steel tank

Post on 20-Apr-2017

290 Views

Category:

Documents

12 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dc 1000 kg/m3

G 1.00 -

G' 1.00 -

FYmin 250 MPa

FTmin 400 MPa

E 195000 MPa

Tmax N/AoC

Tmin N/AoC

Sd 160 MPa

St 171 MPa

Pi 0.00 kN/m2

( kPa )

Pe 0.00 kN/m2

( kPa )

f 0 kN/m2

( kPa )

H1 1.0 m

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

tmin 6.0 mm

Outside Dia. Do 1.012 m

Inside Dia. Di 1.000 m

Nominal Dia. ( Inside Dia. + Shell Thk. ) Dn 1.006 m

Total Height H 1.3 m

10.016 kN

FYstructure 250 MPa

Den. 7850 kg/m3

WidthPress.

HeadHL1' td tt Max( td,t t ) tsmin tsmin

m m m mm mm mm mm mm

3.6.1.2 3.6.3.2 3.6.3.2 3.6.3.2 3.6.1.1 A.4.1

pg pg A-1

1 1.800 0.00 1.00 3.02156613 0.02017883 3.02 5 3.03

ts1 (mm) = 6

Yield Strength - Structural Parts

Density

S H E L L D E S I G N

Co

urs

e #

Fluid Hold Down Weight

Allowable Hydrostatic Test Stress at Design Temperature

Internal Pressure

External Pressure

Smallest of the allowable tensile stresses (Roof, Shell, Ring)

High Liquid Level

Bottom

Shell

Roof

Structure

Anchor Bolts

Nozzles, etc.

Allowable Product Design Stress at Design Temperature

Purpose Rapid Mix Tank

Density of Contents

Specific Gravity of Contents

Specific Gravity of Contents (For Appendix A Only)

Material Group Group IV

Minimum Yield Strength

Minimum Tensile Strength

Modulus of Elasticity

Maximum Design Temperature

Minimum Design Temperature

m kN kg mm kN kg

1 1.800 2.63 267.94 3.0 1.31 133.97

1.800 2.629 267.942 1.31 133.97

Width of

plate tbmin CA tb-req'd

mm mm mm mm

3.4.1 3.4.1

1800 6 3.0 9.0

Min shell-to-bottom fillet weld size 3.1.5.7Min. width of overlapping 3.1.3.5

Min. distance between 3- plate laps in tank bottom 3.1.5.4

Min. widith of plate 3.4.1

Min. width projected outside of shell 3.4.2

Nominnal Dc 1.006 m

Total Height of tank shell Ht 1.3 m

Ht from bottom shell to COG of tank, Xs Xs

Maximum Design level Liqiuid H 1.0 m

Total weight of tank shell 7850 kg/m3 Ws 2628.514 N

Total weight of tank rook Wr 0 N

Total weight of tank contents 1000 kg/m3 Wt 10136.74 N

12765.25 N

Ration of D/H 0.77384615

Overturning Moment

B O T T O M P L A T E D E S I G N

S H E L L W E I G H T S U M M A R Y

Course #Width

3.6.1.2

Shell Wt.

(Uncorroded) Thk. - CA

Shell Wt.

(Corroded)

tsmin *tused Sdmax Stmax Wtr

mm mm MPa MPa m

J.3.3 3.9.7.2 & V.8.1.4

5.00 6 1.15 0.58 1.800

S H E L L D E S I G N

Use Projection

mm mm

3.4.2

10 25

825

300.00 mm

- mm

25.00 mm

http://www.slideshare.net/yahasani/above-surface-storage-tanks-asts

http://www.slideshare.net/ledzung/storage-tanks-basic-training-rev-2

Overturning Moment

B O T T O M P L A T E D E S I G N

Service WATER

Sp.Gr of liquid (G) 1

Capacity ( m3 ) 0.79

Dia of tank (D) 1.000 m 3.280 ft

Ht of tank (H) 1.000 m 3.280 ft

Type of Roof -

Type of Bottom Flat

Slope of Roof 1:6 1 : 6 For Self Supported

Slope of Bottom

Corrosion Allow (CA) 1.6 mm 0.063 in

Wind Velocity (V) 100 miles/hr 160920 m/sec 161 Km/hr

Live Load on Roof 25 lbs/ft² 122 Kg/m²

Joint Efficiency 0.85

Plate Width 2.438 m 8.000 ft

Plate Height 1.219 m 3.999 ft

Allowable Design Stress ( s ) PSI 15000 See Section 3.3

SHELL DESIGN CALCULATIONS

No of Courses from Liquid Level in tank Height of Shell Course Design Shell Thk

Shell Bottom (mm) (mm) (mm)

