talk outline - university of california, irvinesusy06.physics.uci.edu/talks/1/allanach.pdf ·...

Post on 16-Aug-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

mSUGRA Fits and NaturalnessPriors

by

Ben Allanach (University of Cambridge)BCA, Lester, PRD73 (2006) 015013 hep-ph/0507283

BCA, PLB365 (2006) 123 hep-ph/0601089

Talk outline

• Constraints on SUSY models• Implications

SUSY Dark Matter and Colliders B.C. Allanach – p.1/24

Constraints on SUSY ModelsmSUGRA well-studied in literature: eg Ellis, Olive et al PLB565

(2003) 176; Roszkowski et al JHEP 0108 (2001) 024; Baltz, Gondolo, JHEP 0410 (2004) 052;. . .

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

mh = 114 GeV

m0

(GeV

)

m1/2 (GeV)

tan β = 10 , µ > 0

mχ± = 104 GeV

SUSY Dark Matter and Colliders B.C. Allanach – p.2/24

Shortcomings• Really, would like to combine likelihoods from

different measurements a

• Typically only 2d scans, but in general we haveαs(MZ), mt, mb, m0, M1/2, A0, tan β to vary

• Effective 3d type scan done b whichparameterises a 2d surface of correct Ωh2

• Baltz et al managed to perform a 4d scan, but lostthe likelihood interpretation. They used theimpressive Markov Chain Monte Carlotechnique.

aDone in 2d in Ellis et al, hep-ph/0310356bEllis et al, hep-ph/0411218

SUSY Dark Matter and Colliders B.C. Allanach – p.3/24

LikelihoodL ≡ p(d|m) is pdf of reproducing data d assumingmSUGRA model m (which depends on parameters).

p(m|d) = p(d|m)p(m)

p(d)

p(m1|d)

p(m2|d)=

p(d|m1)p(m1)

p(d|m2)p(m2)

We will compare p(mi) = 1 with a naturalness prior:1/(mi fine tuning).

SUSY Dark Matter and Colliders B.C. Allanach – p.4/24

Naturalness

M 2Z = tan 2β

[

m2H2

tan β − m2H1

cot β]

− 2µ2

Cancellation implied by sparticle mass bounds.Quantify by

f = maxx‖d ln M 2

Z

d ln x‖

where x ∈ M1/2,m0, A0, µ, B. We will choose theprior to be 1/f .

SUSY Dark Matter and Colliders B.C. Allanach – p.5/24

Markov-Chain Monte CarloMarkov chain consists of list of parameter points x(t)

and associated likelihoods L(t)

1. Pick a point at random for x(1)

2. Pick a point around x(t) (say with a Gaussianwidth) as the potential new point.

3. If L(t+1) > L(t), the new point is appended ontothe chain. Otherwise, the proposed point isaccepted with probability L(t+1)/L(t). If notaccepted, a copy of x(t) is added on to the chain.

Final density of x points ∝ L. Required number ofpoints goes linearly with number of dimensions.

SUSY Dark Matter and Colliders B.C. Allanach – p.6/24

ImplementationInput parameters are: m0, A0, M1/2, tan β

• mt = 172.7 ± 2.9 GeV• mb(mb)

MS = 4.2 ± 0.2 GeV,• αs(MZ)MS = 0.1187 ± 0.002.

For the likelihood, we also use• ΩDMh2 = 0.1125+0.0081

−0.0091

• δ(g − 2)µ/2 = (19 ± 8.4) × 10−10

• BR[b → sγ] = (3.52 ± 0.42) × 10−5

lnL = −1

2

i

(pi − mi)2

2σ2i

+ cSUSY Dark Matter and Colliders B.C. Allanach – p.7/24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M1/2 (TeV)

m0

(TeV

)

L/L(max)

0 0.5 1 1.5 2 0

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M1/2 (TeV)

m0

(TeV

)

P/P(max)

0 0.5 1 1.5 2 0

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A0 (TeV)

m0

(TeV

)

P/P(max)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A0 (TeV)

m0

(TeV

)

P/P(max)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2

SUSY Dark Matter and Colliders B.C. Allanach – p.8/24

Annihilation MechanismDefine stau co-annihilation when mτ is within 10% ofmχ0

1and Higgs pole when mh,A is within 10% of

2mχ0

1.

mechanism flat prior natural priorh0−pole 0.025 0.07A0−pole 0.41 0.14

τ−co-annihilation 0.26 0.18rest 0.31 0.61

b, τ

b, τ

χ01

χ01

h0, A0τ

χ01

τ

γ

τ

SUSY Dark Matter and Colliders B.C. Allanach – p.9/24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 100 200 300 400 500 600 700 800

P/bi

n

Fine tuning

totalh-poleA-pole

coannihilationrest

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-9 -8.5 -8 -7.5 -7 -6.5 -6

P/bi

n

log10 (BR[Bs->µµ])

natural priorflat prior

Tevatron upper boundTevatron sensitivity

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

110 112 114 116 118 120 122 124

P/bi

n

mh0/GeV

natural priorflat prior

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mA (TeV)

tanβ

L/L(max)

0 0.5 1 1.5 2 0

10

20

30

40

50

60

29%

SUSY Dark Matter and Colliders B.C. Allanach – p.10/24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000

P/bi

n

mχ10/GeV

natural priorflat prior

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000

P/bi

n

mg/GeV

natural priorflat prior

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000

P/bi

n

mA0/GeV

natural priorflat prior

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1000 2000 3000 4000

P/bi

n

mqL/GeV

natural priorflat prior

SUSY Dark Matter and Colliders B.C. Allanach – p.11/24

95% CL Upper Limits onMasses

particle flat prior natural priorh0 0.123 0.120A0 1.45 1.50χ0

1 0.65 0.45χ±

1 1.20 0.85g 3.25 2.30eR 1.90 1.90qL 3.20 2.45t1 2.45 1.80

P(500 GeV ILC>χ01χ

01, χ±

1 χ±1 ) ILC=0.7,0.33

P(800 GeV ILC>χ01χ

01, χ±

1 χ±1 ) ILC=0.93,0.58

SUSY Dark Matter and Colliders B.C. Allanach – p.12/24

Summary• Markov chains bring out the multi-dimensionality

of the space: is a lot less constrained than in 2d• Still, current data is constraining• Likelihood of LHC-friendly chain

qL → χ02 → lR → χ0

1 is 24±4%

• Tevatron has 32% chance of seeing Bs → µµ raredecay.

