tel. 04-8295361/364 ediths@tx.technion.ac · 2015. 10. 29. · tel. 04-8295361/364...

Post on 26-Jan-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Introduction to Aspect M2™ MRI• MR safety• Possible applications and examples• MR Basics• “Recipe” for MR Imaging• Useful notes• Scan protocols• Custom MRI Analysis Tool• K‐Pacs Basic Instructions• How to begin

    2

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Permanentmagnet  vs.  Standard superconducting coil based

    (*illustrative photos)3

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Mouse/rat head coil

    Mouse/rat body coil

    Anastasia

    Cradle Heating system 4

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Compact • A new level in MR safety• Virtuallymaintenance‐free• Simple to install• Magnet is always ON, always ready to image

    • Located in the SPF at Rappaport : enables follow‐up scanning 

    5

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Frommouse (or rat) to man• Easy to Learn• 1 Tesla field strength: most suitable for Gadolinium based contrast agent imaging 

    • Easy to Use• High‐performance: Superior (100µm) resolution, 2D and 3D imaging

    • Fast

    6

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Scanned size: rat and mouse only, up to 60mm in diameter• Field strength of 1 Tesla:  “costs” longer durations or lower resolution• No option for functional imaging or DTI• No option for cardiac gating

    7

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    8

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • No external fringe field: metal objects can be in the proximity of the system.

    • Safe for PCs or mobile phones• Aspect system is safer to operate

    ** CAUTION: Metal objects cannot be placed or inserted directly inside Aspect Imaging magnets.Aspect system is still a powerful magnet and placing metal objects inside the bore can create irreparable damage to the system.Metal objects must be kept outside of the magnet’s 5 gauss line.

    9

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • The Power of 1.5 Tesla (GE)

    10

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    11

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Welding tank

    12

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    13

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Cancer• Cardiovascular• Contrast‐based Molecular Imaging• Diabetes and Obesity• Embryology / Developmental Biology• Nephrology• Neurobiology• Stem Cell / Cell Tracking• Histology (PM / Ex‐vivo)

    14

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    1. Gadolinium (Gd) – Paramagnetic:Increases T1 signal– Extracellular fluid agents– Blood pool agents– Organ‐specific agents2. Iron oxide – Superparamagnetic:Reduces T2 signals3. Iron Platinum – Superparamagnetic:Reduces T2 signals4. Manganese – Paramagnetic:Increases T1 signal

    15

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    FSE, TR/TE=1918/76 ms, 1 mm slice, NEX=2, 176X176, FOV=64 mm

    Movie: Photo:

    T2W T2W

    16

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Control (T1w+C): CHF: T1W+C

    Zaid Aba

    ssi’s

    Lab

    17

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Pathology:  Control:

    FSE, TR/TE=2273/74 ms, 1 mm slice, NEX=4, 256X256, FOV=64 mm

    FSE, TR/TE=1705/80 ms, 1.3 mm slice, NEX=4, 256X256, FOV=64 mm

    T2W T2W

    18

    Yuval Sha

    ked’sL

    ab

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    FSE, TR/TE=3000/80 ms, 0.8 mm slice, NEX=4, 200X200, FOV=40 mm

    T2W

    19

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    FSE, TR/TE=3400/93 ms, 1 mm slice, NEX=2, 200X200, FOV=64 mm

    T2W

    20

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    SE‐DWI, TR/TE=500000/19 ms, 1.5 mm slice, NEX=1, 128X128, FOV=64 mm, BIGDELTA = 10, DIFFMAG = 961, b=1 and b=300

    21

    T2WDWI

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    IR‐SE, TR/TE=500/9 ms, TI=100 ms, 1 mm slice, NEX=1, 128X128, FOV=100 mm

    Water 

    Fat 

    T1W

    22

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    FSE, TR/TE=1700/102, ST=0.7mm, NEX=22, 176X176, FOV=40 mm 

    Ovary

    Kidney

    OvaryKidney

    23

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Pre‐injection Post injection