1 1000 1000.0 1.656

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0

19 0 0 0

20 0 0 0

A 2

B 3

C 4

D 5

Full coarse Full width A

Full coarse Partial width B

Partial coarse Full width C

Partial coarse Partial width D

No of Full Plates 1

No of Partial Plate 1

Width of Partial Plate 0.703

Ht of Partial Plate 1

Butt Welding at the Bottom of each Course

No of Courses

A B

1 0 0

2 0 0

Course # Course thk Course Width Unstiffened Shell

Ht ( mm )

1 5 1000 1000

4 5 0 0

5 5 1000 1000

6 5 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

No of plates

All.Design Stress (Sd) 15000 Psi 103386028 N/m²

All.Test Stress (St) 22500 Psi 155079043 N/m²

Roof Plate Thk 0.242 in 6.1517 mm

Bottom Plate Thk 0.313 in 7.9500 mm

Density of Material 7850 Kg/Cu.m 491 lbs/Cu.ft

Wind Pressure 18.00 Psf

Min Thk as per 3.10.1 Adopted Shell ThkThk Selected Weight of each Course Adopted Shell Thk

(mm) (mm) (mm) (Kg) (in)

5 5.0 5 123.31 0.197

5 0.0 5 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

5 0.0 0.00 0.000

0.123 Tons

1219.203677 2438.407354 2.972915213

1219.203677 703.1852994 0.857326103

1000 2438.407354 2.438407354

1000 703 0.703185299

1.288378928 1 0.288378928

0.52836903 0 0.52836903

1

0.8202075 0.8202075

Thickness Vertical Weld Length Horizental Weld Length

C D (mm) (m) (m)

1 1 5.000 2.00 Fillet Welding

0 0 0 0.00 0.00

All Shell Ht (H1) All Shell Ht (H1)Remarks Section Modulus (in3)

(mm) ( ft ) When required

520849.85 1708.39 Not required 1.838

520849.85 1708.39 Not required 1.838

#DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!

No of plates

Ht upto bottom Ht of C.G of Long. X-Sec Area X C.G

of course each Course area

500 5000 2500000

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

5000 500

1.64 ft

Horizental Weld Length

Height of C.G of Shell

The tank will be designed in accordance with the following criteria:-

Circular in shape

For non-pressurize storage

Tank is subjected to hydrostatic head only (i.e. uniformly increasing load

from top to bottom and normal to its plane

No external pressure

Design Temperature

Corrosion allowance to be included in the design

Fluid Properties Metric Imperial

Fluid height, H 1.000 m 3.281 ft

Density of water, r 1000 kg/m³ 62 lb/ft³

Specific gravity of water 1 1

Acceleration due to gravity , g 9.8 m/s² 32.2 ft/s²

Maximum hydrostatic pressure, P

(internal pressure) 9.8 kN/m/s² 1.4 PSI

Ring tension

Material and Condition

Material Specs A36

Material Grade C

Nominal diamter of tank 1.000 m 3.281 ft

Corrosion allowance, C 2 0.079 in

Joint efficiency (usually 85%) 0.85 0.85

All.Bending Stress (dall) 103421359.350 15000

All.Design Stress (Sd) 103421359.350 15000

All.Test Stress (St) 103421359.350 15000Plate Width 2.43902439 8

Plate Height 1.219512195 4

P

𝑃 = 𝜌𝑔ℎ

𝑇ℎ = 𝑃 ∗ (𝐷

2)

Bottom Plate Thk w/o CA 0.394 10

Bottom Plate Thk with CA 0.394 10

Density of Material 7850 490.5199998

Bottom Overlap Percent 0.05

Min Yield Strength 30000

Min Tensile Strength 55000

Corrosion Allow for Bottom 0 0

Corrosion Allow for Roof 0 0

Hydrostatic Shell Thickness 0.0000 mm 0.0 in

Design Shell Thickness 2.0 mm 0.0809 in

Adopted shell thickness 6.0 mm 0.25 in

Height of shell course 1.000 m 3.281 ft

No. fo courses 1 1 1

No. of plates

AWWA shell plate thickness calculation

Basic formula 𝑡 =2.6ℎ𝑝𝐷𝐺

𝑠𝐸+CA

Where:

t= Plate thickness for course under consideration

hp = Liquid height from top capacity level to bottom of course under

consideration

D = Nominal diameter

G = Specific gravity

s = Allowable design stress

E = Joint efficiency

CA = Corrosion allowance

Maximum allowable working

stress 34473786450

Thickness of the shell,t

Circumferential = #VALUE! mm

Longitudinal = #VALUE! mm

Allowance = 2 mm

No. of plates = 1

Total circumference with 1 plate = 0.0 mm

Length of each plate = 0.0 mm

The size of the plate selected from :