• Good news for ILC: light gauginos• Ruiz de Austri, Trotta, Roszkowski

hep-ph/0602028 confirms and extends our study.

SUSY Dark Matter and Colliders B.C. Allanach – p.13/24

Supplementary Material

SUSY Dark Matter and Colliders B.C. Allanach – p.14/24

ConvergenceWe run 9×1 000 000 points. By comparing the 9independent chains with random starting points, wecan provide a statistical measure of convergence: anupper bound r on the excepted variance decrease forinfinite statistics.

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90 100

r

step/10000

upper bound

SUSY Dark Matter and Colliders B.C. Allanach – p.15/24

SUSY Prediction of Ωh2

• Assume relic in thermal equilibrium withneq ∝ (MT )3/2exp(−M/T ).

• Freeze-out with Tf ∼ Mf/25 once interactionrate < expansion rate (teq critical)

• We use microMEGAs a: Ωh2 ∝ 1/< σv > tosolve coupled Boltzmann equations

• Generate SUSY spectrum with SOFTSUSY b

linked with SLHA c

aBelanger et al, CPC 149 (2002) 103bBCA, CPC 143 (2002) 305cBCA et al, JHEP0407 (2004) 036

SUSY Dark Matter and Colliders B.C. Allanach – p.16/24

Additional observables

δ(g − 2)µ

2∼ 13 × 10−10

(

100 GeVMSUSY

)2

tan β

µ µ

γ

ν

χ±i

µ µ

γ

χ01

µ

BR[b → sγ] ∝ tan β(MW/MSUSY )2

b s

γ

ti

χ±i

b s

γ

t

SUSY Dark Matter and Colliders B.C. Allanach – p.17/24

mSUGRA RegionsAfter WMAP+LEP2, bulk region diminished. Needspecific mechanism to reduce overabundance:

• τ coannihilation: small m0, mτ1≈ mχ0

1.

Boltzmann factor exp(−∆M/Tf ) controls ratioof species. τ1χ

01 → τγ, τ1τ1 → τ τ .

• Higgs Funnel: χ01χ

01 → A → bb/τ τ at large

tan β. Also via a h at large m0 small M1/2.• Focus region: Higgsino LSP at large m0:

χ01χ

01 → WW/ZZ/Zh/tt.

• t coannihilation: high −A0, mt1≈ mχ0

1.

t1χ01 → gt, tt → tt

aDatta, Djouadi, Drees, hep-ph/0504090SUSY Dark Matter and Colliders B.C. Allanach – p.18/24

LHC SUSY Measurements

qL χ02 l χ0

1

q l+ l−

m2ll = (pl1 + pl2)

2

edge position measuresa

(m2

χ02

−m2

l)(m2

l−m2

χ01

)

m2

l0

100

200

300

400

0 50 100 150

205.7 / 197

P1 2209.

P2 108.7

P3 1.291

Mll (GeV)

Eve

nts/

0.5

GeV

/100

fb-1

aBCA, C Lester, A Parker, B Webber, JHEP 09 (2000) 004

SUSY Dark Matter and Colliders B.C. Allanach – p.19/24

2

α−1

log (E/GeV)

MG

UT

MSU

SY

i

10

3

1

Run to MZ

?

Run to MS. Calculate a sparticle pole masses.?

MX . Soft SUSY breaking BC.?

REWSB, iterative solution of µ?

Run to MS.?

Get gi(MZ), ht,b,τ (MZ).

SOFTSUSY

aBCA, Comp. Phys. Comm. 143 (2002) 305.SUSY Dark Matter and Colliders B.C. Allanach – p.20/24

Uncertainties in Relic DensityBulk region: BB → Z, h → ll. Coannihilation: τχ0

1→ τ + X

Figure 1: Bulk/coannihilation region. Full:SoftSusy, dotted: SPheno.

SUSY Dark Matter and Colliders B.C. Allanach – p.21/24

Focus Point

Figure 2: Focus point region. Full: SoftSusy, dot-ted: SPheno, dashed: SuSpect. Higgsino LSP an-nihilates into ZZ/WW

SUSY Dark Matter and Colliders B.C. Allanach – p.22/24

High tan βBCA, Belanger, Boudjema, Pukhov, Porod, hep-ph/0402161. Baer et

al

Figure 3: High tan β region. Full: SoftSusy, dotted:SPheno, dashed: SuSpect. Get annihilation into A.

SUSY Dark Matter and Colliders B.C. Allanach – p.23/24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mh (GeV)

mχ 10

(TeV

)

L/L(max)

80 90 100 110 120 130 140 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mA (TeV)

mχ 10

(TeV

)

L/L(max)

0 0.5 1 1.5 2 2.5 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mτ (TeV)

mχ 10

(TeV

)

L/L(max)

0 0.5 1 1.5 2 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

L p

er b

in

m (TeV)

RH sleptongluino

LH squarklight stop

SUSY Dark Matter and Colliders B.C. Allanach – p.24/24

top related