    GRE‐SP, TR/TE=12/3, ST=0.9mm, NEX=6, 128X128, FOV=45 mm

    GRE‐SP, TR/TE=12/3, ST=1mm, NEX=4, 128X128, FOV=40 mm

    Yuval Sha

    ked’sL

    ab

    Pre‐injection Post injection

    24

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    GRE‐SP, TR/TE=12/3, ST=0.9mm, NEX=5, 160X160, FOV=64 mm 25

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Lung tumor: 

    T2W

    FSE, TR/TE=2080/60 ms, 0.9 mm slice, NEX=2, Ext. Ave=3, 256X256, FOV=50 mm 

    Control:

    26

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Vlodavsky’s Lab

    Tumor imaging

    27

    FSE, TR/TE=2080/60 ms, 0.9 mm slice, NEX=2, Ext. Ave=3, 256X256, FOV=50 mm 

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Magnetic

    Resonance

    Imaging

    28

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il 29

    • Proton has magnetic moment – behaves like a little magnet

    • There are a lot of protons in the body - ~70% water , x% fat

    • They create ‘net magnetization’

    • Largest Gyro Magnetic Ratio 1T  42.57 MHz

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    B0 = Big Magnetic Field Produced by Main Magnet(1.5 Tesla ~ 30,000 times earth magnetic field)

    Aligns ‘net magnetization’ in the direction of the field

    30

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Small B0 produces small net magnetization (M)

    • Thermal motions “try” to randomize alignment of proton magnets

    • Larger B0 produces larger net magnetization M, lined up with B0

    (Reality check: 0.0003% of protons are perfectly aligned per Tesla)

    31

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    32

    Excitation: Relaxation:

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il 33

    RF energy Excitation

    Relaxation

    Energy

    Energy

    Applying RF Energy

    Only protons that spin with the same resonance frequency as the RF pulse will respond

    The result: A shift of the net magnetization vector away from the direction of the static B0 field in a flip angle

    Note: The RF signal intensity/duration determines the flip angle of M.

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il 34

    RF energy Excitation

    Relaxation

    Energy

    Energy

    The return of net magnetization to the direction of the static B0 field

    Accompanied by energy release

    Note: Left alone, net magnetization will align itself with B0 in about 2–3 sec

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    35

    Spin‐ lattice relaxation:•Microscopically, the spins exchange energy with the environment (the “lattice"). The time constant of this relaxation type is called T1.

    •It is related to Mz recovery.

    Spin‐spin relaxation•The spins in the high and low energy state exchange energy but do not loose energy to the surrounding lattice. The time constant of this relaxation type is called T2.

    •It is related to Mxy decay.Note: T2 decay is faster than T1 recovery

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    T1: Recovery of Mz– Usually 500-1000 ms in the brain

    T2: Disappearance of Mxy only due to molecular interactions– Usually 50-100 ms in the brain

    T2*: Disappearance of Mxy due to molecular interactions and variations in B0– Measured in practice

    Note: Drugs containing magnetic impurities can alter T1, T2, and T2* — contrast agents

    36

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    1) Put subject in big magnetic field (leave him there)

    2) Excitation: transmit radio waves into subject [about 3 ms]

    3) Turn off radio wave transmitter

    4) Relaxation: receive radio waves re-transmitted by subject

    – Readout interval :10-100 ms - MRI is not a snapshot!

    5) Store measured radio wave data vs. time

    – Repeat (2) to obtain more data and average

    6) Process raw data to reconstruct images

    7) Allow subject to leave scanner (optional)37

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    After the excitation the protons remains with energy in the form of a flip angle.

    During relaxation, an oscillating voltage is generated and received by a coil of wires placed around the subject.

    This voltage is the RF signal, whose measurements form the raw data for MRI.

    – At each instant in time, it is possible to measure only one combined voltage V(t), that includes the sum RF signals.

