x) = R(y), si y solo si xRy .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 65 / 78

Relaciones de equivalencia. Conjuntos cocientes

Conjunto cociente

Definicion (Conjunto cociente)

Dada una relacion de equivalencia R definida sobre un conjunto A, elconjunto cuyos elementos son las clases de equivalencia de A por R sedenomina conjunto cociente de A por R. La notacion usual es

A/R = {R(x) | x ∈ A}.

El conjunto cociente va acompanado de la aplicacion

π : X → X/R, π(x) = R(x) para todo x ∈ X ,

que se denomina aplicacion cociente, o tambien proyeccion natural,asociada a la relacion R.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 66 / 78

Relaciones de equivalencia. Conjuntos cocientes

Conjunto cociente

Definicion (Conjunto cociente)

Dada una relacion de equivalencia R definida sobre un conjunto A, elconjunto cuyos elementos son las clases de equivalencia de A por R sedenomina conjunto cociente de A por R. La notacion usual es

A/R = {R(x) | x ∈ A}.

El conjunto cociente va acompanado de la aplicacion

π : X → X/R, π(x) = R(x) para todo x ∈ X ,

que se denomina aplicacion cociente, o tambien proyeccion natural,asociada a la relacion R.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 66 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Propiedad universal de la proyeccion canonica

Proposicion (Propiedad universal de la proyeccion canonica)

Sean X ,Y conjuntos no vacıos, R una relacion de equivalencia en X yf : X → Y una aplicacion. Si se tiene

f (a) = f (b) siempre que aRb,

entonces existe una unica aplicacion F : X/R → Y tal que f = F ◦ π, esdecir el siguiente diagrama es conmutativo:

Xf //

π

��

Y .

X/R

F<<

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 67 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Relacion asociada a una aplicacion

Definicion (Relacion asociada a una aplicacion)

Dada una aplicacion f : X → Y , definimos la relacion asociada a f de lasiguiente forma: para a, b ∈ X

aRf b ⇔ f (a) = f (b).

Proposicion (1.3.7)

La relacion Rf asociada a una aplicacion es una relacion de equivalencia.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 68 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Relacion asociada a una aplicacion

Definicion (Relacion asociada a una aplicacion)

Dada una aplicacion f : X → Y , definimos la relacion asociada a f de lasiguiente forma: para a, b ∈ X

aRf b ⇔ f (a) = f (b).

Proposicion (1.3.7)

La relacion Rf asociada a una aplicacion es una relacion de equivalencia.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 68 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Relacion asociada a una aplicacion

Ejercicio

Sean f : X → Y una aplicacion y Rf la relacion asociada a f . Sonequivalentes:

1. La aplicacion f es inyectiva.

2. Las clases de equivalencia de Rf son conjuntos unitarios. Es decir,∀x ∈ X Rf (x) = {x}.

3. La proyeccion canonica π : X → X/Rf es biyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 69 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Aplicacion cociente

La construccion del conjunto cociente por una relacion de equivalenciapuede verse como un recıproco del proceso anterior: toda relacion deequivalencia R es la relacion asociada a una cierta aplicacion,concretamente a la aplicacion cociente π : X → X/R que a cada x ∈ X leasocia su clase de equivalencia, π(x) = R(x).

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 70 / 78

Relaciones de equivalencia. Conjuntos cocientes Factorizacion canonica de una aplicacion

Factorizacion canonica de una aplicacion

Teorema (Factorizacion canonica de una aplicacion)

Toda aplicacion f : X → Y se descomponer de manera canonica comocomposicion f = i ◦ f ◦ π,

Xf //

π

��

Y

X/Rff // Im(f )

i

OO

donde π es la aplicacion cociente, i es la inclusion de Im(f ) en Y yf : X/Rf → Im(f ) es la unica aplicacion que hace conmutativo eldiagrama anterior, que viene dada por f (Rf (x)) = f (x). Ademas, laaplicacion f es biyectiva y por tanto toda aplicacion entre dos conjuntos sedescompone canonicamente como composicion de una aplicacioninyectiva, una aplicacion biyectiva y una aplicacion sobreyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 71 / 78

Conjuntos finitos y conjuntos infinitos

Conjuntos equipotentes

Definicion (Conjuntos equipotentes)

Decimos que dos conjuntos X e Y son equipotentes si existe unaaplicacion biyectiva f : X → Y .

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 72 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre subconjuntos de N

Proposicion (1.4.1)

Sean dos numeros enteros m, n ≥ 1 y sea f : {1, . . . ,m} → {1, . . . , n} unaaplicacion. Se tienen las siguientes propiedades:

1 Si f es inyectiva, entonces m ≤ n.

2 Si f es sobreyectiva, entonces m ≥ n.

3 Si f es biyectiva, entonces m = n.

Ademas, si m = n, las propiedades siguientes son equivalentes:

(a) f es inyectiva.

(b) f es sobreyectiva.

(c) f es biyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 73 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre subconjuntos de N

Proposicion (1.4.1)

Sean dos numeros enteros m, n ≥ 1 y sea f : {1, . . . ,m} → {1, . . . , n} unaaplicacion. Se tienen las siguientes propiedades:

1 Si f es inyectiva, entonces m ≤ n.

2 Si f es sobreyectiva, entonces m ≥ n.

3 Si f es biyectiva, entonces m = n.

Ademas, si m = n, las propiedades siguientes son equivalentes:

(a) f es inyectiva.