Edge supported; uniform load

At center:

(max) r = t =−1.24𝑃 𝑟2

𝑡2

∆𝑚𝑎𝑥= −0.695 𝑃𝑟4

𝐸𝑡3

Hydrostatic Pressure at Tank Bottom The hydrostatic pressure can be expressed as:

P (psi) = maximum hydrostatic pressure

(internal pressure)

= 0.4336 h

where

𝑡 =𝑃𝐷

2𝑓𝐽+ C

Butt joints are provided for welding the vertical joints between plates to

form the lowest laye of the shell. An allowance of 2 mm is amde between

two adjacent plates to facilate welding.

𝑡 =𝑃𝐷

4𝑓𝐽+ C

Dimensions:

Outside diameter, Do = 18

Nominal wall thickness, t = 0.25

Length, L = 24

Corrosion allowance, Corr = 0.01

Material =

Allowable stress, S = 20,000

Long seam efficiency, El = 0.70

Circ seam efficiency, Ec = 0.85

Under tolerance allowance = 0.00

Interior pressure, P = 201.4

1lbf =32.174 lbm.ft/s2

,.

mm

mm

mm

mm

psi

%

%

%

psi

The tank will be designed in accordance with the following criteria:-

Circular in shape

For non-pressurize storage

Tank is subjected to hydrostatic head only (i.e. uniformly increasing load

from top to bottom and normal to its plane

No external pressure

Design Temperature

Corrosion allowance to be included in the design

Fluid Properties Metric Imperial

Fluid height, H 1.000 m 3.281 ft

Density of water, r 1000 kg/m³ 62 lb/ft³

Specific gravity of water 1 1

Acceleration due to gravity , g 9.8 m/s² 32.2 ft/s²

Maximum hydrostatic pressure, P

(internal pressure) 9810.0 kg/m/s² 1.4 PSI

1000.0 kg/m² 204.8 lb/ft²

Material and Condition

Material Specs A36

Material Grade -

Nominal diamter of tank 1.000 m 3.281 ft

Corrosion allowance, tc 1.5875 0.0625 in

Joint efficiency (usually 85%) 0.85 0.85

Yield strength palte,Fy 248.2 MPa 36000 PSI

Ring tension 500.0 kg/m² 2.601 lb/in

Allowable tensile stress, Ft=0.6*Fy 148.9 MPa 21600 PSI

Thickness of the shell,ts(min) 3.94982946 0.00014168

Required thickness = ts+tc 5.53732946 0.06264168

Use ts 5 0.1875

P

𝑃 = 𝜌𝑔ℎ

𝑇ℎ = 𝑃 ∗ (𝐷

2)

if ts>ts(min +tc) NOT ACCEPTED OK

0.02709583 0.002610023

Bottom Plate Thk w/o CA 0.394 10

Bottom Plate Thk with CA 0.394 10

Density of Material 7850 490.5199998

Bottom Overlap Percent 0.05

Min Yield Strength 30000

Min Tensile Strength 55000

Corrosion Allow for Bottom 0 0

Corrosion Allow for Roof 0 0

Hydrostatic Shell Thickness 0.0232 mm 0.0 in

Design Shell Thickness 1.6 mm 0.0634 in

Adopted shell thickness 6.0 mm 0.25 in

Height of shell course 1.000 m 3.281 ft

No. fo courses 1 1 1

No. of plates 4.9Dc ( [H+Hi] - 0.3 ).G

AWWA shell plate thickness calculation

Basic formula 𝑡 =2.6ℎ𝑝𝐷𝐺

𝑠𝐸+CA

Where:

t= Plate thickness for course under consideration

hp = Liquid height from top capacity level to bottom of course under

consideration

D = Nominal diameter

G = Specific gravity

s = Allowable design stress

E = Joint efficiency

CA = Corrosion allowance

Maximum allowable working

stress 1316.60982

Thickness of the shell,t

Circumferential = #VALUE! mm

Longitudinal = #VALUE! mm

Allowance = 2

No. of plates = 1

Total circumference with 1 plate = 0.0

Length of each plate = 0.0

The size of the plate selected from :