    Must find a way to separate signals from different regions38

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • 3D encoding:– Z‐dir: frequency encoding for slice selection– X‐dir: phase encoding– Y‐dir: frequency encoding with readout

    • K‐Space ‐ Fourier Transform

    39

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Extra static Gradient Magnetic Fields (in addition to B0) that linearly vary in intensity across the subject

    This allows frequency encoding : the excitation frequency changes with location

    x-axis

    f

    60 KHz

    Left = –7 cm Right = +7 cm

    Central frequency(63 MHz at 1.5 T)

    (* scan noise: turning the gradient fields ON/OFF)

    40

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    z

    RF freq. bandwidth

    Excited location

    Slice profile

    Frequency

    Applying a gradient field Simultaneous RF excitation corresponding to a narrow range of resonance

    frequencies

    41

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    The phase of the signal depend on location This is done by applying a gradient field in the 2nd

    direction The phase encoding gradient (GPE) intervenes for a

    limited time period. While it is applied, it modifies the spin resonance

    frequencies. When turning the gradient off, the spin resonance

    frequencies return to the original one, but now with a phase change.

    The process has to be for each column of the image (time consuming).

    This phase difference lasts until the signal is recorded.

    Applying gradient field in the 3rd direction. Simultaneous with acquisition (readout) of re-transmitted signals. Signal is sampled about once every microsecond, digitized, and stored in a

    computer. 42

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il 43

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Input signal: Output signal:

    44Phase encoding

    Freq

    uency en

    coding

    X [mm] 

    Y [m

    m]

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Echo time, TE, is the time from the RF excitation to the center of the echo being received. Shorter echo times allow less T2signal decay.

    Repetition time, TR, is the time between one acquisition and the next. Short TR values do not allow the spins to recover Mz, so the net magnetization available is reduced, allowing T1 weighted imaging.

    Short TE and long TR give strong signals.

    45

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    )1(),( 21 //0 TTETTR eeMTETRS

    TE TR Image WeightingShort Long Proton Density Short Short T1 Long Long T2

    46

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    T1 ContrastTE = 14 msTR = 400 ms

    T2 ContrastTE = 100 msTR = 1500 ms

    Proton DensityTE = 14 msTR = 1500 ms

    47

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    48

    T1w images T2w imagesDark:  ‐ Increased water:  edema, tumor, 

    infarction, inflammation, infection, hemorrhage 

    ‐ Low proton density‐ Calcification‐ Flow void

    ‐ Low proton density‐ Calcification‐ Fibrous tissue‐ Paramagnetic substances ‐ Protein‐rich fluid‐ Flow void

    Bright: ‐ Fat‐ Subacute hemorrhage‐ Melanin‐ Protein‐rich fluid‐ Slowly flowing blood‐ Paramagnetic substances (gadolinium)

    ‐ Laminar necrosis of cerebral infarction

    ‐ Increased water:  edema, tumor, infarction, inflammation, infection, hemorrhage , subdural collection

    ‐ Methemoglobin (extracellular) in subacute hemorrhage

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    MRI has high contrast for different tissue types!

    Tissue T1 (ms) T2 (ms)

    Grey Matter (GM) 950 100

    White Matter (WM) 600 80

    Muscle 900 50

    Cerebrospinal Fluid (CSF) 4500 2200

    Fat 250 60

    Blood 1200 100‐200

    49

    T1 and T2 relaxation time of tissue depend on three factors: a. The inherent energy of the tissueb. How closely packed the molecules arec. How well the molecular tumbling (“self‐movement”) rate matches the Lamar frequency of       

    hydrogen. The molecule tumbling rate is determined by: Molecular weight, temperature, shape of the molecule

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Higher Signal to Noise Ratio (SNR) results in a better image

    –K – constant (related among others to TR,TE, T1,T2…)–FOVx , FOVy - the field-of-view in the x and y directions–Nx , Ny - the number of frequency and phase encoding steps–∆z - the slice thickness–NEX (or NA) - the number of signal averages–BW - the receive bandwidth

    50

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Total scan time is given by:

    Npe - the number of phase encoding stepsS – number of slices

    ∝ · · ·

    51

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Spin Echo Based Sequences– SE– Fast Spin Echo (FSE)– Inversion Recovery Spin Echo (IR‐SE)– Spin Echo Diffusion Weighted Imaging (SE‐DWI)

    • Gradient Echo Based Sequences– Gradient Echo Spoiled (GRE‐SP)– Gradient Echo Spoiled External Averaging (GRE‐EXT)– Gradient Echo Steady State; ESS/FESS (GRE‐SS)

    52

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Rephase spins with a 180° pulse: Prevents Spins from rotating at different rates in different

    locations Overcomes spins dephasing with time

    Most sensitive if TE average T2 In Diffusion: refocusing will not be perfect for protons that

    have moved

    Used for measuring T2:

    53

    time

    e-t/T2*

    e-t/T2

    MR

    sig

    nal

    Fast Spin Echo:

    TETE/2

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    1. Equilibrium 2. 90 Pulset=0

    3. Spin Dephasing

    4. 180 Pulset=TE/2

    5. Spin echot=TE 54

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    55

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Changing the polarity of the Gradient: Dephase and rephase the

    spins Shorter TR/TE decreases

    scan time

    Most sensitive if TE average T2* time

    e-t/T2*

    MR sig

    nalUsed for measuring T2*

    56

    TEGradientON

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    57

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Tool features:‐ ROI measurements‐ Volume measurements‐ Series synchronization & comparison‐ T1, T2, T2* and Diffusion mapping‐ Noise filtering

    58

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    GRE, TR/TE [ms]=40/5, 40/8, 40/10, 40/12, 40/15, 1 mm slice, NEX=1, 200X200, FOV=64 mm

    T2*W

    MATLAB MRI analysis tool  for T2* mapping:T2*=18.5689 ms

    59

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    IR‐SE, TR/TE=800/8 ms, TI=400, 300, 200 ms, 1.5 mm slice, NEX=2, 128X128, FOV=64 mm

    200 250 300 350 40016

    18

    20

    22

    24

    26

    28

    30

    32

    34

    36

    TE [msec]

    T1 m

    agni

    tude

    T1 mapping

    Real DataMAP T1=254.9848

    MATLAB MRI analysis tool  for T1 mapping:T1=254.98 ms

    T1W

    60

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Installation: • Copy the K‐PACS software from the Tech‐MED ‐MRI server (Aspect folder K‐PACS folder) to your computer and install.

    Loading your DICOM files: • Double‐click on the software icon and press accept.• Press Filesystem and select the preferred folder. 

    • The selected data will be saved in the software database for future viewing.• Mark the folder or scan you would like to view:

    • Press viewer  61

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    Once the viewer is opened, select the scan you would like to see from the scans presented in the upper part of the page:•• Tools: • All tools are presented once you stand on the bottom part of the image or in the upper icon roller.

    • Available options: Measure ROI, Zoom, rotate, magnifier, print, export to tiff, Avi etc. 62

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Set a meeting with Edith to discuss the application• Prepare a literature review on other’s MR protocols for similar application• Begin feasibility test (small pilot) with Aspect M2™ – easy to operate• Analyze the results with our MRI tool – continuously developed according to researchers needs

    63

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    • Evert J Blink, “MRI: Physics”• http://www.revisemri.com/questions/basicphysics/• http://www.imaios.com/en/e‐Courses/e‐MRI/• http://www.simplyphysics.com/flying_objects.html• http://quizlet.com/14282869/mri‐physics‐chapter‐2‐flash‐cards/• http://www.tele.ucl.ac.be/PEOPLE/OC/these/node100.html• http://en.wikipedia.org/wiki/Shim_(magnetism)• http://saturn.med.nyu.edu/research/sb/turnbulllab/PDFS/JohnsonMRM99.pdf

    • http://www.med.harvard.edu/aanlib/basicsMR.html

    64

  • Tel. 04-8295361/364 ediths@tx.technion.ac.il

    65

top related