(b) f es sobreyectiva.

(c) f es biyectiva.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 73 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre subconjuntos de N

Proposicion (1.4.2)

Sea un numero entero m ≥ 1 e Y ⊂ {1, . . . ,m} un subconjunto no vacıo.Entonces existe un entero n ≥ 1 y una aplicacion biyectivaf : {1, . . . , n} → Y . Ademas, por la proposicion anterior se debe tenern ≤ m.

Corolario (1.4.3)

Sea un numero entero m ≥ 1, Y ⊂ {1, . . . ,m} y supongamos que existeuna aplicacion sobreyectiva f : Y → {1, . . . ,m}. EntoncesY = {1, . . . ,m}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 74 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre subconjuntos de N

Proposicion (1.4.2)

Sea un numero entero m ≥ 1 e Y ⊂ {1, . . . ,m} un subconjunto no vacıo.Entonces existe un entero n ≥ 1 y una aplicacion biyectivaf : {1, . . . , n} → Y . Ademas, por la proposicion anterior se debe tenern ≤ m.

Corolario (1.4.3)

Sea un numero entero m ≥ 1, Y ⊂ {1, . . . ,m} y supongamos que existeuna aplicacion sobreyectiva f : Y → {1, . . . ,m}. EntoncesY = {1, . . . ,m}.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 74 / 78

Conjuntos finitos y conjuntos infinitos

Conjuntos finitos y conjuntos infinitos

Definicion (Conjuntos finitos y conjuntos infinitos)

Decimos que un conjunto X es finito si o bien es vacıo, o si no es vacıo,existe un numero natural n ≥ 1 tal que X es equipotente a {1, 2, . . . , n}.Decimos que un conjunto X es infinito, si X es equipotente a algunsubconjunto propio de X , i.e. a algun Y ⊂ X con ∅ 6= Y 6= X .

Proposicion (1.4.5)

Sea X un conjunto. Las propiedades siguientes son equivalentes:

(a) X es un conjunto finito.

(b) X no es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 75 / 78

Conjuntos finitos y conjuntos infinitos

Conjuntos finitos y conjuntos infinitos

Definicion (Conjuntos finitos y conjuntos infinitos)

Decimos que un conjunto X es finito si o bien es vacıo, o si no es vacıo,existe un numero natural n ≥ 1 tal que X es equipotente a {1, 2, . . . , n}.Decimos que un conjunto X es infinito, si X es equipotente a algunsubconjunto propio de X , i.e. a algun Y ⊂ X con ∅ 6= Y 6= X .

Proposicion (1.4.5)

Sea X un conjunto. Las propiedades siguientes son equivalentes:

(a) X es un conjunto finito.

(b) X no es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 75 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Aplicaciones entre conjuntos finitos e infinitos

Proposicion (1.4.6)

Se tienen las siguientes propiedades:

1) Si X es un conjunto finito y f : X → Y es una aplicacionsobreyectiva, entonces Y tambien es un conjunto finito.

2) Si Y es un conjunto finito y f : X → Y es una aplicacion inyectiva,entonces X tambien es un conjunto finito.

3) Si X es un conjunto infinito y f : X → Y es una aplicacion inyectiva,entonces Y tambien es un conjunto infinito.

4) Si Y es un conjunto infinito y f : X → Y es una aplicacionsobreyectiva, entonces X tambien es un conjunto infinito.

5) El producto cartesiano de dos conjuntos finitos es un conjunto finito.

6) X es un conjunto finito si y solo si P(X ) es un conjunto finito.

7) X es un conjunto infinito si y solo si P(X ) es un conjunto infinito.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 76 / 78

Conjuntos finitos y conjuntos infinitos

Cardinal de un conjunto finito

Definicion (Cardinal de un conjunto finito)

Si X es un conjunto finito, o bien es vacıo, en cuyo caso decimos que sucardinal es 0, o si no es vacıo, existe un entero n ≥ 1 tal que X esequipotente a {1, . . . , n}. De acuerdo con la Proposicion 1.4.1, este enteron es unico y lo llamaremos cardinal de X .El cardinal de un conjunto finito X se denotara por ](X ), o tambien |X | sino hay peligro de confusion con otras notaciones al uso.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 77 / 78

Conjuntos finitos y conjuntos infinitos

Ningun conjunto X es equipotente a P(X )

Proposicion (1.4.8)

Si X es un conjunto cualquiera, no existe ninguna aplicacion sobreyectivaϕ : X −→ P(X ).

Proposicion (1.4.9)

No existe ninguna aplicacion sobreyectiva ϕ : N −→ NN.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 78 / 78

Conjuntos finitos y conjuntos infinitos

Ningun conjunto X es equipotente a P(X )

Proposicion (1.4.8)

Si X es un conjunto cualquiera, no existe ninguna aplicacion sobreyectivaϕ : X −→ P(X ).

Proposicion (1.4.9)

No existe ninguna aplicacion sobreyectiva ϕ : N −→ NN.

Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2019 78 / 78

top related