Edge supported; uniform load

At center:

(max) r = t =−1.24𝑃 𝑟2

𝑡2

∆𝑚𝑎𝑥= −0.695 𝑃𝑟4

𝐸𝑡3

Hydrostatic Pressure at Tank Bottom The hydrostatic pressure can be expressed as:

P (psi) = maximum hydrostatic pressure (internal

pressure)

= 0.4336 h

where

𝑡 =𝑃𝐷

2𝑓𝐽+ C

Butt joints are provided for welding the vertical joints between plates to form the

lowest laye of the shell. An allowance of 2 mm is amde between two adjacent plates

to facilate welding.

𝑡 =𝑃𝐷

4𝑓𝐽+ C

Dimensions:

Outside diameter, Do =

Nominal wall thickness, t =

Length, L =

Corrosion allowance, Corr =

Material =

Allowable stress, S =

Long seam efficiency, El =

Circ seam efficiency, Ec =

Under tolerance allowance =

Interior pressure, P =

𝐸𝑡3

,.

0.00219

mm

mm

mm

18 mm

0.25 mm

24 mm

0.01 mm

20,000 psi

0.70 %

0.85 %

0.00 %

201.4 psi

Reference Output

Dimensions:

Pressure at top of vessel, P = 200 psi

Fluid height, h = 3.31 ft

Fluid specific gravity, SG = 1

Static head = 1.43 psi

Pdesign = 201.43 psi

Dimensions:

Outside diameter, Do = 18 in

Nominal wall thickness, t = 0.25 in

Length, L = 24 in

Corrosion allowance, Corr = 0.01 in

Material and Conditions:

Material =

Allowable stress, S = 20,000 psi

Long seam efficiency, El = 0.70 %

Circ seam efficiency, Ec = 0.85 %

Under tolerance allowance = 0.00 %

Interior pressure, P = 201.4 psi

Calculated Properties

Volume,V

= 5772.68 in3

= 3.34067 ft3

Weight, W

Calculations

𝑉 = 𝜋(𝐷𝑜

2−t)2h

𝑊 = 𝜋(𝐷𝑜 − 𝑡)

Cirumferential Joint (Longitudinal Stress) FPL = PL.A

Pressure force = P.D2/4

Resisting force = S.Dt

By equating two (2) forces,

P.D2/4 = S.Dt

∴ 𝑡 =𝑃 ∗ 𝐷

4𝑆

PL

Longitudinal Joint (Cirumferential-hoop Stress) FPL = PH.A

Pressure force = P.L.D

Resisting force = S.2Lt

By equating two (2) forces,

P.L.D = S.2Lt

∴ 𝑡 =𝑃 ∗ 𝐷

2𝑆

Thickness of shells under Internal Pressure ( interms of inside diameter)

Where, t = Min. required thickness of shell, in

R = Insider radius of shell, in

P = Internal design pressure or max. allowable working

pressure (taking into consideration the static head of

fluid), psi

S = Max. allowable stress of shell material, psi

E = Min. joint efficiency, percent

1. Circumferential (hoop) Stress (Longitudinal Joints) t < 0.5 R or P < 0.385 SE

𝑡 =𝑃𝑅

𝑆𝐸 − 0.6𝑃

2. Longitudinal Stress(Circumferential Joints) t < 0.5 R or P < 1.25 SE

𝑡 =𝑃𝑅

2𝑆𝐸 + 0.4𝑃

The tank will be designed in accordance with the following criteria:-

Circular in shape

For non-pressurize storage

Tank is subjected to hydrostatic head only (i.e. uniformly increasing load

from top to bottom and normal to its plane

No external pressure

Design Temperature

Corrosion allowance to be included in the design

Fluid Properties

Fluid height, H = 1 m

Density of water, r = 1,000.00 kg/m³

Acceleration due to gravity , g = 9.81 m/s2

Maximum hydrostatic pressure, P

(internal pressure)

= 9.81 kN/m2

Material

Nominal diamter of tank = 1 m

Joint efficiency (usually 85%) = 0.85

Corrosion allowance, C = 2 mm

Permissible stress, f = 15,000 psi

Permissible stress, f = 103421.3594 kN/m2

Maximum allowable working

stress = 34473.78645

Thickness of the shell,t

Circumferential = 2.167390613 mm

Longitudinal = 2.083695306 mm

P

𝑃 = 𝜌𝑔ℎ

𝑡 =𝑃𝐷

2𝑓𝐽+ C

𝑡 =𝑃𝐷

4𝑓𝐽+ C

Allowance = 2 mm

No. of plates = 1

Total circumference with 1 plate = 3.1 mm

Length of each plate = 3.1 mm

The size of the plate selected from :

Dimensions:

Outside diameter, Do = 18 mm

Nominal wall thickness, t = 0.25 mm

Length, L = 24 mm

Corrosion allowance, Corr = 0.01 mm

Material =

Allowable stress, S = 20,000 psi

Long seam efficiency, El = 0.70 %

Circ seam efficiency, Ec = 0.85 %

Under tolerance allowance = 0.00 %

Interior pressure, P = 201.4 psi

Edge supported; uniform load

At center:

(max) r = t =−1.24𝑃 𝑟2

𝑡2

∆𝑚𝑎𝑥= −0.695 𝑃𝑟4

𝐸𝑡3

Hydrostatic Pressure at Tank Bottom The hydrostatic pressure can be expressed as:

P (psi) = maximum hydrostatic pressure

(internal pressure)

= 0.4336 h

where

Butt joints are provided for welding the vertical joints between plates to form

the lowest laye of the shell. An allowance of 2 mm is amde between two

adjacent plates to facilate welding.

,.

Value Units

Water tank capcity

Nominal diamter of water tank,D

Nominal height of water tank,Ht

Water storage height in the tank, H 1 m

Rood slope Rise to Run

Minimum free board

Bottom Plate diameter of water tank, Db

Yield strength fo structural steel, plate and pipe, Fy 36000 psi

Portland Cement for concrete construction Type I

Specified compressive strength of concrete, fc' 4000 psi

Specfied yield strength of reinforcement, fy 60,000 psi

Specified yield strength of welded wire fibre, fy 65,000 psi

Density of reinforced concrete, Dc 150 psf

Density of steel plate, Dst

Density of water, Dw 62.4 pcf

Specfic gravity of water, G 1

Min. allowance for corrosion layer 0.0625 inch

Bottom plates

Bottom plates shall conform to API Standard 650 (Ref page 3-5 and 3-6)

3.4.1 Minimum nominal thickness 6 mm

pg 3-5 Corrosion allowance 0.0625 mm

Minimum thickness of the bottom plate

inclusive corrosion allowance,tb 6.0625 mm

It is selected that thickness of the bottom plate is 8 mm

1303.44 mm

Parameter

Annular bottom plate width required: 𝟐𝟏𝟓𝒕𝒃

(𝑯𝑮)𝟎.𝟓

where

tb = thickness of the annular plate, in mm

H = maximum design liquid level, m

Cylindrical Tank Shell

Wath Depth, H 1 mm

Hydro- pressure, p = Dw*H* 9.81 kN/m2

Ring tension, Th = p*(D/2)

Allowable tensile stress, Ft = 0.6*Fy

Welded joint efficiency factor, E 0.85

Thickness of shell

Corrosion allowance,tc

Required thickness of shell

250 MPa A36

2400 kg/m3

7850 kg/m3

1000 kg/m3

0.25 in

API 650

Appendix A

AWWA

D100-84

metric imperial

hp 1 m 3.28083 ft

G 1 1

D 1 m 3.28083 ft

Table 4 AWWA s 103.4 Mpa 15000 psi

Table 9 AWWA E 0.85 0.85

Table 14 pg 27 CA(Shell 1 mm 0.03937 in

CA(Floor) 2 mm 0.07874 in

t 1.05574 mm 0.08093 mm

𝑡 =4.9ℎ𝑝𝐷𝐺

𝑠𝐸 + CA

Tank data

Material

Metric Imperial

D 1 m 3.28083 ft

G 1 1

s 103.421 psi 15000 psi

E 0.85 0.85

CA 2 mm 0.07874 in

H 1 m 3.28083 ft

The calculated plate thickness requirements are as follows:

The minimum allowable is = 0.1875 inch

Course 1 = 0.00219

AWWA shell plate thickness calculation

AWWA shell plate thickness calculation

Basic formula 𝑡 =2.6ℎ𝑝𝐷𝐺

𝑠𝐸+CA

Where:

t= Plate thickness for course under consideration

hp = Liquid height from top capacity level to bottom of course

under consideration

D = Nominal diameter

G = Specific gravity

s = Allowable design stress

Nozzle Service CantDiameter (inch)Weigh (lb) Weigh (kg) Material

N1 Water inlet 1 8 48.50 31.75 A-105

N2 Service Water Oulet 1 4 20.00 9.07 A-105

N3 fire fighting Water Oulet 1 16 173.00 78.47 A-105

N6 Fire Fighting water recirculation inlet1 8 48.50 22.00 A-105

Service Water

Sp.Gr of liquid (G) 1

Capacity ( m3 ) 1200

Dia of tank (D) 1.000 m 3.281 ft

Ht of tank (H) 1.000 m 3.281 ft

Type of Roof None

Type of Bottom None

Slope of Roof - -

Slope of Bottom - -

Corrosion Allow (CA) 3.0 mm 0.120 in

Wind Velocity (V) - -

Live Load on Roof - -

H/D Ratio 0.53333

Vapour Pressure ( Bar abs )

Seismic Zone 2A

Dc 1000 kg/m3

G 1.00 -

G' 1.00 -

FYmin 250 MPa

FTmin 400 MPa

E 195000 MPa

Tmax N/AoC

Tmin N/AoC

Sd 160 MPa

St 171 MPa

Pi 0.00 kN/m2

( kPa )

Pe 0.00 kN/m2

( kPa )

f 0 kN/m2

( kPa )

H1 1.0 m

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

CA 3.0 mm

tmin 6.0 mm

Outside Dia. Do 1.012 m

Inside Dia. Di 1.000 m

Nominal Dia. ( Inside Dia. + Shell Thk. ) Dn 1.006 m

Total Height H 1.3 m

10.016 kN

FYstructure 250 MPa

Den. 7850 kg/m3

WidthPress.

HeadHL1' td tt Max( td,t t ) tsmin tsmin

m m m mm mm mm mm mm

3.6.1.2 3.6.3.2 3.6.3.2 3.6.3.2 3.6.1.1 A.4.1

pg pg A-1

1 1.800 0.00 1.00 3.02156613 0.02017883 3.02 5 3.03

ts1 (mm) = 6

Shell

Fluid Hold Down Weight

Yield Strength - Structural Parts

Density

S H E L L D E S I G N

Co

urs

e #

Rapid Mix Tank

Group IV

Allowable Product Design Stress at Design Temperature

Allowable Hydrostatic Test Stress at Design Temperature

Internal Pressure

Purpose

Density of Contents

Specific Gravity of Contents

Specific Gravity of Contents (For Appendix A Only)

Material Group

Minimum Yield Strength

Bottom

Minimum Tensile Strength

Modulus of Elasticity

Maximum Design Temperature

Minimum Design Temperature

External Pressure

Smallest of the allowable tensile stresses (Roof, Shell, Ring)

High Liquid Level

Roof

Structure

Anchor Bolts

Nozzles, etc.

m kN kg mm kN kg

1 1.800 2.63 267.94 3.0 1.31 133.97

1.800 2.629 267.942 1.31 133.97

tbmin CA tb-req'd

mm mm mm

3.4.1 3.4.1

6 3.0 9.0

kN kgs kN kgs kN kg

0.000087 0.01 2.63 267.94 2.63 267.95

0.000061 0.01 1.31 133.97 1.31 133.98

DL Corroded Uncorroded

SHELL 0.00 0.00 kN

1.31 2.63 kN

0.00 kN

0.00 kN

0.00 kN

0.00 kN

1.31 2.63 kN

#VALUE! #VALUE! kN/m2

( kPa )

ALL #REF! #REF! kN

#REF! #REF! kN/m2

( kPa )

Superimposed Lr 1.5 kN/m2

( kPa )

Snow Load S 0 kN/m2

( kPa )

External Pressuer Pe 0.00 kN/m2

( kPa )

Top Angle

Course(s)

Wind Girders

Ladder

Insulation

Others

W E I G H T S U M M A R Y

Bottom Plt. Wt. Shell Plt. Wt. Total Weight

S H E L L W E I G H T S U M M A R Y

Course #Width

3.6.1.2

Shell Wt.

(Uncorroded) Thk. - CA

Shell Wt.

(Corroded)

B O T T O M P L A T E D E S I G N

tsmin *tused Sdmax Stmax Wtr

mm mm MPa MPa m

J.3.3 3.9.7.2 & V.8.1.4

5.00 6 1.15 0.58 1.800

S H E L L D E S I G N

Use Projection

mm mm

3.4.2

10 25

W E I G H T S U M M A R Y

B O T T O M P L A T E D E S I G N

DESIGN CODE API 650 1998

TANK

Roof None

Tank support (Self-supported / Column-supported / NA) NA

GEOMETRIC DATA

Inside diameter , Di ( corroded ) (@ 1,000 mm ) 1,006 mm

Nominal diameter, Dn ( new ) ( based on 1st shell course ) 1,005 mm

Nominal diameter, Dc ( corroded ) ( based on 1st shell course ) 1,008 mm

Tank height (tan/tan), H 1,000 mm

Specific gravity of operating liquid , S.G. (Actual) 1.000

Specific gravity of operating liquid , S.G. (Design) 1.00

Nominal capacity , V 0.794851 m³

Maximum design liquid level, HL 1,000 mm

Component Material Tensile Yield Corrosion

Stress Stress Allowance

Sd(N/mm²) St(N/mm²) c.a.(mm)

PLATE

Shell Plate A36 160.00 171.00 3.000

Annular Plate A36 160.00 171.00 3.000

Bottom Plate A36 160.00 171.00 3.000

Roof Plate A36 160.00 171.00 3.000

STRUCTURE MEMBERS

Roof structure (rafter,bracing,etc ) A36 160.00 171.00 3.00

Top Curb Angle A36 160.00 171.00 3.00

Intermediate Wind Girder A36 160.00 171.00 3.00

SPECIFIED MINIMUM SHELL THICKNESS

Specification API 650 1998

Minimum thickness as per API 650 cl 5.6.1.1 5 mm

Design shell thickness, (in mm)

𝑡𝑑 =4. . 9𝐷𝑐 𝐻 − 0.3 𝐺

𝑆𝑑+ CA

Hydrostatic test shell thickness

𝑡𝑑 =4. . 9𝐷𝑛 𝐻 − 0.3 𝐺

𝑆𝑡

Calculation & Results

td 3.02 mm

tt 0.02 mm

Recall tmin (as per API 650) 5.0 mm

Thickness selected and used 5.00 mm

Ht up to bottom of course 0 mm

Ht of CG of each course 500 mm

Long X-sec Area 5000 mm2

Area X C.G 2500000 mm3

Ht of Center of gravity 500 mm

BOTTOM & ANNULAR PLATE DESIGN

BOTTOM PLATE & ANNULAR PLATE DESIGN

Annular plate used ? ( yes/no ) No

BOTTOM PLATE

Minimum thickness as per API 650 Clause 5.4.1 6.00 mm

Minimum thickness required (@ 3.00 mm c.a )

Therefore, use thickness of 9.00 mm (tb) is satisfactory.

Min. shell-to-bottom fillet weld size (cl. 3.1.5.7) 6.00 mm

Should not be more than 1/2 inch & should not be less than thk of thinner of the two plates joined.

Min. width of overlapping (cl. 5.1.3.5) 25.00 mm

300.00 mm

Min. width of plate (cl. 5.4.1) 1800.00 mm

Min. width projected outside of shell (cl. 3.4.2) 25.00 mm

Intermediate wind girder

API.650 Minimum required size as per API 650 clause 5.9.3.2 64 x 64 x 6.4

12th Min. nominal thickness of plate 6.00 mm

or Section modulus,Z min 6.77 cm3

API 650 Unstiffened height 1 m

3.9

H1 105.0886693 m

If H1 is greater than the Unstiffened shell height, wind girders are not required

Hence Not Required

The maxmum height of the unstiffened shell shall be calcualted as follows

𝐻1 = 9.47𝑡𝑡

𝑑

3

TANK CONSTRAINT CALCULATIONS

Seismic zone 2B

Seismic zone factor, Z 0.2

Importance factor, I (max 1.25) 1.00

Nominal diameter of tank, D 1.0 m

Total height of tank shell, Ht 1.0 m

Ht.from bottom shell to COG of shell,Xs 0.5 m

Maximum design liquid level, H 1.0 m

Density of water 1000 kg/m³

Density of steel (shell,bottom) 7850 kg/m³

Total weight of tank shell, Ws 1219.3 N

Total weight of tank bottom, Wb 553.1 N

Sum 1772.4 N

Total weight of tank contents, WT 7828.5 N

Ht from bottom of Shell to C.G 500 mm

WT 7828.5 N

Overturning Moment

Effective Mass of Tank contents

Ratio Dc/H 1.008

W1/WT 0.8

W2/WT 0.25

W1 6262.820146 N

W2 1957.131296 N

X1/H 0.4

X2/H 0.72

𝑊𝑠 =𝜋𝐷. 𝐻

𝑡12

.9.81

1000

𝑊𝑝 = 𝑉𝑜𝑙𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 × r𝑤 . 9.81

𝑊𝑏 = 𝐴𝑟𝑒𝑎 𝑏𝑜𝑡𝑡𝑜𝑚 𝑝𝑙𝑎𝑡𝑒 × 𝑡 × 7850 × 9.81

X1 400 mm

X2 720 mm

c1 0.6

k 0.59

T 1.07 s

When T <=4.5 C2 1.05

When T >45 C2 4.40

Site coefficient,S 1.5

Therefore C2 1.05

Overturning moment,M 702.7 N-m

Yield strength 250 Mpa

WL (1) 14087.9 N/m

WL (2)

196.98 N/m

If WL(1)>WL(2), use WL(2) for Resistance to Overturning 196.98 N/m

Wt of Tank Components 423.3 N/m

M/D²(wt+wl) 1.121617275

From Figure E-5 :

'(b+wl)/(wt+wl) 3.2

Max Longtudinal comp. Force at the bottom of shell, b 1787.871135 N/m

b/12t 16.55436236

A = GHD²/t² 0.028224 mm3/m2

GHD2/t2 is less than 44 so

Max Long. Comp stress in shell, Fa =83t/2.5D+7.5(GH)^0.5 205 MPa

Max Long. Comp stress in shell, Fa =0.5Fy 125 MPa

Fa shall not be greater than 0.5Fty,hence Fa 125 MPa

Fa = maximum allowable longitudinal compressive stress in the shell, in MPa.

𝑊𝐿 = 99𝑡𝑏 𝐹𝑏𝑦𝐺𝐻

𝑊𝐿 = 196𝐺𝐻𝐷

For stablity b/12t < Fa Stable, No Anchoring required

TOP CURB ANGLE

See Section 3.1.5.9 ( e ) of API 650 page 3-4

The tank shall be supplied with top angles of not less than the following sizes:

For tank with diameter <= to 11 m (35 ft)

51 x 51 x 4.8 mm (2 x 2 x 3/16 in) Use

For tank with diameter 11 m (35 ft) > = 18 m (60 ft)

51 x 51 x 6.4 mm (2 x 2 x 1/4 in) No

For tank with diameter > 18 m (60 ft)

76 x 76 x 9.5 mm (3 x 3 x 3/8 in) No

Length of Curb Angle 3.2 m

CURB ANGLE kg/m AREA IN cm²

(51 x 51 x 4.8 mm) 3.77 4.79

(51 x 51 x 6.4 mm) 4.5 5.68

(75 x 75 x 9.5 mm) 11 14.02

TOTAL WEIGHT (kg ) 11.9386

TOTAL WEIGHT ( N ) 117.117

WIND OVERTURNING CALCULATION

3.11.1 Wind Velocity 160 km/hour

Wind Pressure on Cylindrical Surfaces 0.86 kPa

Wind Pressure on Conical Surfaces 0 kPa

Roof Weight 0 kg

Shell Weight 124 kg

Net Weight 124 kg

Roof Height 0.000 m

Shell Surface Area 3.167 m2

COG 0.500 m

Wind Moment

Lateral force #REF! lbs

Over turning moment "M" #REF! lbs-ft

Stabilizing Moment #REF! lbs-ft

Remarks

No Material Specified Specified Yield stress Max. allow Max. allow

used min. tensile min. yield reduction fac design hydro.test

stress stress ( App. M ) stress stress

St (N/mm²) Sy (Nmm²) k Sd (N/mm²) St (N/mm²)

A36 160.00 171.00 1.000 64.00 68.57

Should not be more than 1/2 inch & should not be less than thk of thinner of the two plates joined.

Corrosion

allowance

c.a (mm)

0.00

top related